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Abstract. Consider a degree-d polynomial f(ξ1, . . . , ξn) of independent Rademacher random variables
ξ1, . . . , ξn. To what extent can f(ξ1, . . . , ξn) concentrate on a single point? This is the so-called
polynomial Littlewood–Offord problem. A nearly optimal bound was proved by Meka, Nguyen and Vu:
the point probabilities are always at most about 1/

√
n, unless f is “close to the zero polynomial” (having

only o(nd) nonzero coefficients).
In this paper we prove several results supporting the general philosophy that the Meka–Nguyen–Vu

bound can be significantly improved unless f is “close to a polynomial with special algebraic structure”,
drawing some comparisons to phenomena in analytic number theory. In particular, one of our results
is a corrected version of a conjecture of Costello on multilinear forms (in an appendix with Ashwin Sah
and Mehtaab Sawhney, we disprove Costello’s original conjecture).

1. Introduction

Anticoncentration inequalities are an important class of probabilistic inequalities, giving upper bounds
on the probability that a random variable falls in a small interval or is equal to a particular value (i.e.,
they provide limits on the extent to which a random variable “concentrates”). Such inequalities are
ubiquitous, playing an essential behind-the-scenes role in a wide range of different types of probabilistic
arguments.

In particular, an important direction is the (polynomial) Littlewood–Offord problem, which concerns
anticoncentration of low-degree polynomials of independent random variables (making minimal assump-
tions about the structure of the polynomials in question). A representative theorem, due to Meka, Nguyen
and Vu [40], is as follows. (The Rademacher distribution is the uniform distribution on {−1, 1}).

Theorem 1.1. Fix d ≥ 1 and ε > 0, and let F ∈ {R,C} be the field of real or complex numbers. Let
n be sufficiently large (in terms of ε, d). Let f ∈ F[x1, . . . , xn] be an n-variable polynomial of degree d.
Then, at least one of the following holds:

A1 f has at most εnd nonzero coefficients, or
A2 letting ξ1, . . . , ξn ∈ {−1, 1} be i.i.d. Rademacher random variables, we have

sup
z∈F

P[f(ξ1, . . . , ξn) = z] ≤ n−1/2+ε.

In other words, polynomials of n independent random variables have their point probabilities bounded
by about 1/

√
n, unless they are “close to the zero polynomial” (note that we may take ε > 0 to be

arbitrarily small1, strengthening both A1 and A2, though this forces us to take large n). To see
that one cannot hope for a bound stronger than about 1/

√
n, consider the polynomial f(x1, . . . , xn) =

(x1 + · · ·+ xn)
d. Indeed, then supz∈F P[f(ξ1, . . . , ξn) = z] ≥ supz∈F P[x1 + · · ·+ xn = z] =

(
n

⌊n/2⌋
)
· 2−n

is on the order of 1/
√
n (up to constant factors).

Remark 1.2. Littlewood–Offord theorems are usually stated with ξ1, . . . , ξn being i.i.d. Rademacher (as
in Theorem 1.1 above), but it is often not hard to deduce analogous results where ξ1, . . . , ξn are allowed
to have arbitrary distributions, as long as they are independent. Indeed, in some sense the Rademacher
case is the “hardest case”: other cases can be reduced to this case with simple coupling/conditioning
arguments (see for example [40, Section 6]).

The first author was supported by SNSF grant 200021-19696. The second and fourth authors were supported by ERC
Starting Grant “RANDSTRUCT” No. 101076777. The third author was supported by the DFG Heisenberg Program.

1There are more precise quantitative questions in this direction, which we will not pursue in this paper.
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To give some history for Theorem 1.1 (more can be found in the surveys [47, 61]): the d = 1 (linear)
case of Theorem 1.1 first appeared as a lemma in a 1943 paper of Littlewood and Offord [38]2 on random
algebraic equations. Their bound was improved by Erdős [15] in 1945, obtaining exact bounds for the
d = 1 case (the result of this latter paper is now usually called the Erdős–Littlewood–Offord theorem,
and has been very influential in combinatorics and random matrix theory). Both these papers were for
linear forms with real coefficients; complex coefficients were first explicitly considered by Kleitman [31]
(though, in the way we have stated Theorem 1.1, the real and complex cases are equivalent).

The higher-degree (d ≥ 2) Littlewood–Offord problem was first considered in a 1996 paper of Rosiński
and Samorodnitsky [51] (they proved a weaker form of Theorem 1.1 for applications to Lévy chaos), and
this direction of study rose to the forefront after a 2006 paper of Costello, Tao and Vu [10] (who proved
a weak form of the d = 2 case of Theorem 1.1, as a key ingredient in their work on random symmetric
matrices), and a 2013 paper of Razborov and Viola [49] (who proved a weak form of Theorem 1.1 as
a tool to study correlation bounds between Boolean functions and polynomials). The d = 2 case of
Theorem 1.1 was proved by Costello [9], and Theorem 1.1 for general d was proved by Meka, Nguyen
and Vu [40], using a result of Kane [27]. Very recently, an optimal O(1/

√
n) bound in A2 was obtained

in the case d = 2 by the second and third authors [34].
It remains a very interesting open problem to obtain sharp O(1/

√
n) bounds in A2 for d ≥ 3, but

another important question is to study conditions under which one can prove much stronger bounds. A
natural conjecture along these lines was first made by Costello [9, Conjecture 3], as follows (his paper
was about polynomials with complex coefficients, but we have taken the liberty to state his conjecture
in both the real and complex cases3).

Conjecture 1.3. Fix d ≥ 2 and ε > 0, and let F ∈ {R,C}. Let n be sufficiently large (in terms of ε, d),
and let f ∈ F[x1, . . . , xn] be an n-variable polynomial of degree d. Then, at least one of the following
holds:

B1 there is a reducible4 polynomial g ∈ F[x1, . . . , xn] with degree at most d, such that f − g has at
most εnd nonzero coefficients, or

B2 letting ξ1, . . . , ξn ∈ {−1, 1} be i.i.d. Rademacher random variables, we have

sup
z∈F

P[f(ξ1, . . . , ξn) = z] ≤ n−d/2+ε.

To paraphrase, Costello conjectured that either the point probabilities are bounded by about n−d/2,
or f is close to a product of two lower-degree polynomials. To motivate the bound “n−d/2”, note that if
the coefficients of f are bounded integers (and at least a constant fraction of them are nonzero), then
the variance of f(ξ1, . . . , ξn) has order of magnitude nd, so its standard deviation has order of magnitude
nd/2. It is reasonable to imagine that, “generically”, the probability mass is roughly evenly spread out
on the integers within standard-deviation range of the mean. The most obvious way for this “generic”
bound to fail is if f factorises into lower-degree polynomials, since when one of the factors is zero, the
whole polynomial is zero. Costello conjectured that that a bound of roughly n−d/2 is achieved as long
as the polynomial is far from factorising (i.e., if it is “robustly irreducible” in the sense of B1).

We remark that Conjecture 1.3 falls in the general direction of the inverse Littlewood–Offord problem,
which is the study of the structural aspects of f that control the concentration behaviour of f(ξ1, . . . , ξn)
(this problem has a long history, which we discuss in more detail in Section 1.1.3). Comparisons can
also be made to the Elekes–Rónyai–Szabó problem in combinatorial geometry (see [13] for a survey),
and the problem of counting integral points on varieties (which is intensively studied in analytic number
theory; see e.g. [6]). Indeed, one can consider the general problem of counting the number of zeroes of an
n-variable polynomial f which lie in a “combinatorial box”

∏n
i=1Ai. The polynomial Littlewood–Offord

problem is concerned with the case where each Ai has size 2 and the dimension n is large, whereas the
Elekes–Rónyai–Szabó problem is concerned with the case where n is small and each Ai is large, and in
the study of integral points on varieties one is concerned with the specific case where each Ai is a long
interval of integers of the form {−B, . . . , B}. In the latter two settings, the fundamental question is how

2A more general result was claimed in a 1939 paper by Doeblin [14], though this is also the subject of a 1958 paper of
Kolmogorov [32], which claims that Doeblin’s paper did not provide a full proof.

3Unlike Theorem 1.1, here there is a genuine difference between the real and complex cases, as there are real polynomials
that factorise over C but not R.

4A polynomial is reducible if it can be factored as the product of two non-constant polynomials. In this paper, we use
the convention that the zero polynomial is reducible.
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the algebraic properties of the polynomial f control the asymptotics of the number of zeroes in a large
box.

The d = 1 case of Conjecture 1.3 trivially coincides with the d = 1 case of Theorem 1.1, and we are
also inclined to believe the d = 2 case (we will justify this in Section 1.1, by comparison to related work
in analytic number theory), but unfortunately Conjecture 1.3 is too optimistic for d ≥ 3, as shown by
the following proposition.

Proposition 1.4. Fix an integer constant d ≥ 1. Consider 2d disjoint subsets I1, . . . , I2d ⊆ {1, . . . , n},
each of size exactly 2⌊n/(4d)⌋. For j ∈ {1, . . . , 2d} let Lj(x1, . . . , xn) =

∑
i∈Ij

xi, and define the degree-d
polynomial

f = L1 . . . Ld − Ld+1 . . . L2d ∈ R[x1, . . . , xn].
Then, there is ε > 0 (depending only on d) such that:

• B1 does not hold, even if we take F = C (i.e., the real polynomial f is “robustly irreducible”,
even if we allow factorisations over the complex numbers), and

• for i.i.d. Rademacher random variables ξ1, . . . , ξn ∈ {−1, 1}, we have P[f(ξ1, . . . , ξn) = 0] ≥ ε/n
(so if d ≥ 3, then B2 does not hold either).

Proposition 1.4 was observed in a conversation between Ashwin Sah, Mehtaab Sawhney and the second
author of this paper. The proof proceeds via a random sampling argument restricting to a small subset of
the variables where the polynomial essentially factorises, with some careful Ramsey-theoretic arguments
to handle non-multilinear terms. The details are provided in Appendix B.

Remark 1.5. Costello [9] also highlighted a special case of Conjecture 1.3 (appearing as [9, Conjecture 2])
for d-multilinear forms (i.e., degree-d polynomials for which the variables are partitioned into d different
“types”, and every monomial contains exactly one variable of each type). Costello was able to prove
this specialised conjecture for bilinear forms (2-multilinear forms), but Proposition 1.4 shows that when
d = 3 even this specialised conjecture is false.

Remark 1.6. It seems plausible that with similar methods as in the proof of Proposition 1.4 (but more
technical details) one can actually prove that for any irreducible polynomial F ∈ F[X1, . . . , Xk], polyno-
mials of the form F (L1, . . . , Lk) are robustly irreducible in the sense of B1 (where we fix disjoint sets
I1, . . . , Ik ⊆ {1, . . . , n} of size about n/k, and take Lj(x1, . . . , xn) =

∑
i∈Ij

xi for j = 1, . . . , k). If the
polynomial F has integer coefficients and has many zeroes in ([−

√
n,

√
n]∩Z)k, then the point probability

P[F (L1(ξ1, . . . , ξn), . . . , Lk(ξ1, . . . , ξn)) = 0] is large (see also the discussion in Section 1.1.1). So, this
would give a large family of counterexamples to Conjecture 1.3.

The purpose of this paper is to open a systematic investigation into the algebraic aspects of the
Littlewood–Offord problem, in accordance with the philosophy of Conjecture 1.3. We see there being
two main questions to investigate. First, we believe that if B1 does not hold (i.e., if f is “robustly
irreducible”), it should still be possible to at least prove some “power-saving” beyond the general bound
in Theorem 1.1.

Conjecture 1.7. In the setting of Conjecture 1.3, either B1 holds, or else
B2’ letting ξ1, . . . , ξn ∈ {−1, 1} be i.i.d. Rademacher random variables, we have

sup
z∈F

P[f(ξ1, . . . , ξn) = z] ≤ n−c+ε.

for some c > 1/2 (which does not depend on ε, n or f).

It seems plausible that in fact Conjecture 1.7 holds with c = 1 (this is the best one could hope
for, given Proposition 1.4, and in the d = 2 case it would be equivalent to Conjecture 1.3). However,
this is probably a very difficult problem: as we will discuss in Section 1.1.1, the general c = 1 case of
Conjecture 1.7 seems to be at least as hard as the so-called affine dimension growth conjecture in analytic
number theory.

Second, it would be of interest to identify conditions under which B2 can be salvaged.

Question 1.8. In the setting of Conjecture 1.3, what natural assumptions on f are sufficient to guarantee
that B2 holds?

As our first main result, we prove an optimal version of Conjecture 1.7 for d-multilinear forms, which
can be viewed as a “repaired” version of [9, Conjecture 2] (recalling the discussion in Remark 1.5).
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Theorem 1.9. In the setting of Conjectures 1.3 and 1.7, if f is a d-multilinear form, then either B1
or B2’ holds with c = 1.

As our next main result, we prove Conjecture 1.7 in the complex quadratic case (d = 2 and F = C).

Theorem 1.10. When d = 2 and F = C, Conjecture 1.7 holds with c = 13/24.

As our final main result, we show that in the quadratic case (d = 2), one can approach the “generic
bound” 1/n = n−d/2 with an assumption that the quadratic part of f has high rank (this provides a
partial answer to Question 1.8).

Theorem 1.11. Fix any ε > 0 and k ≥ 1, and let F ∈ {R,C}. Let n be sufficiently large (in terms of
ε, k), and let f ∈ F[x1, . . . , xn] be a quadratic n-variable polynomial. Then, at least one of the following
holds:

C1 there is a quadratic form g ∈ F[x1, . . . , xn] with rank5 less than 2k2, such that f − g has at most
εn2 nonzero coefficients, or

C2 letting ξ1, . . . , ξn ∈ {−1, 1} be i.i.d. Rademacher random variables, we have

sup
z∈F

P[f(ξ1, . . . , ξn) = z] ≤ n−1+2/k.

In other words, for any α > 0, we can prove a bound of the form n−1+α (for large n), as long as f is
not close to a quadratic form with rank less than about α−2.

Remark 1.12. It is worth remarking that Theorem 1.11 is reminiscent of a theorem of Gowers and
Karam [21], which (rephrased in the language of this paper) implies that for a fixed prime p, any degree-
d polynomial f ∈ Z[x1, . . . , xn], and i.i.d. Rademacher ξ1, . . . , ξn, if f(ξ1, . . . , ξn) has “a significant bias
mod p”, then in a certain sense it is possible to approximate f by a degree-d polynomial of “low rank”.
This can be interpreted as a “restricted-domain” version of a similar theorem of Green and Tao [22]
(qualitatively improved by Janzer [26] and Milićević [41]), which roughly speaking considers the case
where ξ1, . . . , ξn are uniform mod p. However, we do not see a formal connection between Theorem 1.11
and this direction of study.

Remark 1.13. The second and third author [35] previously proved versions of Theorems 1.10 and 1.11 in
the setting where f has bounded coefficients, and instead of measuring the “smallness” of a polynomial
by counting nonzero coefficients, one considers the sum of the absolute values of the coefficients. This
setting makes the problem very different in character (it makes the problem much more analytic than
algebraic), and the proofs in [35] have almost nothing in common with the proofs of Theorems 1.10
and 1.11.

We outline the ideas in the proofs of Theorems 1.9 to 1.11 in Section 2. The proofs contain a number
of ideas of general interest, including some lemmas related to property testing of low-rank tensors and
symmetric matrices.

1.1. Further directions, and speculations. It seems that for further progress on Conjecture 1.7
and Question 1.8 (and the d = 2 case of Conjecture 1.3), it might be necessary to integrate the “combi-
natorial” ideas in this paper with ideas from analytic number theory. Here, we discuss the connection to
analytic number theory and also suggest some other directions for further research.

1.1.1. Connections to analytic number theory. Proposition 1.4 (our counterexample to Costello’s conjec-
ture) is really a special case of a general observation that if P ∈ F[y1, . . . , yk] is any polynomial with
NP (B) zeroes in {−B, . . . , B}k, then one can construct a polynomial fP ∈ F[x1, . . . , xn] of the form
fP = P (L1, . . . , Lk) for linear forms L1, . . . , Lk ∈ F[x1, . . . , xn] such that P[fP (ξ1, . . . , ξn) = 0] scales
roughly like NP (

√
n)n−k/2. So, in order to fully understand the algebraic aspects of the polynomial

Littlewood–Offord problem, it seems to be necessary to understand how the algebraic features of a poly-
nomial P affect the rate of growth of NP (B) (which can be interpreted as a certain “density of integral
points” on the variety defined by P ). To this end, one is forced to confront deep questions in analytic
number theory.

5Recall that a quadratic form is a homogeneous quadratic polynomial h ∈ F[x1, . . . , xn]. Any quadratic form can be
expressed in matrix form as h(x) = x⃗TQx⃗ for some symmetric matrix Q ∈ Fn×n. The rank of h is defined to be the rank of
this matrix Q. Equivalently, the rank of h is the minimum r such that there is a representation h = λ1h2

1 + · · ·+λrh2
r as a

linear combination of squares of homogeneous linear polynomials h1, . . . , hr ∈ F[x1, . . . , xn] with coefficients λ1, . . . , λr ∈ F.
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Specifically, if we restrict our attention to polynomials of the form fP , then the bound of shape
approximately 1/

√
n in Theorem 1.1 corresponds to the “trivial bound” NP (B) = O(Bk−1), which holds

for any nonzero polynomial P ∈ F[y1, . . . , yk] of fixed degree (see for example [4, Equation (2.3)]). It
seems that in order to prove Conjecture 1.7 for polynomials of the form fP , one would need a power-
saving improvement over this “trivial bound” when P is irreducible. Such estimates are indeed available:
for an irreducible d-form P , Cohen [8] proved that NP (B) ≤ Bk−3/2+o(1), and this was later improved
by Pila [48] to NP (B) ≤ Bk−2+1/d+o(1) (see also [62]). It is conjectured that NP (B) ≤ Bk−2+o(1) for all
d ≥ 2 (which would be best-possible, if true; this is an affine version of the so-called dimension growth
conjecture of Heath-Brown [24] for projective varieties). The affine dimension growth conjecture was
very recently proved when d ̸= 3 by Vermeulen [60], building on earlier work of Browning, Heath-Brown
and Salberger [5] and Salberger [53]. The methods in all these works are quite different, and it would be
very interesting to investigate if any of them can be extended to a full proof of Conjecture 1.7 (not just
for polynomials of the form fP ).

Regarding Question 1.8, if fP has “generic” anticoncentration n−d/2+o(1), this corresponds to a bound
of the form NP (B) ≤ Bk−d+o(1). This is sometimes called the “probabilistic heuristic” in analytic number
theory. It is a very deep open problem to characterise the polynomials P for which such a bound holds,
but one interesting sufficient condition is that P is a d-form with sufficiently large Schmidt rank (this
parameter is also sometimes called h-invariant or strength), meaning that P cannot be written as a sum
of few products of forms of lower degree [55]. We suspect that a version of Conjecture 1.3 along these
lines should also hold, as follows.

Conjecture 1.14. For any d, there is k ∈ N such that the following holds. In the setting of Conjec-
ture 1.3, either B2 holds or

B1’ For some r ≤ k there are homogeneous polynomials g1, h1, g2, h2, . . . , gr, hr ∈ F[x1, . . . , xn], each
with positive degree, such that g1h1 + g2h2 + · · · + grhr has degree at most d, and f − (g1h1 +
g2h2 + · · ·+ grhr) has at most εnd nonzero coefficients.

Note that Theorem 1.11 almost, but not quite, resolves the d = 2 case of Conjecture 1.14. The
difference is that in Theorem 1.11, as one wishes to get closer and closer to the generic bound n−d/2+o(1),
the rank requirement continues to increase, whereas in Conjecture 1.14 there is a particular rank above
which one immediately obtains the generic bound n−d/2+o(1).

In the case where f is a d-multilinear form, the Schmidt rank of f coincides with the so-called partition
rank of the tensor of coefficients of f . This notion has recently been intensively studied in theoretical
computer science and additive combinatorics (see for example [7, 26, 36, 39, 41–44]), and it would likely
be much more tractable (and still very interesting) to prove the special case of Conjecture 1.14 where f
is a d-multilinear form.

1.1.2. Further questions. There are a huge number of other questions related to the results and conjec-
tures in this paper. For example:

Q1 Could an even stronger version of Conjecture 1.7 hold, where in B1 one demands that g is
divisible by a polynomial of degree 1 (i.e., this degree-1 polynomial is “directly responsible” for
the poor anticoncentration behaviour)?

Q2 Can one consider weaker notions of “smallness” of a polynomial than having few nonzero coeffi-
cients? In [34], the second and third authors show that in the d = 2 case of Theorem 1.1 one can
replace property A1 (that f has at most εn2 nonzero coefficients) with the property that one can
fix at most εn of the variables to obtain a constant polynomial. It would be very interesting if
this notion of “smallness” could also be used for theorems along the lines of Theorems 1.9 to 1.11.

Q3 Can one quantify the “nε” error term in Theorem 1.9? We note that it is not possible to remove
no(1) terms entirely: for example, if we consider the polynomial f = L1L2−L3L4 in the d = 2 case
of Proposition 1.4, known results on the “multiplication table problem” (counting the integers
respresentable in the form a · b, where a, b ∈ {1, . . . , N}; see [17]) show that

sup
z∈F

P[f(ξ1, . . . , ξn) = z] ≥ (log n)α+o(1)

n
.

for some absolute constant α > 0.
Q4 What can we prove in the “higher-dimensional” case, where we are interested in the probability

that a length-k vector (f1(ξ1, . . . , ξn), . . . , fk(ξ1, . . . , ξn)) of polynomials of independent random
variables is equal to a particular vector z ∈ Fk? In the linear (d = 1) case, essentially optimal
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results were famously obtained by Halász [23] (see also the results in [16,25], which consider the
dependence on k), but almost nothing is known for higher degrees.

1.1.3. Inverse theorems. From a broader point of view, all the theorems and conjectures in this paper
can be interpreted as falling under the umbrella of the inverse Littlewood–Offord problem, which is
concerned with understanding the structural properties of f that control the anticoncentration behaviour
of f(ξ1, . . . , ξn). In this paper we have considered only the algebraic aspects of this problem; aspirationally
it would be of interest to consider the interplay between algebraic and arithmetic aspects.

To give some context: in the linear (d = 1) case, there is no relevant algebraic structure; the anticon-
centration behaviour of f(ξ1, . . . , ξn) only depends on the multiset {a1, . . . , an} of (degree-1) coefficients of
f . It is now understood that, in fact, the anticoncentration behaviour of f(ξ1, . . . , ξn) = a1ξ1+ · · ·+anξn
is essentially determined by “how much {a1, . . . , an} looks like a generalised arithmetic progression”. A
particular theorem along these lines, due to Nguyen and Vu [45], appears as Theorem 2.10 later in the
paper; earlier theorems in this spirit were proved by Halász [23], Tao and Vu [58, 59] and Rudelson and
Vershinyn [52].

For higher degrees, the only result in the literature considering both arithmetic and algebraic aspects
of the Littlewood–Offord problem is a theorem of Nguyen [46] in the quadratic case (d = 2). This theorem
had important consequences in random matrix theory, but unfortunately it is very crude, and we are still
a long way from “optimal” inverse theorems for higher degrees. In particular, Nguyen’s theorem is only
capable of distinguishing “polynomial” anticoncentration from “sub-polynomial” anticoncentration (i.e.,
distinguishing whether there is a point probability at least n−C , for some constant C, or not). For bilinear
forms (a subfamily of quadratic polynomials), Costello made a more refined conjecture [9, Conjecture 1]
but we do not know of a general conjecture for quadratic polynomials.

1.1.4. Property testing for (tensor) rank. As we will discuss further in the proof outlines in Section 2,
the proofs of Theorems 1.9 to 1.11 depend on two “local-to-global” lemmas which allow one to study the
rank of a matrix or tensor via the ranks of small submatrices or small subtensors. First, Lemma 2.2 says
that if a d-dimensional n×· · ·×n tensor T has the property that a 1−o(1) fraction of its 2d−1×· · ·×2d−1

subtensors have partition rank 1, then we can change a o(1)-fraction of the entries of T to obtain a tensor
with partition rank 1. Second, Lemma 2.7 says that, if an n × n symmetric matrix A has the property
that a 1 − o(1) fraction of its r × r submatrices are singular, then we can change a o(1)-fraction of the
entries of A to obtain a symmetric matrix with rank less than r.

Lemmas 2.2 and 2.7 are of independent interest, as they permit efficient property testing for matrices
and tensors. For example, suppose we have a d-dimensional tensor T of enormous size n× · · · × n, and
we want to distinguish between the possibilities that T has partition rank 1 and that T is “ε-far” from
having partition rank 1. With high probability, we can accomplish this in constant time (i.e., with a
number of queries that only depends on ε, d, and the desired success probability), by randomly sampling
many subtensors with side length 2d−1 and checking6 whether they have partition rank 1. There is
an enormous literature on property testing of graphs, Boolean functions, probability distributions, etc.
(see for example the monographs [3,20,50] and the references therein), and in particular there has been
some specific attention on property testing for the rank of (not necessarily symmetric) matrices; see for
example [2, 33, 37]. However, there does not seem to have been any prior work on property testing for
any kind of tensor rank, or for matrices constrained to be symmetric. We believe there is quite some
scope to investigate these directions further.

For example, while Lemma 2.7 already has near-optimal quantitative aspects, it would be interest-
ing to investigate quantitative aspects for Lemma 2.2. It would also be interesting to investigate the
possibility of more efficient property testing algorithms that do not simply randomly sample small sub-
matrices/subtensors (for not-necessarily-symmetric matrices, there are rank-testing algorithms that do
strictly better than sampling submatrices; see [37]).

It would also be very interesting to consider more general property testing for the partition rank (or
other notions of tensor rank), beyond the setting of Section 4 (where we are only interested in whether the
partition rank is 1 or not). Tensor ranks are surprisingly poorly behaved with respect to subtensors (see
e.g. the surprising construction of Gowers in [28, Proposition 3.1]), and a straightforward generalisation
of Lemma 2.2 to higher ranks does not actually seem to be possible.

6While computing the partition rank of a tensor is difficult in general, it is easy to check whether a tensor has partition
rank 1 (this amounts to checking whether some matrix of a certain form has rank 1, see Fact 4.2).
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1.2. Organisation of the paper. In Section 2 we provide outlines of the proofs of Theorems 1.9 to 1.11,
including statements of various key lemmas. Then, in Section 3, we record some basic preliminary lemmas
that will be used throughout the proofs.

The details of the proof of Theorem 1.9 appear in Sections 4 to 6. First, in Section 4 we prove a key
lemma allowing us to restrict our attention to small subtensors, and in Section 5 we characterise the
variety of reducible multilinear forms (i.e., reducible tensors). In Section 6 we combine all the relevant
ingredients to prove Theorem 1.9.

Most of the rest of the paper is concerned with the proofs of Theorems 1.10 and 1.11. In Section 7
we prove a key lemma allowing us to restrict our attention to small submatrices, and in Section 8 we
prove some special-purpose decoupling inequalities that will allow us to efficiently use tools from linear
Littlewood–Offord theory to study quadratic anticoncentration. Then, the proof of Theorem 1.11 is
completed in Section 9 and the proof of Theorem 1.10 is completed in Section 10.

Finally, we have two appendices: in Appendix A we show how to prove a certain variant of a “geometric
Littlewood–Offord theorem” of Fox, Spink and the second author [18], which is an ingredient in the proof
of Theorem 1.9. Then, Appendix B (authored by Matthew Kwan, Ashwin Sah and Mehtaab Sawhney)
contains the proof of Proposition 1.4 (i.e., the disproof of Costello’s conjecture).

1.3. Notation. We use standard asymptotic notation throughout, as follows. For functions f = f(n)
and g = g(n), we write f = O(g) to mean that there is a constant C such that |f(n)| ≤ C|g(n)|, and
we write f = Ω(g) to mean that there is a constant c > 0 such that f(n) ≥ c|g(n)| for sufficiently large
n. We also write f = o(g) to mean that f(n)/g(n) → 0 as n → ∞. Subscripts on asymptotic notation
indicate quantities that should be treated as constants.

Slightly less standardly, for a matrix A ∈ FX×Y and subsets I ⊆ X, J ⊆ Y , we write A[I, J ] ∈ FI×J

for the |I| × |J | submatrix of A consisting of the rows with indices in I and the columns with indices
in J . In the case that I = {i} for some i ∈ X, we slightly abuse notation and write A[i, J ] instead of
A[{i}, J ]. Similarly, for a vector v⃗ ∈ FX and a subset I ⊆ X we write v⃗[I] ∈ FI for the vector obtained
from v⃗ ∈ FI by only taking the coordinates with indices in I. In addition, for a matrix A ∈ FX×Y , we
write ∥A∥0 for its number of nonzero entries.

We say that a partition X = I ∪ J of a set X into two subsets I and J is “non-trivial”, if both of
the subsets I and J are non-empty. For a real number x, the floor and ceiling functions are denoted
⌊x⌋ = max{i ∈ Z : i ≤ x} and ⌈x⌉ = min{i ∈ Z : i ≥ x}. We will however sometimes omit floor
and ceiling symbols and assume large numbers are integers, wherever divisibility considerations are
not important. Finally, some conventions: all logarithms in this paper are in base e, unless specified
otherwise, and the natural numbers N include zero.

Acknowledgments. We would like to thank Tim Browning and Sarah Peluse for informing us about
relevant references in the analytic number theory literature.

2. Proof outlines

In this section, we outline the proofs of Theorems 1.9 to 1.11. The proofs of Theorems 1.10 and 1.11
are quite closely related, but the proof strategy for Theorem 1.9 is rather different.

2.1. d-multilinear forms. First, we outline the proof of Theorem 1.9. Recall that a polynomial f ∈
F[x1, . . . , xn] is a d-multilinear form if there is a partition {1, . . . , n} = I1 ∪ · · · ∪ Id such that every
term of f is of the form ci1,...,idxi1 . . . xid , where ci1,...,id ∈ F and ij ∈ Ij for each j ∈ {1, . . . , d}. Such a
d-multilinear form can be equivalently viewed as a function FI1 × · · · × FId → F which is linear in each
of its d arguments. It can be encoded by the |I1| × · · · × |Id| array of coefficients ci1,...,id , and it can also
be viewed as an element of the vector space FI1 ⊗ · · · ⊗ FId . This gives rise to three different ways to
define the notion of an |I1| × · · · × |Id| tensor :

• as a d-multilinear form, which can be interpreted as a polynomial in F[x1, . . . , xn] or a function
FI1 × · · · × FId → F,

• as a function I1 × · · · × Id → F (i.e., a I1 × · · · × Id array with entries in F), or
• as an element of the vector space FI1 ⊗ · · · ⊗ FId .

We will switch between the these three points of view as convenient. Indeed, viewing a tensor as a
function I1 × · · · × Id → F makes it easier to talk about subtensors (i.e., tensors induced by subsets
I ′1 ⊆ I1, . . . , Id ⊆ I ′d), while viewing a tensor as an element of FI1 ⊗· · ·⊗FId makes it easier to talk about
factorisation.
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Definition 2.1. A tensor T ∈ FI1 ⊗ · · · ⊗ FId is reducible or has partition rank at most 1 if there is a
non-trivial partition {1, . . . , d} = J1 ∪ J2, and tensors T1 ∈

⊗
j∈J1

FIj and T2 ∈
⊗

j∈J2
FIj , such that

T can be factored as a tensor product T = T1 ⊗ T2. Equivalently, this says that the corresponding
d-multilinear form can be factorised into lower-degree factors.

The first ingredient we need is the following theorem, which states that for any tensor T , if most of
the small subtensors of T are reducible, then T itself is close to being reducible. In our proof, we will
use this as a sort of local-to-global principle: we can study small subtensors of T individually, and make
conclusions about the whole tensor T .

Lemma 2.2. Fix d > 1 and ε > 0, and any field F. Let δ = (ε/2)2
d−1

, and let n0 be sufficiently large in
terms of d and ε. Consider a d-dimensional tensor T : I1 × · · · × Id → F, where |I1|, . . . , |Id| ≥ n0, and
suppose that all but at most a δ-fraction of the 2d−1 × · · · × 2d−1 subtensors of T are reducible. Then
one can make T reducible by changing up to an ε-fraction of its entries.

Remark 2.3. The proof of Lemma 2.2 is also suitable for other notions of “tensor rank at most 1”, most
notably the so-called slice rank (see [54,57]).

The (short) proof of Lemma 2.2 appears in Section 4. We will prove Theorem 1.9 by induction on
d, using Costello’s result for d = 2 as the base case. Given Lemma 2.2, the main ingredient for the
induction step is the following lemma.

Lemma 2.4. Fix d ≥ 3 and r ≥ 1 and ε > 0 and F ∈ {R,C}. Let n be sufficiently large in terms of d,
r and ε. Consider a tensor T : I1 × · · · × Id → F, where |I1| = · · · = |Id−1| = r and Id = {1, . . . , n}. For
a vector x⃗ ∈ Fn, define the (d− 1)-dimensional tensor T x⃗ : I1 × · · · × Id−1 → F by

T x⃗(i1, . . . , id−1) =

n∑
i=1

T (i1, . . . , id−1, i)xi.

Then at least one of the following holds.
D1 All but an ε-fraction of the r × · · · × r subtensors of T are reducible, or

D2 letting ξ⃗ = (ξ1, . . . , ξn) ∈ {−1, 1}n be a vector of i.i.d. Rademacher random variables, we have

P[T ξ⃗ is reducible] ≤ n−1/2+ε.

Roughly speaking, we will use Lemma 2.4 as follows. Given a d-multilinear form f (with variables
partitioned into d parts), we wish to understand the behaviour of f when the variables take random
values. In the induction step, we reveal all the randomness in only the last of the d parts, which allows
us to reinterpret f as a (d − 1)-multilinear form in the remaining unrevealed variables. One way to
visualise this, from the point of view that the tensor of coefficients is a d-dimensional array, is to view
our d-dimensional tensor as a “stack” of (d − 1)-dimensional tensors. We assign a random sign to each
of the (d− 1)-dimensional tensors in the stack, and add them together to obtain the “collapsed” (d− 1)-
dimensional tensor. For the induction to work, we need to know that if the original d-multilinear form
was far from being reducible, then the “collapsed” (d − 1)-multilinear form is likely to also be far from
being reducible. By Lemma 2.2, it suffices to study this “collapse” on tensors whose side-lengths are 2d−1

(except in the d-th dimension), and this is precisely the role of Lemma 2.4.
In the statement of Lemma 2.4, note that T ξ⃗ can be viewed as a linear combination of Rademacher

random variables, with coefficients in the space of |Id−1|× · · ·× |Id−1| tensors FI1 ⊗· · ·⊗FId−1 . In D2 we
are interested in the event that this random linear combination falls in the variety of reducible tensors.
So, to prove Lemma 2.4 we will use the following “geometric Littlewood–Offord” theorem (closely related
to results of Fox, Spink and the second author [18, Theorem 1.5]), providing bounds on the probability
that a Rademacher sum falls in a given variety.

Theorem 2.5. Fix d ≥ 1 and ε > 0 and F ∈ {R,C} and let Z ⊊ Fd be a (possibly reducible) affine
variety. Let n be sufficiently large (in terms of Z, ε), and consider vectors a⃗1, . . . , a⃗n ∈ Fd. Then, at
least one of the following holds.

E1 There is a linear subspace W ⊆ Fd containing all but at most εn of the vectors a⃗i, such that
w⃗ +W ⊆ Z for some vector w⃗ ∈ Fd.

E2 letting ξ1, . . . , ξn ∈ {−1, 1} be i.i.d. Rademacher random variables, we have

P[ξ1a⃗1 + · · ·+ ξna⃗n ∈ Z] ≤ n−1/2+ε.
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This result follows from the same proof as in [18] (which considers a more general setting). For
completeness, we include a proof of Theorem 2.5 in Appendix A, where we deduce Theorem 2.5 from
the Meka–Nguyen–Vu bound for the polynomial Littlewood–Offord problem (see Theorem 1.1).

In order to actually apply Theorem 2.5, our final ingredient is a description of the maximal linear
subspaces of the variety of reducible tensors.

Lemma 2.6. Fix disjoint sets I1, . . . , Id, fix F ∈ {R,C} and let r =
∏d

j=1 |Ij |. Let Z ⊆ FI1 ⊗ · · · ⊗ FId

be the set of reducible I1 × · · · × Id tensors. Note that FI1 ⊗ · · · ⊗FId ∼= Fr, so we can view Z as a subset
of Fr. Then:

(1) Z ⊆ Fr is a (possibly reducible) affine variety.
(2) The maximal linear subspaces of Z are all sets of tensors of the following form: fix a proper

subset ∅ ⊊ J ⊊ {1, . . . , d}, fix a |J |-dimensional tensor T ⋆ ∈
⊗

j∈J FIj , and consider all tensors
of the form T ⋆ ⊗ T ′, where T ′ ranges over all tensors T ′ ∈

⊗
j /∈J FIj .

We prove Lemma 2.6 in Section 5.
In Section 6, we give the details of how to prove Lemma 2.4 using Lemma 2.6 and Theorem 2.5, and

deduce Theorem 1.9 from Lemmas 2.2 and 2.4.

2.2. Quadratic polynomials. In this subsection we outline the proofs of Theorems 1.10 and 1.11. We
start with some elements common to both proofs, and then split into separate subsections for each of
Theorems 1.10 and 1.11.

First, recalling the role that Lemma 2.2 played for the proof of Theorem 1.9, we need a “local-to-
global” lemma for the rank of a symmetric matrix (while d-multilinear forms are naturally encoded
by d-dimensional tensors, quadratic forms are naturally encoded by symmetric matrices). Recall from
Section 1.3 that ∥A∥0 denotes the number of nonzero entries in a matrix A.
Lemma 2.7. Let n ≥ r ≥ 1, let α ∈ [0, 1] and let F be a field. Consider a symmetric matrix A ∈ Fn×n.
If all but at most an α-fraction of the r× r submatrices of A are singular, then there exists a symmetric
matrix A′ ∈ Fn×n of rank less than r such that ∥A−A′∥0 ≤ O(r4α1/rn2).

We remark that Lemma 2.7 is very easy to prove if we drop the requirement that the approximating
matrix A′ is symmetric. The challenge is that we want to modify A to have rank less than r while
maintaining symmetry. The details of the proof of Lemma 2.7 appear in Section 7, but to give a brief
idea: first, we show that we can adjust a small number of entries of A to obtain a matrix B which
has low rank (but is not necessarily symmetric). Then, we identify a principal submatrix of B which is
symmetric and “robustly has full rank”, and use this as a “guide” to construct A′.
Remark 2.8. Throughout the paper we do not pay much attention to quantitative aspects, but it seems
worth noting that in Lemma 2.7 the dependence on α is best-possible. Indeed, for any fixed integer
r ≥ 1, let ℓ = ⌊α1/2rn/2⌋ and consider a binary matrix A = (aij) ∈ Rn×n defined by

aij =

{
1 if j ≥ n− ℓ+ i or i ≥ n− ℓ+ j

0 otherwise

(this can be informally described as an all-zero matrix, in which an upper-triangular chunk of the top-
right corner, and a lower-triangular chunk of the bottom-left corner, have been changed to “1”). It is not
hard to see that all but at most an α-fraction of the r× r submatrices are singular, but to make the rank
less than r it is necessary to change an Ωr(α

1/r)-fraction of the entries.
Next, one very important aspect of the proofs of Theorems 1.10 and 1.11, which has no counterpart

in the proof of Theorem 1.9, is decoupling. Namely, in the last subsection (on the proof of Theorem 1.9),
we crucially used that d-multilinear forms can be inductively broken down into linear forms in disjoint
sets of variables. For example, a bilinear form in the variables x1, . . . , xm and y1, . . . , yn can be viewed
as a linear form in x1, . . . , xm whose coefficients are themselves linear forms in y1, . . . , yn. So, one can
study anticoncentration of bilinear forms via tools for linear anticoncentration.

In Theorems 1.10 and 1.11, we are interested in general (not necessarily bilinear) quadratic polyno-
mials, where this type of recursive linear structure is not available. However, one of the most important
techniques for the polynomial Littlewood–Offord problem, called decoupling, nonetheless allows one to
deduce information about general quadratic polynomials via tools for linear anticoncentration7.

7The term “decoupling” refers more generally to a class of techniques used to reduce from dependent situations to
independent situations, see for example the book-length treatment in [12]. In the context of the polynomial Littlewood–
Offord problem, this technique was introduced by Rosiński and Samorodnitsky [51] and Costello, Tao and Vu [10].
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We will need some non-standard decoupling inequalities, which allow us to relate quadratic polyno-
mials to high-dimensional linear anticoncentration problems. We will state and discuss our decoupling
inequalities momentarily (when we start to break down the proofs of Theorems 1.10 and 1.11), but
first we introduce a very powerful tool which gives us control over the high-dimensional linear anticon-
centration problems that arise from our decoupling inequalities: namely, the so-called “optimal inverse
theorem” of Nguyen and Vu [45] (see the discussion in Section 1.1.3 for context). This inverse theorem
is stated in terms of generalised arithmetic progressions, defined as follows.

Definition 2.9. Let G be an additive group (i.e., an abelian group, additively written). A symmetric
generalised arithmetic progression, or a symmetric GAP for short, is a map of the form

φ : {−N1,−N1 + 1, . . . , N1} × · · · × {−Nr,−Nr + 1, . . . , Nr} → G

for some r,N1, . . . , Nr ∈ N, such that there exist v1, . . . , vr ∈ G with φ(a1, . . . , ar) = a1v1 + · · · + arvr
for all (a1, . . . , ar) ∈ {−N1,−N1 +1, . . . , N1}× · · · × {−Nr,−Nr +1, . . . , Nr} (in other words, such that
φ is the restriction of a group homomorphism Zr → G).

We say that r is the rank and
∏r

i=1(2Ni + 1) is the volume of the symmetric GAP. Furthermore, we
say that a subset G′ ⊆ G is contained in (or “lies in”) a symmetric GAP φ, if G′ is contained in the
image8 of φ.

Note that any symmetric GAP has volume at least 1. Now, the optimal inverse theorem of Nguyen
and Vu [45, Theorem 2.5] is as follows.

Theorem 2.10. Fix C > 0. Let v1, . . . , vn be elements of a torsion-free9 additive group G and ξ1, . . . , ξn
be i.i.d. Rademacher random variables. If

ρ := sup
z∈G

P[ξ1v1 + · · ·+ ξnvn = z] > n−C ,

then for any
√
n ≤ n′ ≤ n, there exists a symmetric GAP with rank r = OC(1) and volume OC(ρ

−1(n′)−r/2),
that contains all but at most n′ of v1, . . . , vn.

Note that the symmetric GAP in the conclusion must automatically have rank r ≤ 4C if n is sufficiently
large in terms of C (since otherwise the volume OC(ρ

−1(n′)−r/2) ≤ OC(n
C
√
n
−r/2

) would be smaller
than 1). In fact, if n′ is chosen to be linear in n one obtains an even better bound for the rank (namely,
r ≤ 2C if n′ ≥ δn for some fixed δ > 0 and n is sufficiently large with respect to C and δ).

If we take G to be a high-dimensional space of the form Fd (for F ∈ {R,C}), then Theorem 2.10 gives
us anticoncentration bounds for random variables of the form Aξ⃗ (where A ∈ Fd×n is a matrix, and
ξ⃗ ∈ { − 1, 1}n is a vector of i.i.d. Rademacher random variables). The quality of the bound depends on
how well the columns of A can be “covered” by a GAP of low rank and small volume. In particular, one
can already obtain useful bounds just using information about the “robust rank” of A (without taking
into account the volume of the covering GAP); such a bound was previously obtained by Halász [23],
and will be used occasionally in this paper (it appears explicitly as Theorem 3.2).

Now we move into the details of the proofs of Theorems 1.10 and 1.11. Both proofs follow a similar
proof strategy, but the proof of Theorem 1.11 is simpler, so we start with that.

2.2.1. Bounds in terms of the rank. We now outline the proof of Theorem 1.11, approaching the “generic
bound” 1/n for quadratic forms of high rank.

First, our decoupling inequality is as follows. (Recall from Section 1.3 our notation ξ⃗[X], A[X,Y ] for
subvectors and submatrices).

Definition 2.11. We say that a random variable ξ is shifted Rademacher if ξ−Eξ has the Rademacher
distribution.

Lemma 2.12. Fix F ∈ {R,C} and a positive integer k.
• Let f ∈ F[x1, . . . , xn] be a quadratic polynomial, so there is a unique way to write the quadratic

part of f(x⃗) as x⃗TAx⃗ for some symmetric matrix A ∈ Fn×n.

• Let ξ⃗ = (ξ1, . . . , ξn) be a sequence of independent Rademacher random variables.
• Consider a partition {1, . . . , n} = X ∪ Y .

8It is more common to define GAPs as sets, not maps (i.e., many authors would say that the image of φ is itself a
GAP). However, this creates some ambiguity around rank and volume (since the image of φ may not uniquely determine
φ), and later in this paper it will be rather important to be precise about these notions.

9Recall that an abelian group is torsion-free if there is no nonzero element of finite order.
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Then,

sup
z∈F

P[f(ξ⃗) = z] ≤ P
[
(α⃗ (i))TA[X,Y ] ξ⃗[Y ] = ψ(α⃗ (i)) for all i ∈ {1, . . . , k}

]1/(k+1)

, (2.1)

for some function ψ : FX → F, and some i.i.d. random vectors α⃗(1), . . . , α⃗(k) ∈ FX with independent
shifted Rademacher entries (all independent of ξ⃗[Y ]).

We give the short proof of Lemma 2.12 in Section 8.
Note that, after conditioning on an outcome of α⃗(i), the expression (α⃗(i))TA[X,Y ] ξ⃗[Y ] − ψ(α⃗(i))

becomes a linear function of ξ⃗[Y ]. So, the k = 1 case of Lemma 2.12 provides a direct way to de-
duce quadratic anticoncentration bounds from linear anticoncentration bounds. This particular case of
Lemma 2.12 is well-known (in this form, it seems to have been first observed by Costello and Vu [11],
though similar inequalities appeared earlier in [10,51,56]).

Although it is near-trivial to generalise the proof of the k = 1 case of Lemma 2.12 to general k, the
possibility of “decoupling with multiple copies” (and the advantage of doing so) has been recognised only
recently. In particular, a related (though much more delicate) decoupling scheme was recently used by the
second and third authors [34] to obtain optimal bounds for the quadratic case of Theorem 1.1. We believe
Lemma 2.12 makes it quite transparent why it is helpful to decouple with more than one copy. Indeed,
(2.1) involves k simultaneous equations; if we imagine that each equation is satisfied independently with
probability at most about 1/n, then Lemma 2.12 provides a bound of about n−k/(k+1), which gets closer
and closer to 1/n as we increase k.

Of course, the k simultaneous equations in (2.1) are not independent. The primary challenge in our
proof of Theorem 1.11 is to demonstrate that, for the purposes of anticoncentration, these equations
are “approximately independent”, if C1 does not hold (i.e., if our quadratic form robustly has high
rank). Specifically, given Lemmas 2.7 and 2.12, the following lemma is the main part of the proof of
Theorem 1.11. (Recall the definition of a shifted Rademacher random variable from Definition 2.11).

Lemma 2.13. Fix any ε, δ ∈ (0, 1] and k ≥ 1, and let F ∈ {R,C}. Let n be sufficiently large (in terms
of ε, δ, k), and let A ∈ Fn×n be a matrix. Then, at least one of the following holds.

G1 At most a δ-fraction of the ⌈2k2/ε⌉ × ⌈2k2/ε⌉ submatrices of A are nonsingular, or
G2 letting Ξ ∈ Fk×n be a random matrix with independent shifted Rademacher entries, and (inde-

pendently) letting η⃗ ∈ {−1, 1}n be a random column vector with independent Rademacher entries,
for any (non-random) function φ⃗ : Fk×n → Fk we have

P
[
ΞAη⃗ = φ⃗(Ξ)

]
≤ n−k+ε.

To prove Lemma 2.13, we first use a counting argument, and some anticoncentration estimates using
the rank of A, to show that it is unlikely that most of the columns of ΞA are contained in a generalised
arithmetic progression with small rank and volume. Then, we can apply Theorem 2.10 (the Nguyen–Vu
optimal linear inverse theorem) with the randomness of η⃗, to prove an upper bound on the probability
that ΞAη⃗ = φ⃗(Ξ).

Remark 2.14. We suspect that the rank bound in G1 is far from best possible; indeed, we suspect that
the same statement should hold with “⌈2k2/ε⌉” replaced by “2k” (if true, this would be best-possible, as
one can see by taking A to be an appropriate block-diagonal matrix). Actually, this would constitute a
generalisation of the d = 2 case of Theorem 1.9, via Lemma 2.7. We did not fight too hard to optimise the
particular rank bound in G1, but our methods do seem to be somewhat too crude to prove an optimal
bound.

In Section 9, we give the details of the proof of Lemma 2.13, and deduce Theorem 1.11 from Lem-
mas 2.7, 2.12, and 2.13.

2.2.2. A power-saving improvement in the “robustly irreducible” case. Now, we outline the proof of The-
orem 1.10, giving a power-saving improvement for quadratic polynomials which are “robustly irreducible”
over C.

First, the significance of C is that a quadratic polynomial is reducible over C if and only if it has rank
at most 2. (On the other hand, reducibility over R cannot be expressed in terms of rank: x2 + y2 and
x2 − y2 both have rank two, but the former is irreducible and the latter is reducible).

Given this connection between irreducibility and rank, our proof of Theorem 1.10 follows the same
general scheme as the proof of Theorem 1.11, though the details are much more delicate. Indeed, for
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Theorem 1.11 we could wastefully assume our coefficient matrix A had high rank, but here we can only
assume that the rank is at least 3.

Just as for Theorem 1.11, the first ingredient is a decoupling lemma. Instead of Lemma 2.12, we use
the following more technical lemma.

Definition 2.15. we say that a random variable α is lazy Rademacher if it can be expressed as the
difference of two independent Rademacher random variables (explicitly, this means P[α = 0] = 1/2 and
P[α = −1] = P[α = 1] = 1/4).

Lemma 2.16. Fix F ∈ {R,C}.
• Let f ∈ F[x1, . . . , xn] be a quadratic polynomial, so there is a unique way to write the quadratic

part of f(x⃗) as x⃗TAx⃗ for some symmetric matrix A ∈ Fn×n.

• Let ξ⃗ = (ξ1, . . . , ξn) be a sequence of independent Rademacher random variables.
• Consider a partition {1, . . . , n} = X ∪ Y ∪ Z.

Then,

sup
z∈F

P[f(ξ⃗) = z] ≤ P
[
α⃗TA[X,Y ]β⃗ = 0, α⃗TA[X,Z]γ⃗ = φ(α⃗, β⃗), β⃗ TA[Y,Z]γ⃗ = ψ(α⃗, β⃗)

]1/4
,

for some functions φ,ψ : FX × FY → F, and independent random vectors α⃗, β⃗, γ⃗, where the entries of
α⃗, β⃗ are i.i.d. lazy Rademacher, and the entries of γ⃗ are i.i.d. Rademacher.

We prove Lemma 2.16 in Section 8. Then, given Lemmas 2.7 and 2.16, the proof of Theorem 1.10
essentially comes down to the following lemma.

Lemma 2.17. Fix any ε ∈ (0, 1], and let F ∈ {R,C}. Let n be sufficiently large (in terms of ε), and
consider matrices A1, A2, A3 ∈ Fn×n. Then, at least one of the following holds.

H1 For one of the matrices A1, A2, A3, at most an ε-fraction of its 3×3 submatrices are nonsingular,
or

H2 letting α⃗, β⃗ ∈ {−1, 0, 1}n be vectors of lazy Rademacher random variables, and γ⃗ ∈ {−1, 1}n be a
vector of Rademacher random variables (all independent), for any functions φ,ψ : Fn × Fn → F
we have

P
[
α⃗TA1β⃗ = 0, α⃗TA2γ⃗ = φ(α⃗, β⃗), β⃗ TA3γ⃗ = ψ(α⃗, β⃗)

]
≤ n−2−1/6+ε.

At a high level, the proof of Lemma 2.17 can be compared to the proof of Lemma 2.13. To study
anticoncentration of a bilinear form of random variables, we reveal its two sets of variables in two stages;
in the first stage we prepare for the application of Theorem 2.10 (the Nguyen–Vu optimal linear inverse
theorem), and in the second stage we actually apply Theorem 2.10. However, the details of Lemma 2.17
are much more complicated than the details of Lemma 2.13, for two main reasons.

First, since Lemma 2.17 concerns three different bilinear forms which depend on each other in a “cyclic”
manner, we must be very careful about the way that we reveal the random variables α⃗, β⃗, γ⃗. We actually
need to consider three different cases, in which we reveal the random variables α⃗, β⃗, γ⃗ in different ways.
(The three cases are defined in terms of the random vectors α⃗TA1 and α⃗TA2; specifically, we need to
distinguish whether one of these vectors is almost zero, and whether these vectors are almost collinear).

Second, we have much less room to make crude estimates, and we need to be much more careful
about the tradeoffs between the stages of random exposure. In particular, in addition to the simple
counting-based estimates featuring in proof of Lemma 2.13, we also need to use some more technical
estimates proved by Costello [9] via number-theoretic means.

In Section 10, we give the details of the proof of Lemma 2.17, and deduce Theorem 1.10 from Lem-
mas 2.7, 2.16, and 2.17.

3. Preliminaries

In this section we collect a few basic tools that will be used throughout the paper. First, the following
lemma is related to the “local-to-global” point of view in Lemmas 2.2 and 2.7. (Very similar estimates
appear for example in [9, Section 3.4], but we were not able to find an easily citable reference).

Lemma 3.1. Let p, δ ∈ (0, 1) and n ≥ r ≥ 1. Suppose I is a random subset of {1, . . . , n} such that
P[|I| ≥ (1− δ)n] ≥ p. Then, for all but a 2rδ-fraction of the r-element subsets S ⊂ {1, . . . , n}, we have
P[S ⊂ I] ≥ p/2.

12



Proof. For i ∈ {1, . . . , n}, let Ei be the event that i ∈ I and let E be the event that |I| ≥ (1− δ)n, so we
are assuming P[E ] ≥ p. Let Q be the collection of sets {i1, . . . , ir} ⊆ {1, . . . , n} of r distinct indices such
that P[Ei1 ∩ · · · ∩ Eir ] < p/2 ≤ P[E ]/2. So, our goal is to prove that |Q| ≤ 2rδ

(
n
r

)
.

On one hand, we have

E
[
1E

(
|I|
r

)]
≥
(
⌈(1− δ)n⌉

r

)
P[E ], (3.1)

but on the other hand we have

E
[
1E

(
|I|
r

)]
=

∑
i1<···<ir

P[E ∩ Ei1 ∩ · · · ∩ Eir ] ≤
∑

{i1,...,ir}∈Q

P[Ei1 ∩ · · · ∩ Eir ] +
∑

{i1,...,ir}/∈Q

P[E ]

< |Q| · (P[E ]/2) +
((

n

r

)
− |Q|

)
· P[E ]. (3.2)

Combining (3.1) and (3.2) yields the desired inequality

|Q| < 2

((
n

r

)
−
(
⌈(1− δ)n⌉

r

))
≤ 2

(
δn ·

(
n− 1

r − 1

))
= 2rδ

(
n

r

)
.

(The second inequality has a combinatorial interpretation: given a set of n elements, and an identification
of ⌊δn⌋ of those elements as “special”, we are counting the number of ways to choose a subset of r elements,
at least one of which is special). □

Next, the following high-dimensional Littlewood–Offord theorem is due to Halász [23] (it can also be
deduced from Theorem 2.10).

Theorem 3.2. Let n ≥ d ≥ 1 and ℓ ≥ 1 and F ∈ {R,C}, and suppose A ∈ Fd×n is a matrix containing
at least ℓ disjoint nonsingular d × d submatrices. Let ξ⃗ = (ξ1, . . . , ξn) ∈ Fn be a vector of independent
Rademacher (or shifted Rademacher, or lazy Rademacher10) random variables. Then,

sup
z⃗∈Fd

P
[
Aξ⃗ = z⃗

]
≤ Od(ℓ

−d/2).

Halász’ theorem has the following consequence for the probability that a random variable falls in an
affine-linear subspace (see for example [34, Corollary 3.4]).

Corollary 3.3. Let n ≥ d ≥ 1 and ℓ ≥ 1 and F ∈ {R,C}, and suppose a matrix A ∈ Fd×n con-
tains at least ℓ disjoint nonsingular d × d submatrices. Let ξ⃗ = (ξ1, . . . , ξn) ∈ Fn be a vector of inde-
pendent Rademacher (or shifted Rademacher, or lazy Rademacher) random variables. Then, for any
k-dimensional affine-linear subspace W ⊆ Fd, we have

P
[
Aξ⃗ ∈ W

]
≤ Od(ℓ

−(d−k)/2).

Finally, for Theorems 1.10 and 1.11 we will need some basic observations about matrices. The following
fact allows us to translate between the property of having many nonsingular submatrices and the property
of having many disjoint nonsingular submatrices.

Fact 3.4. Let n ≥ d ≥ 1 and m ≥ 1 and F ∈ {R,C}. If a matrix A ∈ Fd×n does not contain more than
m disjoint nonsingular d× d submatrices, then at most an (md2/n)-fraction of the d× d submatrices in
A are nonsingular.

Proof. Fix a maximal collection of disjoint nonsingular d×d submatrices in A; these involve at most md
different columns. The maximality of the collection implies that any d× d submatrix that does not use
any of these md columns must be singular. Hence, the number of nonsingular d× d submatrices in A is
at most md

(
n−1
d−1

)
= (md2/n)

(
n
d

)
. □

The following “monotonicity” fact says that if a matrix has many nonsingular r× r submatrices, then
for any k ≤ r, there are also many nonsingular k × k submatrices.

Fact 3.5. Let F ∈ {R,C}. Let A ∈ Fn×n be a matrix with the property that at least an ε-fraction of
its r × r submatrices are nonsingular. Then, for any k ≤ r, at least an (ε/

(
r
k

)
)-fraction of the k × k

submatrices of A are nonsingular.

10It is easy to deduce the lazy and shifted Rademacher cases from the Rademacher case. Indeed, recall that a lazy
Rademacher random variable is the difference of two independent Rademacher random variables; after conditioning on one
of these it is a shifted Rademacher random variable. By linearity, shifting the entries of ξ⃗ does not affect anticoncentration.
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Proof. Suppose that A has at least ε
(
n
r

)2 nonsingular r × r submatrices. For k ≤ r, each of these
nonsingular r × r submatrices contains at least

(
r
k

)
nonsingular k × k submatrices, and every k × k

submatrix can be extended to exactly
(
n−k
r−k

)2
different r × r submatrices. So, there are at least

ε
(
n
r

)2(r
k

)
/
(
n−k
r−k

)2
=
(
ε/
(
r
k

))(
n
k

)2 nonsingular k × k submatrices. □

The following fact says that if a matrix has many nonsingular r × r submatrices, then it cannot be
close to a matrix of rank less than r. (It can be viewed as the easy “converse direction” of Lemma 2.7).

Fact 3.6. Let F ∈ {R,C}. Fix ε > 0 and r ≥ 1, and let n be sufficiently large (in terms of ε, r).
Let A ∈ Fn×n be a matrix with the property that at least an r2ε-fraction of its r × r submatrices are
nonsingular. Then there is no matrix B ∈ Fn×n with rank less than r such that ∥A−B∥0 ≤ εn2.

Proof. If ∥A − B∥0 ≤ εn2 then there are at most εn2
(
n−1
r−1

)2
= r2ε

(
n
r

)2 different r × r submatrices of A
that are not identical to their counterpart in B. So, if B has rank less than r, then at most an r2ε-fraction
of the r × r submatrices in A are nonsingular. □

The following lemma says that if a matrix has many nonsingular r × r submatrices, then we can
partition it into q block matrices, each of which individually has many r × r submatrices.

Lemma 3.7. Let F ∈ {R,C}. Fix ε > 0, and q, r ≥ 1. Let n be sufficiently large (in terms of ε, q, r),
and divisible by q. Let A ∈ Fn×n be a matrix with the property that at least an ε-fraction of its r × r
submatrices are nonsingular.

Then, there is a partition of {1, . . . , n} = I1 ∪ · · · ∪ Iq with |I1| = · · · = |Iq| = n/q, such that for any
i, j ∈ {1, . . . , q}, more than an ε/2-fraction of the r×r submatrices of the matrix A[Ii, Ij ] are nonsingular.

Proof. This is a routine application of the probabilistic method. Consider a random partition of
{1, . . . , n} into sets I1, . . . , Iq of size n/q. Let Xi,j be the number of nonsingular r × r submatrices
of A[Ii, Ij ].

There are at least ε
(
n
r

)2−n(n−1
r−1

)2
= (ε−o(1))

(
n
r

)2 nonsingular r×r submatrices which do not involve
a diagonal entry of A (here and in the rest of this proof, the asymptotic notation is for fixed ε, q, r). For
any i, j ∈ {1, . . . , q}, each of these submatrices is contained in A[Ii, Ij ] with probability (1 + o(1))/q2r.
So,

EXi,j ≥
(ε− o(1))

(
n
r

)2
q2r

= (ε− o(1))

(
n/q

r

)2

.

Now, moving an element in or out of Ii or Ij can only change Xi,j by at most O(n2r−1). So, by the
Azuma–Hoeffding inequality (see for example [19, Lemma 11] for a statement adapted to our purposes11),
for each i, j we have

P

[
Xi,j ≤ (ε/2)

(
n/q

r

)2
]
≤ exp

(
−Ω

( (
EXi,j

)2
n ·O(n2r−1)2

))
= exp(−Ω(n)) <

1

q2
.

for sufficiently large n. It follows that with positive probability we have Xi,j > (ε/2)
(
n/q
r

)2
for all q2

choices of i, j, as desired. □

4. A local-to-global lemma for reducibility of tensors

In this section, we prove Lemma 2.2: if most of the small subtensors of T are reducible, then T itself
is close to being reducible. There are different types of reducibility with respect to particular partitions,
as follows.

Definition 4.1. For a tensor T ∈ FI1 ⊗· · ·⊗FId and a non-trivial partition {1, . . . , d} = J1 ∪J2, we say
that T is reducible with respect to {J1, J2} if there are tensors T1 ∈

⊗
j∈J1

FIj and T2 ∈
⊗

j∈J2
FIj , such

that T can be factored as a tensor product T = T1 ⊗ T2.

We note that reducibility of a tensor T with respect to {J1, J2} can equivalently be interpreted as the
property that a certain matrix associated with T has rank at most 1, as follows.

11This statement is for random permutations. But note that a random partition into q parts can easily be defined in
terms of a random permutation: simply take the first n/q elements as the first part, the next n/q elements as the second
part, and so on.
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Fact 4.2. Fix disjoint sets I1, . . . , Id, a field F ∈ {R,C}, and a non-trivial partition {1, . . . , d} = J1∪J2.
For s ∈ {1, 2}, let rs =

∏
j∈Js

|Ij |, so we have a vector space isomorphism
⊗

j∈Js
FIj ∼= Frs . Then,

FI1 ⊗ · · · ⊗ FId =

(⊗
j∈J1

FIj

)
⊗

(⊗
j∈J2

FIj

)
∼= Fr1×r2 ;

that is to say, {J1, J2} gives rise to a correspondence between I1 × · · · × Id tensors and r1 × r2 matrices.
A tensor in FI1 ⊗ · · · ⊗ FId is reducible with respect to {J1, J2} if and only if the corresponding r1 × r2
matrix has rank at most 1.

We also adopt the following notation for subtensors, similar to that of matrices.

Definition 4.3. Consider a tensor T : I1 × · · · × Id → F (represented as a d-dimensional array). For
subsets S1 ⊆ I1, . . . , Sd ⊆ Id, write T [S1, . . . , Sd] for the corresponding subtensor (formally, this is a
restriction of the function T to the set S1 × · · · × Sd).

We break the proof of Lemma 2.2 into three simpler lemmas. First, by a simple averaging argument,
we can reduce our consideration to the subtensors containing a particular nonzero entry.

Lemma 4.4. Fix d, r > 1 and δ > 0 and c ∈ [0, 1], and any field F. Consider a d-dimensional tensor
T : I1 × · · · × Id → F (represented as a d-dimensional array). Suppose that at least a δc-fraction of the
entries of T are nonzero and that all but at most a δ-fraction of the r× · · · × r subtensors are reducible.

Then, there is a nonzero entry T (i⋆1, i⋆2, . . . , i⋆d) such that all but at most a δ1−c-fraction of the r×· · ·×r
subtensors which contain the entry T (i⋆1, i⋆2, . . . , i⋆d) are reducible.

Proof. For each j ∈ {1, . . . , d}, let i⋆j , i1j , . . . , i
r−1
j ∈ Ij be a uniformly random sequence of r distinct

indices from Ij . So, by assumption we have

δ ≥ P
[
T
[
{i⋆1, i11, . . . , ir−1

1 }, . . . , {i⋆d, i1d, . . . , ir−1
d }

]
is not reducible

]
= E

[
P
[
T
[
{i⋆1, i11, . . . , ir−1

1 }, . . . , {i⋆d, i1d, . . . , ir−1
d }

]
is not reducible

∣∣∣ i⋆1, . . . , i⋆d]].
By Markov’s inequality, we deduce that for more than a (1 − δc)-fraction of choices of (i⋆1, . . . , i⋆d), we
have

P
[
T
[
{i⋆1, i11, . . . , ir−1

1 }, . . . , {i⋆d, i1d, . . . , ir−1
d }

]
is not reducible

∣∣∣ i⋆1, . . . , i⋆d] ≤ δ1−c,

meaning that all but at most a δ1−c-fraction of the r × · · · × r subtensors which contain the entry
T (i⋆1, . . . , i

⋆
d) are reducible. Since at least a δc-fraction of the entries of T are nonzero, for at least one of

these choices of (i⋆1, . . . , i⋆d), the entry T (i⋆1, . . . , i⋆d) is nonzero. □

The second lemma (arguably the most important) allows us to relate reducibility in general to re-
ducibility with respect to a particular partition.

Lemma 4.5. Fix d > 1 and δ > 0, and let ℓ = 2d−1 − 1. Consider a tensor T : I1 × · · · × Id → F
(represented as a d-dimensional array) and suppose T (i⋆1, . . . , i⋆d) ̸= 0 for some indices i⋆1 ∈ I1, . . . , i

⋆
d ∈ Id.

Suppose that all but at most a δ-fraction of the 2d−1×· · ·×2d−1 subtensors of T which contain the entry
T (i⋆1, . . . , i

⋆
d) are reducible.

Then, there is a non-trivial partition {1, . . . , d} = J1 ∪ J2, such that all but at most a δ1/ℓ-fraction of
the 2×· · ·×2 subtensors of T which contain the entry T (i⋆1, . . . , i⋆d) are reducible with respect to {J1, J2}.

Proof. Note that ℓ = 2d−1 − 1 is the number of partitions P = {J1, J2} of {1, . . . , d}, such that neither
J1 nor J2 is empty. Let P1, . . . ,Pℓ be an enumeration of all these partitions.

For each j ∈ {1, . . . , d}, let i1j , . . . , iℓj be uniformly random indices sampled independently from Ij\{i⋆j}.
Note that there may be fewer than ℓ different indices among i1j , . . . , iℓj , due to repetitions; let Qj be a
random set of exactly ℓ indices in Ij \ {i⋆j}, obtained by starting from {i1j , . . . , iℓj} and adding the
appropriate number of additional random indices. Do this independently for each j ∈ {1, . . . , d}.

Then, we have

δ ≥ P
[
T
[
Q1 ∪ {i⋆1}, . . . , Qd ∪ {i⋆d}

]
is not reducible

]
= P

[
ℓ⋂

t=1

{
T
[
Q1 ∪ {i⋆1}, . . . , Qd ∪ {i⋆d}

]
is not reducible with respect to Pt

}]
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≥ P

[
ℓ⋂

t=1

{
T
[
{it1, i⋆1}, . . . , {itd, i⋆d}

]
is not reducible with respect to Pt

}]

=

ℓ∏
t=1

P
[
T
[
{it1, i⋆1}, . . . , {itd, i⋆d}

]
is not reducible with respect to Pt

]
.

Indeed, the first line is by the assumption on T and the fact that each Qj is an independent and uniformly
random subset of Ij \ {i⋆j} of size ℓ, the second line is by the definition of reducibility, the third line is
due to the fact that Qj ∪ {i⋆j} ⊇ {itj , i⋆j} for all j ∈ {1, . . . , d}, and the last line is by the independence
of (it1, . . . , itd) between different t.

We deduce that there is some t ∈ {1, . . . , ℓ} such that, with probability at most δ1/ℓ, the random
subtensor T

[
{it1, i⋆1}, . . . , {itd, i⋆d}

]
is not reducible with respect to Pt. That is to say, all but at most a

δ1/ℓ-fraction of 2× · · · × 2 subtensors of T containing the entry T (i⋆1, . . . , i⋆d) are reducible with respect
to Pt, as desired. □

In our final lemma, we observe that if T has many 2 × · · · × 2 subtensors involving a single nonzero
entry, which are all reducible with respect to the same partition, then we can construct a reducible tensor
that agrees with T on many entries.

Lemma 4.6. Fix d ≥ 1 and δ > 0. Let n0 be sufficiently large in terms of d and δ. Consider a tensor
T : I1 × · · · × Id → F (represented as a d-dimensional array) with |I1|, . . . , |Id| ≥ n0, and a non-trivial
partition {1, . . . , d} = J1∪J2, and suppose T (i⋆1, . . . , i⋆d) ̸= 0 for some indices i⋆1 ∈ I1, . . . , i

⋆
d ∈ Id. Suppose

that all but at most a δ-fraction of the 2× · · · × 2 subtensors of T which contain the entry T (i⋆1, . . . , i⋆d)
are reducible with respect to {J1, J2}.

Then one can make T reducible by changing up to a 2δ-fraction of its entries.

Proof. Suppose without loss of generality that J1 = {1, . . . , h} and J2 = {h + 1, . . . , d}. Let T ′ :
I1 × · · · × Id → F be the tensor defined by

T ′(i1, . . . , id) =
T (i1, . . . , ih, i

⋆
h+1, . . . , i

⋆
d)T (i

⋆
1, . . . , i

⋆
h, ih+1, . . . , id)

T (i⋆1, . . . , i
⋆
d)

.

By definition, T ′ is reducible. Indeed, we have T ′ = T1 ⊗ T2 for T1 : I1 × · · · × Ih → F given by
T1(i1, . . . , ih) = T (i1, . . . , ih, i

⋆
h+1, . . . , i

⋆
d) and T2 : Ih+1 × · · · × Id → F given by T1(ih+1, . . . , id) =

T (i⋆1, . . . , i
⋆
h, ih+1, . . . , id)/T (i

⋆
1, . . . , i

⋆
d). It remains to show that T ′ differs from T in at most a 2δ-fraction

of its entries.
To see this, note that for all i1 ∈ I1 \ {i⋆1}, . . . , id ∈ Id \ {i⋆d} such that T

[
{i1, i⋆1}, . . . , {id, i⋆d}

]
is

reducible with respect to {J1, J2}, we have

T (i1, . . . , id)T (i
⋆
1, . . . , i

⋆
d)− T (i1, . . . , ih, i

⋆
h+1, . . . , i

⋆
d)T (i

⋆
1, . . . , i

⋆
h, ih+1, . . . , id) = 0

(this can be interpreted as a determinant of a 2 × 2 matrix of rank at most 1, recalling Fact 4.2).
Rearranging, we obtain T (i1, . . . , id) = T ′(i1, . . . , id). But, by assumption, the number of such choices
of i1, . . . , id is at least (1− δ)

∏d
i=1(|Ii| − 1) ≥ (1− 2δ)

∏d
i=1 |Ii|. (Here we are using that I1, . . . , Id are

sufficiently large with respect to d and δ). □

We now combine Lemmas 4.4 to 4.6 to prove Lemma 2.2.

Proof of Lemma 2.2. As in Lemma 4.5, let ℓ := 2d−1−1, and note that then δ = (ε/2)2
d−1

= (ε/2)ℓ+1. If
at most a δ1/(ℓ+1)-fraction of the entries in T are nonzero, then T can be made zero by changing up to a ε-
fraction of the entries; we are done in this case. So, assume that T contains more than a δ1/(ℓ+1)-fraction
of nonzero entries. We apply Lemma 4.4 with r = 2d−1 and c = 1/(ℓ+1) to see that T has a nonzero entry
T (i⋆1, i

⋆
2, . . . , i

⋆
d) such that all but at most a δℓ/(ℓ+1)-fraction of the 2d−1 × · · · × 2d−1 subtensors which

contain this entry are reducible. By Lemma 4.5, there is a non-trivial partition {1, . . . , d} = J1 ∪ J2
such that all but at most a δ1/(ℓ+1)-fraction of the 2 × · · · × 2 subtensors of T containing the entry
T (i⋆1, i

⋆
2, . . . , i

⋆
d), are reducible with respect to {J1, J2}. Then, Lemma 4.6 guarantees that T can be made

reducible by changing a fraction of up to 2δ1/(ℓ+1) = ε of its entries, as desired. □
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5. Linear subspaces of the variety of reducible tensors

In this section, we prove Lemma 2.6, characterising the linear subspaces of the variety of reducible
tensors.

First, note that we can break up the set of reducible tensors according to the partition with respect
to which they are reducible.

Fact 5.1. Fix disjoint sets I1, . . . , Id, fix F ∈ {R,C} and let r =
∏d

j=1 |Ij |. Let Z ⊆ FI1 ⊗ · · · ⊗ FId be
the set of reducible I1 × · · · × Id tensors, and for a non-trivial partition {1, . . . , d} = J1 ∪ J2, let ZJ1,J2

be the set of I1 × · · · × Id tensors that are reducible with respect to {J1, J2}. Then

Z =
⋃

{J1,J2}

ZJ1,J2
,

where the union is over all 2d−1 − 1 unordered non-trivial partitions {1, . . . , d} = J1 ∪ J2.

The above fact, together with Fact 4.2, makes Lemma 2.6(1) nearly immediate (i.e., the observation
that the reducible tensors form a variety).

Proof of Lemma 2.6(1). By Fact 5.1, it suffices to prove that each ZJ1,J2 is an affine variety, and by
Fact 4.2, it suffices to show that the set of r1 × r2 matrices with rank at most 1 can be interpreted as an
affine variety in Fr1r2 (i.e., it is the zero locus of a system of polynomial equations). This is well-known
to be true: a matrix has rank at most 1 if and only if every 2× 2 submatrix has zero determinant. □

Next, we prove Lemma 2.6(2), classifying the maximal linear subspaces of the variety of reducible
tensors. In this proof, we need the simple algebraic geometry fact that linear subspaces are irreducible
as affine varieties. This fact also holds in the case F = R, even though the underlying field is not
algebraically closed (it holds over any infinite field).

Proof of Lemma 2.6(2). Recall that all linear subspaces of Fr are irreducible as affine varieties. So,
recalling Fact 5.1, any linear subspace of Z =

⋃
{J1,J2} ZJ1,J2

must in fact be a linear subspace of some
particular ZJ1,J2

. That is to say, it suffices to classify the maximal linear subspaces of ZJ1,J2
. By

Fact 4.2, this is really the same as classifying the maximal linear subspaces of the variety of r1 × r2
matrices with rank at most 1. That is to say, it suffices to prove the lemma in the case d = 2 (recalling
that matrices are 2-dimensional tensors).

So, fix disjoint sets I1, I2, and let V be a linear subspace of the variety Z of I1 × I2 tensors (matrices)
which have rank at most 1. Our objective is to prove that there is a “column vector” u⃗⋆ ∈ FI1 such that

V ⊆ {u⃗⋆ ⊗ x⃗ : x⃗ ∈ FI2}

or there is a “row vector” v⃗⋆ ∈ FI2 such that

V ⊆ {y⃗ ⊗ v⃗⋆ : y⃗ ∈ FI1}.

Indeed, this will show that we have V = {u⃗⋆ ⊗ x⃗ : x⃗ ∈ FI2} or V = {y⃗ ⊗ v⃗⋆ : y⃗ ∈ FI1}, whenever V is a
maximal linear subspace of Z.

If V contains only the zero matrix, the statement trivially holds. So, we can assume that V contains
a nonzero matrix, i.e., a matrix of rank exactly 1. This means that there are nonzero vectors u⃗⋆ ∈ FI1

and v⃗⋆ ∈ FI2 such that u⃗⋆ ⊗ v⃗⋆ ∈ V.

Claim 5.2. Let T ∈ V. Then, T is of the form u⃗⋆ ⊗ x⃗ for some x⃗ ∈ FI2 , or y⃗ ⊗ v⃗⋆ for some y⃗ ∈ FI1 .

Proof of claim. T ∈ V ⊆ Z has rank at most 1, so we can write T = u⃗⊗ v⃗ for some u⃗ ∈ FI1 and v⃗ ∈ FI2 .
We need to prove that u⃗ is a multiple of u⃗⋆ or v⃗ is a multiple of v⃗⋆.

We can interpret u⃗ ⊗ v⃗ + u⋆ ⊗ v⃗⋆ as a matrix product PQ, where P is the |I1| × 2 matrix with
columns u⃗, u⃗⋆ and Q is the 2 × |I2| matrix with rows v⃗, v⃗⋆. Since V is a linear space, we know that
u⃗⊗ v⃗ + u⋆ ⊗ v⃗⋆ = T + u⋆ ⊗ v⃗⋆ ∈ V ⊆ Z has rank at most 1, so at least one of P or Q has rank at most
1 (since the product of a |I1| × 2 matrix of rank 2 with a 2× |I2| matrix or rank 2 always has rank 2 as
well). That is to say, u⃗ is a multiple of u⃗⋆, or v⃗ is a multiple of v⃗⋆. ■

Now, let V1 := {u⃗⋆ ⊗ x⃗ : x⃗ ∈ FI2} and V2 := {y⃗ ⊗ v⃗⋆ : y⃗ ∈ FI1}; they are both affine varieties (in fact,
they are both linear subspaces). The above claim shows that V ⊆ V1 ∪ V2. Since V is a linear space, it
is irreducible, so V ⊆ V1 or V ⊆ V2, as desired. □
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6. k-multilinear forms

In this section we prove Lemma 2.4 and use it to prove Theorem 1.9.

Proof of Lemma 2.4. For each i ∈ Id = {1, . . . , n}, let Ti : I1 × I2 × · · · × Id−1 → F be the tensor defined
by Ti(i1, . . . , id−1) = T (i1, . . . , id−1, i), so we can write T ξ⃗ = ξ1T1 + · · · + ξnTn. Recall that we can
interpret an I1 × I2 × · · · × Id−1 tensor as a vector in F|I1|···|Id−1|, and let Z ⊆ F|I1|···|Id−1| be the variety
of reducible I1 × I2 × · · · × Id−1 tensors. Then, the event that T ξ⃗ is reducible is precisely the event that
ξ1T1 + · · ·+ ξnTn ∈ Z.

Also, note that every maximal affine-linear subspace of Z is in fact a linear subspace. To see this,
note that multiplying by a nonzero scalar does not affect reducibility, and therefore we have λv⃗ ∈ Z for
all v⃗ ∈ Z and λ ∈ F. So, for any affine-linear subspace W ⊆ Z, the linear span {λw⃗ : w⃗ ∈ W, λ ∈ F} of
the vectors in W is a linear subspace in Z that contains W.

So, by Theorem 2.5, P[T ξ⃗ is reducible] ≤ n−1/2+ε/r ≤ n−1/2+ε (i.e., D2 holds), or there is a maximal
linear subspace W ⊆ Z such that all but (ε/r)n of the Ti lie in W. We may assume the latter property
holds.

By Lemma 2.6, there is a subset ∅ ⊊ J ⊊ {1, 2, . . . , d− 1} and a tensor T ⋆ ∈
⊗

j∈J FIj such that

W =

{
T ⋆ ⊗ T ′ : T ′ ∈

⊗
j∈{1,...,d−1}\J

FIj

}
.

Suppose without loss of generality that J = {1, . . . , j} for some j ∈ {1, . . . , d − 2}. Now, we know
that at least a (1 − ε/r)-fraction of the Ti lie in W, so for at least a (1 − ε)-fraction of the r-element
subsets I ′d ⊆ Id, we have Ti ∈ W for each i ∈ I ′d. To prove D1, it suffices to prove that for all
such subsets I ′d, the corresponding r × · · · × r subtensor T [I1, . . . , Id−1, I

′
d] is reducible. In fact, this is

nearly immediate: for each i ∈ I ′d we can write Ti = T ⋆ ⊗ T ′
i , so defining T ′ : Ij+1 × · · · × Id → F by

T ′(ij+1, . . . , id) = Tid(ij+1, . . . , id−1), we have T [I1, . . . , Id−1, I
′
d] = T ⋆ ⊗ T ′. □

Now, we turn to the proof of Theorem 1.9. It is a direct consequence of the following slightly more
general result.

Theorem 6.1. Fix d ≥ 2 and ε > 0, and let F ∈ {R,C}. Let n be sufficiently large (in terms of ε, d),
and consider a tensor T : I1×· · ·×Id → F for some partition {1, . . . , n} = I1∪· · ·∪Id, and the associated
d-multilinear form f ∈ F[x1, . . . , xn]. Then, at least one of the following holds:

F1 T can be made reducible by changing up to εnd entries, or

F2 letting ξ⃗ = (ξ1, . . . , ξn) ∈ {−1, 1}n be a vector of i.i.d. Rademacher random variables, we have

sup
z∈F

P[f(ξ1, . . . , ξn) = z] ≤ n−1+ε.

Our proof of Theorem 6.1 is by induction on d. The base case d = 2 was essentially proved by
Costello [9] (in fact, even with a stronger12 notion of “close to reducible” than our property F1). Specif-
ically, the following theorem is a direct consequence of [9, Theorem 5].

Theorem 6.2. Fix γ > 0 and F ∈ {R,C}, and let r0 be sufficiently large in terms of γ. For any
m,m′ ∈ N, consider a matrix A ∈ Fm×m′

such that every row has at least r ≥ r0 nonzero entries. Let
ξ⃗ = (ξ1, . . . , ξm) ∈ {−1, 1}m and ξ⃗ ′ = (ξ′1, . . . , ξ

′
m′) ∈ {−1, 1}m′

be independent (column) vectors with
i.i.d. Rademacher entries, and suppose that there is a function φ : Fm′ → F such that

P
[
ξ⃗ TAξ⃗ ′ = φ(ξ⃗ ′)

]
≥ r−1+γ .

Then, A can be turned into a matrix of rank at most 1 by changing up to γr(m+m′) entries.

Compared to Theorem 6.1, note that Theorem 6.2 has an additional assumption requiring many
nonzero entries in every row of the relevant matrix. We take a moment to state a slight strengthening
of the d = 2 case of Theorem 6.1 (this strengthening will be useful later in the paper) and explain how
to deduce this statement from Costello’s work (using an argument as in [9, Remark 1]).

12We remark that Costello’s notion of “close to reducible” (which we do not state here) seems to be genuinely stronger
than F1, in the sense that we do not know how to directly deduce [9, Theorem 5] from the d = 2 case of Theorem 6.1. As
discussed in Q2 in Section 1.1, it may be interesting to investigate further the various different notions of “smallness” or
“closeness”, and the implications between them.
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Theorem 6.3. Fix ε > 0 and F ∈ {R,C}. Consider m,m′ ∈ N such that m+m′ is sufficiently large in
terms of ε, and consider a matrix A ∈ Fm×m′

. Then, at least one of the following holds:
F1’ A can be made into a rank-1 matrix by changing up to ε(m+m′)2 entries, or

F2’ letting ξ⃗ = (ξ1, . . . , ξm) ∈ {−1, 1}m be a vector of i.i.d. Rademacher random variables, and
independently letting ξ⃗ ′ = (ξ′1, . . . , ξ

′
m′) ∈ {−1, 1}m′

be a vector of i.i.d. Rademacher or lazy
Rademacher random variables, we have

P[ξ⃗ TAξ⃗ ′ = ψ(ξ⃗ ′)] ≤ (m+m′)−1+ε.

for any function ψ : Fm′ → F.

Proof. Let n = m+m′ and assume that f does not satisfy F2’; that is to say,

P
[
ξ⃗ TA ξ⃗ ′ = ψ(ξ⃗ ′)

]
> n−1+ε.

for some function ψ : Fm′ → F. We will show that F1’ holds. In other words, we will show that we can
change at most εn2 entries of A to obtain a matrix with rank at most 1.

Let I be the set of i ∈ {1, . . . ,m} such that row i of A has at least εn nonzero entries, and let
I∗ = {1, . . . ,m} \ I. Let A′ ∈ F|I|×m′

be the submatrix of A containing the rows indexed by I, and let
A∗ ∈ F|I∗|×m′

be the submatrix of A containing the rows indexed by I∗. Define the random function
φ : {−1, 1}m′ → F by φ(x⃗) = ψ(x⃗)− ξ⃗[I∗]TA∗x⃗ (this function depends on the random vector ξ⃗[I∗]). So,
we have

n−1+ε < P
[
ξ⃗TA ξ⃗ ′ = ψ(ξ⃗ ′)

]
= P

[
ξ⃗[I]TA′ ξ⃗ ′ = φ(ξ⃗ ′)

]
.

Consequently, there exists an outcome of ξ⃗[I∗] such that

P
[
ξ⃗[I]TA′ ξ⃗ ′ = φ(ξ⃗ ′)

∣∣∣ ξ⃗[I∗]] > n−1+ε > (εn)−1+ε/2.

Applying Theorem 6.2 (with r = εn and γ = ε/2) in the conditional probability space where we condition
on this particular outcome of ξ⃗[I∗], we see that we can change at most (ε/2)(εn)(|I|+m′) ≤ (εn)(|I|+m′)
entries of A′ to obtain a matrix of rank at most 1. Also, A∗ has at most (εn)|I∗| nonzero entries by
definition, so we can make A∗ into the all-zero matrix by changing at most (εn)|I∗| = (εn)(m−|I|) entries.
Recalling the definitions of A′ and A∗, we see that we can change at most (εn)(|I|+m′)+(εn)(m−|I|) =
(εn)(m+m′) = εn2 entries of A to obtain a matrix with rank at most 1, as desired. □

We now complete the proof of Theorem 6.1 by presenting the inductive step. Briefly speaking, we first
expose ξ⃗[Id], and obtain a (d−1)-multilinear form in the variables xi for i ∈ I1∪· · ·∪Id−1. Equivalently,
we “collapse” T , based on ξ⃗[Id], to a (d− 1)-dimensional tensor T ′. Then, we will apply Lemma 2.4 if T ′

tends to be close to reducible and apply the inductive hypothesis to T ′ otherwise.

Proof of Theorem 6.1. We proceed by induction on d; the base case d = 2 is handled by Theorem 6.3.
Fix d ≥ 3 and suppose the statement holds for all (d− 1)-multilinear forms. Recall that f(x1, . . . , xn) =∑

i1∈I1
· · ·
∑

id∈Id
T (i1, . . . , id)xi1 . . . xid for all x⃗ ∈ Fn. Our goal is to prove that F1 or F2 holds.

First, recall that we are assuming that n is large with respect to d, ε. We may also assume that

|I1| · · · |Id| ≥ εnd. (6.1)

Indeed, otherwise, T has at most εnd entries, and F1 trivially holds (as we can change all the entries of
T to zero to make T reducible).

Now, let I ′ = I1 ∪ · · · ∪ Id−1, and note that for any outcome of ξ⃗[Id], we can view f as a (d − 1)-
multilinear form f ′ ∈ F[(xi)i∈I′ ], in the variables xi for i ∈ I ′. Note that the coefficient tensor of f ′ is
precisely T ξ⃗[Id], in the notation of Lemma 2.4. For convenience we write T ′ = T ξ⃗[Id]. The high-level idea
of the proof is to fix an outcome of ξ⃗[Id] (thereby fixing f ′), and to apply the induction hypothesis to f ′.
When f ′ is far from being reducible, this gives us the desired probability bound, so the main challenge
is to carefully study the event that f ′ is close to reducible. Actually, we need to break down this event
further, depending on whether f ′ is close to the zero polynomial or close to some other (far-from-zero)
reducible polynomial. Specifically, let δ = (ε/2)2

d−1

and consider the following two events.
• Let ε1 = ε3/32 and let E1 be the event that T ′ has at most ε1|I ′|d−1 nonzero entries.

• Let ε2 = 2−(d−1)2δε/4, and let E2 be the event that T ′ can be made reducible by changing at
most ε2|I ′|d−1 entries.
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Decomposing the anticoncentration probability. Let Ec
1 , Ec

2 be the complements of E1 and E2.
Recall that our goal is to prove that F1 or F2 holds. Assume that F2 fails, that is to say, for some
z ∈ F,

P
[
f(ξ⃗) = z

]
> n−1+ε.

The probability P[f(ξ⃗) = z] can be decomposed as

P
[
f(ξ⃗) = z

∣∣ E1] · P[E1] + P
[
f(ξ⃗) = z

∣∣ Ec
1 ∩ E2

]
· P
[
Ec
1 ∩ E2

]
+ P

[
f(ξ⃗) = z

∣∣ Ec
1 ∩ Ec

2

]
· P
[
Ec
1 ∩ Ec

2

]
.

and we deduce

P
[
f(ξ⃗) = z

]
≤ P

[
E1
]
+ P

[
f(ξ⃗) = z

∣∣ Ec
1 ∩ E2

]
· P
[
E2
]
+ P

[
f(ξ⃗) = z

∣∣ Ec
1 ∩ Ec

2

]
. (6.2)

Now, if ξ⃗[Id] satisfies Ec
1 ∩ Ec

2 ⊆ Ec
2 , then T ′ cannot be made reducible by changing at most ε2|I ′|d−1

coefficients. So, if we fix an outcome of ξ⃗[Id] satisfying Ec
2 , then we can condition on this outcome of

ξ⃗[Id] and apply the induction hypothesis to f ′ and T ′ in the resulting conditional probability space, to
obtain

P
[
f(ξ⃗) = z

∣∣ ξ⃗[Id]] = P
[
f ′(ξ⃗[I ′]) = z

∣∣ ξ⃗[Id]] ≤ |I ′|−1+ε2 ≤ n−1+ε/3.

(Here we used that |I ′| ≥ εn, which follows from (6.1)). Averaging over ξ⃗[Id] satisfying Ec
2 , we deduce

that
P
[
f(ξ⃗) = z

∣∣ Ec
2

]
≤ n−1+ε/3.

Similarly, if we fix an outcome of ξ⃗[Id] satisfying Ec
1 ∩ E2 ⊆ Ec

1 , then f ′ has at least ε1|I ′|d−1 nonzero
coefficients, so Theorem 1.1 yields

P
[
f(ξ⃗) = z

∣∣ ξ⃗[Id]] = P
[
f(ξ⃗) = z

∣∣ ξ⃗[Id]] ≤ |I ′|−1/2+ε1 ≤ n−1/2+ε/2.

Averaging over all ξ⃗[Id] satisfying Ec
1 ∩ E2, we obtain

P
[
f(ξ⃗) = z

∣∣ Ec
1 ∩ E2

]
≤ |I ′|−1/2+ε1 ≤ n−1/2+ε/2.

Now, from (6.2), it follows that

n−1+ε < P[f(ξ⃗) = z] ≤ P[E1] + n−1/2+ε/2 · P[E2] + n−1+ε/3.

Thus, we must have P[E1] > n−1+ε/3 or P[E2] > n−1/2+ε/2/3. In both cases, we will prove that T can
be made reducible by changing ε|I1| · · · |Id| ≤ εnd of its entries; that is, F1 holds. In the first case we
will use Theorem 3.2 (i.e., Halász’ inequality), and in the second case we will use Lemma 2.4.

Case 1: f ′ is likely to be close to the zero polynomial. In this case, we suppose that P[E1] >
n−1+ε/3. Let Q = I1 × I2 × · · · × Id−1; it follows from (6.1) that |Q| > εnd−1. Recalling Fact 4.2, let us
view T as a Q× Id matrix, which we refer to as M .

Translating from tensor to matrix language, in this case we are assuming that with probability
exceeding n−1+ε/3, the number of nonzero entries in the matrix-vector product Mξ⃗[Id] is at most
ε1|I ′|d−1 ≤ (ε2/32)|Q|. By Lemma 3.1 (with r = 2), applied to the set of zero entries of Mξ⃗[Id],
all but at most a ε2/8 fraction of the pairs of distinct i⃗, i⃗ ′ ∈ Q satisfy

P
[
(Mξ⃗[Id])⃗i = (Mξ⃗[Id])⃗i ′ = 0

]
= P

[
M [{⃗i, i⃗ ′}, Id] ξ⃗[Id] = 0⃗

]
> (n−1+ε/3)/2 > |Id|−1+ε/2.

(Here we write M [{⃗i, i⃗ ′}, Id] for the 2 × |Id| matrix containing just the rows of M indexed by i⃗, i⃗ ′ and
we use that |Id| > εn, which follows from (6.1).) For each such i⃗, i⃗ ′, by Theorem 3.2, M [{⃗i, i⃗ ′}, Id]
contains at most O(|Id|1−ε/2) disjoint nonsingular 2 × 2 submatrices, so by Fact 3.4 it has at most
O(|Id|1−ε/2)|Id| < (ε2/8)

(|Id|
2

)
nonsingular 2 × 2 submatrices in total. Summing over all these i⃗, i⃗ ′, the

fraction of 2 × 2 submatrices of M which are nonsingular is less than ε2/8 + ε2/8 ≤ ε2/4. So, by the
d = 2 case of Lemma 2.2, we can change at most an ε-fraction of the entries of M to obtain a matrix
with rank at most 1. Translating back into tensor language, T can be made reducible by changing at
most an ε-fraction of its entries. This proves F1, as desired.

Case 2: f ′ is likely to be close to reducible. In this case, we suppose that P[E2] > n−1/2+ε/2/3.
This means, with probability exceeding n−1/2+ε/2/3, there is a reducible tensor T̃ : I1 × · · · × Id−1 → F
such that T ′ differs from T̃ in at most ε2|I ′|d−1 ≤ ε2n

d−1 ≤ 2−(d−1)2(δ/4)|I1| · · · |Id−1| entries (here,
we used that |I1| · · · |Id−1| ≥ εnd−1, which follows from (6.1)). When this occurs, at least a (1 − δ/4)
fraction of the 2d−1 × · · · × 2d−1 subtensors of T ′ are the same as the corresponding 2d−1 × · · · × 2d−1

subtensor of T̃ , so are reducible. (Here we used that a 2d−1 × · · · × 2d−1 subtensor has 2(d−1)2 entries).
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By Lemma 3.1 (with r = 1) applied to the set of reducible 2d−1×· · ·×2d−1 subtensors of T ′, we see that
for at least a (1− δ/2)-fraction of choices of 2d−1-element subsets Q1 ⊆ I1, . . . , Qd−1 ⊆ Id−1, we have

P
[
T ′[Q1, . . . , Qd−1] is reducible

]
> (n−1/2+ε/3)/2 ≥ |Id|−1/2+δ/2.

(here we are using that |Id| ≥ εn, which follows from (6.1)). For each such Q1, . . . , Qd−1, we apply
Lemma 2.4: noting that T ′[Q1, . . . , Qd−1] = T [Q1, . . . , Qd−1, Id] ξ⃗[Id] in the notation of Lemma 2.4,
we see that at least a (1 − δ/2)-fraction of the 2d−1 × · · · × 2d−1 subtensors of T [Q1, . . . , Qd−1, Id] are
reducible. Summing over all these Q1, . . . , Qd−1, we see that the fraction of 2d−1 × · · ·× 2d−1 subtensors
of T that are reducible is at least (1− δ/2)(1− δ/2) > 1− δ. In the end, Lemma 2.2 implies that T can
be made reducible by changing at most ε|I1| · · · |Id| ≤ εnd of its entries. This proves F1, as desired. □

7. A local-to-global lemma for low-rank symmetric matrices

In this section we prove Lemma 2.7: if almost all r × r submatrices of a symmetric matrix A are
singular, then A can be made to have rank less than r by changing only a few entries, while maintaining
symmetry. Recall that ∥A∥0 denotes the number of nonzero entries in a matrix A.

We split the proof of Lemma 2.7 into the following two lemmas. Roughly speaking, we first approxi-
mate A by a matrix of rank less than r, which may not be symmetric. However, this matrix is necessarily
almost symmetric. In the second step we adjust it to be symmetric while maintaining the rank. Most of
the difficulty lies in the second step.

Lemma 7.1. Consider integers n,m ≥ r ≥ 1, let α ∈ [0, 1] and let F be a field. Let A ∈ Fn×m be a
matrix such that all but at most an α-fraction of its r× r submatrices are singular. Then, there exists a
matrix B ∈ Fn×m of rank less than r such that ∥A−B∥0 ≤ α1/rnm.

Lemma 7.2. Consider integers n ≥ q ≥ 1, let ρ ∈ [0, 1] and let F be a field. Let A ∈ Fn×n be a matrix
of rank at most q such that ∥A−AT ∥0 ≤ ρn2. Then, there exists a symmetric matrix B ∈ Fn×n of rank
at most q such that ∥A−B∥0 ≤ O(q4ρn2).

Lemma 2.7 follows immediately from Lemma 7.1 and Lemma 7.2, as follows.

Proof of Lemma 2.7. By Lemma 7.1, we first obtain a matrix B ∈ Fn×n with rank less than r and
∥A−B∥0 ≤ α1/rn2. Since A is symmetric, it holds that

∥B −BT ∥0 ≤ ∥B −AT ∥0 + ∥AT −BT ∥0 = ∥B −A∥0 + ∥A−B∥0 ≤ 2α1/rn2.

Then, Lemma 7.2 (with q = r − 1) guarantees a symmetric matrix A′ ∈ Fn×n of rank less than r such
that ∥B−A′∥0 ≤ O(r4α1/rn2). Also, ∥A−A′∥0 ≤ ∥A−B∥0+∥B−A′∥0 ≤ O(r4α1/rn2), as desired. □

The rest of this section is devoted to proving Lemma 7.1 and Lemma 7.2. We first give a short proof
of Lemma 7.1. For the rest of this section, we use the notation [n] = {1, . . . , n}.

Proof of Lemma 7.1. First, find the minimum k ≥ 1 such that all but at most an αk/r-fraction of the k×k
submatrices of the matrix A are singular. Clearly, k ≤ r by assumption. If k = 1, then ∥A∥0 ≤ α1/rnm,
and we are done (by taking B = 0). From now on, we assume that 2 ≤ k ≤ r.

Second, we claim that there exist sets I ⊆ [n], J ⊆ [m], both of size k − 1, such that A[I, J ] is
nonsingular and A[I ∪ {i}, J ∪ {j}] is nonsingular for at most α1/r(n − k + 1)(m − k + 1) choices of
(i, j) ∈ ([n] \ I) × ([n] \ J). Indeed, suppose not. Then, whenever A[I, J ] is nonsingular, more than
α1/r(n − k + 1)(m − k + 1) choices of (i, j) ∈ ([n] \ I) × ([n] \ J) are such that A[I ∪ {i}, J ∪ {j}] is
nonsingular. In addition, the minimality of k implies there are more than α(k−1)/r

(
n

k−1

)(
m

k−1

)
choices of

I, J such that A[I, J ] is nonsingular. In total, we acquire more than

α(k−1)/r

(
n

k − 1

)(
m

k − 1

)
· α1/r(n− k + 1)(m− k + 1) = k2αk/r

(
n

k

)(
m

k

)
choices of I, J, i, j such that A[I∪{i}, J∪{j}] is a nonsingular k×k submatrix of A. Since each submatrix
is counted at most k2 times, the number of nonsingular k×k submatrices of A is larger than αk/r

(
n
k

)(
m
k

)
,

contradicting our definition of k.
We have established that there is some choice of I and J such that A[I, J ] is nonsingular, and

A[I∪{i}, J ∪{j}] is nonsingular for at most α1/r(n−k+1)(m−k+1) choices of (i, j). Fix such I, J , and
let B ∈ Fn×m be the unique matrix with the same row space as A[I, [m]], such that B[[n], J ] = A[[n], J ].
(In a bit more detail: since A[I, J ] is invertible, for each row A[i, [m]] of A there is a unique vector in the
row space of A[I, [m]] which agrees with A[i, [m]] in the coordinates indexed by J ; we take that to be
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the corresponding row of B.) Note that B[I, [m]] = A[I, [m]] and B[[n], J ] = A[[n], J ], and furthermore
rankB = rank(A[I, [m]]) = |I| = k − 1 < r.

Now, take any (i, j) ∈ ([n] \ I) × ([n] \ J) such that A[I ∪ {i}, J ∪ {j}] is singular; there are at least
(1 − α1/r)(n − k + 1)(m − k + 1) such (i, j), thanks to the choice of (I, J). Consider the two matrices
A[I ∪{i}, J ∪{j}] and B[I ∪{i}, J ∪{j}]. Their ranks are both less than k, i.e. det(A[I ∪{i}, J ∪{j}]) =
det(B[I ∪ {i}, J ∪ {j}]) = 0. Hence, det(A[I ∪ {i}, J ∪ {j}])− det(B[I ∪ {i}, J ∪ {j}]) = 0. As discussed
above, these two matrices are identical except that, possibly, A[i, j] ̸= B[i, j]. This means that

0 =
∣∣det(A[I ∪ {i}, J ∪ {j}])− det(B[I ∪ {i}, J ∪ {j}])

∣∣ = ∣∣ det(A[I, J ])(A[i, j]−B[i, j])
∣∣.

But det(A[I, J ]) ̸= 0 because A[I, J ] is nonsingular. So, A[i, j] = B[i, j]. Recall also that A[i, j] = B[i, j]
whenever i ∈ I or j ∈ J . Therefore, ∥A−B∥0 ≤ α1/r(n− k + 1)(m− k + 1) < α1/rnm. □

Lemma 7.2 is more complicated. Our strategy is as follows. First, we pass from A to a large submatrix
A[I, I], whose rank is “robust” (i.e., the rank is maintained whenever we delete a few rows and columns).
Then, we show how to use this robustness to approximate A[I, I] with a symmetric matrix with the same
row space. Finally, we show how this approximation can be extended to all of A.

The first of these steps (passing to a large submatrix whose rank is robust) is rather simple, as follows.

Lemma 7.3. Consider integers n ≥ q ≥ 1, let γ > 0, and let F be a field. Let A ∈ Fn×n be a matrix
with rank at most q. Then, there exists k ∈ {0, . . . , q} and I ⊆ [n] of size |I| ≥ (1 − qγ)n such that
rank(A[I ′, I ′]) = rank(A[I, I]) = k for all I ′ ⊆ I of size |I ′| ≥ |I| − γn.

Proof. Take the minimum k ∈ {0, . . . , q} such that rank(A[I, I]) ≤ k holds for some I ⊆ [n] of size
|I| ≥ (1 − (q − k)γ)n; to see that such k exists, consider k = q. We claim this k and I satisfy the
conclusion of the lemma. Clearly, |I| ≥ (1 − qγ)n. Fix an arbitrary I ′ ⊆ I with |I ′| ≥ |I| − γn. Then,
since |I ′| ≥ (1 − (q − k + 1)γ)n, the minimality of k implies that rank(A[I ′, I ′]) ≥ k. That is to say,
k ≥ rank(A[I, I]) ≥ rank(A[I ′, I ′]) ≥ k, so rank(A[I ′, I ′]) = rank(A[I, I]) = k. □

The next lemma shows that when a matrix “has its rank robustly”, we can approximate it by a
symmetric matrix with the same row space. The proof approach is similar to the approach of the second
and third authors in [35, Section 5.7].

Lemma 7.4. Consider integers n ≥ 1 and r ≥ 0, let ρ ∈ [0, 1] and let F be a field. Let A ∈ Fn×n be
a matrix with ∥A − AT ∥0 ≤ ρn2, such that rank(A[I, I]) = r for all I ⊆ [n] of size |I| ≥ (1 − r

√
ρ)n.

Then, there exists a symmetric matrix B ∈ Fn×n such that ∥A − B∥0 ≤ (r2 + 1)ρn2, and such that the
row spaces of A and B are the same.

Proof. Note that in the case r = 0 we must have A = 0, and so we can take B = 0. So let us from now
on assume r ≥ 1.

For i, j ∈ [n], say that the pair (i, j) is bad if aij ̸= aji. For each 1 ≤ i ≤ n, write N(i) := {1 ≤ j ≤
n : aij ̸= aji}. Also, define Ibad to be the set of indices i such that |N(i)| ≥ √

ρn; hence,

|Ibad| ≤ ∥A−AT ∥0/
√
ρn ≤ √

ρn.

First, we claim that there exists V ⊆ [n]\Ibad of size r such thatA[V, V ] is symmetric and rank(A[[n], V ]) =
r. To this end, we iteratively find, for each ℓ ∈ [r], a sequence v1, . . . , vℓ ∈ [n] \ Ibad such that
rank(A[[n], {v1, . . . , vℓ}]) = ℓ and such that no (vi, vj) is a bad pair. Suppose ℓ ∈ {0, 1, . . . , r − 1}
and we have found v1, . . . , vℓ with these properties. For all i ∈ {1, . . . , ℓ}, we have |N(vi)| ≤

√
ρn be-

cause vi /∈ Ibad. Thus, Ĩ := [n] \ (Ibad ∪
⋃ℓ

i=1N(vi)) has size |Ĩ| ≥ n − √
ρn − ℓ

√
ρn ≥ (1 − r

√
ρ)n.

By our assumption on A, rank(A[[n], Ĩ]) ≥ rank(A[Ĩ , Ĩ]) = r > ℓ, so there exists vℓ+1 ∈ Ĩ such that
rank(A[[n], {v1, v2, . . . , vℓ+1}]) = ℓ+1. In addition, for each i ∈ [ℓ], the pair (vi, vℓ+1) is not bad because
vℓ+1 ∈ Ĩ ⊆ [n] \ N(vi). This completes the iteration step. Having found v1, . . . , vr at the end of the
iterative procedure, we set V = {v1, . . . , vr}, and note that A[V, V ] is symmetric since none of the pairs
(vi, vj) is bad.

Fix V as above. We next claim that rank(A[V, V ]) = r, i.e., A[V, V ] is invertible. To see this, first note
that since rank(A[[n], V ]) = r = rank(A), the column vectors of A[[n], V ] span those of A = A[[n], [n]].
Let I := [n] \

⋃
v∈V N(v); it holds that

|I| ≥ n−
r∑

i=1

|N(vi)| ≥ (1− r
√
ρ)n. (7.1)
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The above discussion indicates that the column vectors of A[I, V ] span those of A[I, I], so rank(A[I, V ]) ≥
rank(A[I, I]). Similarly, we have rank(A[V, V ]) ≥ rank(A[V, I]). In addition, the definition of I guaran-
tees that avi = aiv for all v ∈ V and all i ∈ I. In short, A[V, I] = A[I, V ]T . So,

rank(A[V, V ]) ≥ rank(A[V, I]) = rank(A[I, V ]) ≥ rank(A[I, I]) = r,

where the last inequality follows as |I| ≥ (1 − r
√
ρ)n. That is to say, rank(A[V, V ]) = r, i.e., A[V, V ] is

invertible.
Now, take B := A[V, [n]]TA[V, V ]−1A[V, [n]]. Note that B is symmetric, and rank(B) ≤ |V | = r. By

the preceding discussion,

B[V, V ] = A[V, V ]TA[V, V ]−1A[V, V ] = A[V, V ]

has rank r, so rank(B) = r. Also, the row vectors of B are spanned by those of A. This, plus the fact
that rank(B) = r = rank(A), demonstrates that the row space of B is the same as that of A.

To complete the proof, it remains to show that ∥A − B∥0 ≤ (r2 + 1)ρn2. Since r = rank(A) ≥
rank(A[V, [n]]) ≥ rank(A[V, V ]) = r, we see that A[V, [n]] has the same row space as A, i.e., for each
i ∈ [n], we have A[i, [n]] = x⃗iA[V, [n]] for some x⃗i ∈ FV . In particular, A[i, V ] = x⃗iA[V, V ], i.e.
x⃗i = A[i, V ]A[V, V ]−1. Hence, A[i, [n]] = A[i, V ]A[V, V ]−1A[V, [n]]. By considering all i ∈ I, we deduce

A[I, [n]] = A[I, V ]A[V, V ]−1A[V, [n]] = A[V, I]TA[V, V ]−1A[V, [n]] = B[I, [n]]. (7.2)

Writing Ic = [n] \ I, note that for any i ∈ Ic and j ∈ I, the above equality implies that bij = bji = aji.
So, we have bij ̸= aij if and only if aij ̸= aji. We deduce that∥∥A[Ic, I]−B[Ic, I]∥0 ≤ ∥A−AT ∥0 ≤ ρn2. (7.3)

Considering separately the subsets of entries indexed by I × [n], Ic × I and Ic × Ic, using (7.1) to (7.3),
we conclude

∥A−B∥0 ≤
∥∥A[I, [n]]−B[I, [n]]

∥∥
0
+
∥∥A[Ic, I]−B[Ic, I]

∥∥
0
+ |Ic|2 ≤ (r2 + 1)ρn2. □

Before completing the proof of Lemma 7.2, we record a necessary inequality on matrix ranks.

Lemma 7.5. Consider a matrix A ∈ Fn×n over any field F (for any integer n ≥ 1). Then, for any
I, J ⊆ [n], we have

rank(A) ≥ rank(A[I, [n]]) + rank(A[[n], J ])− rank(A[I, J ]).

Proof. Write ∆ := rank(A[[n], J ])−rank(A[I, J ]) ≥ 0. There exist distinct i1, i2, . . . , i∆ ∈ [n]\I such that
for each k ∈ {1, . . . ,∆}, the row vector A[ik, J ] is not spanned by the row vectors of A[I, J ] along with
A[i1, J ], . . . , A[ik−1, J ]. Hence, for each k ∈ {1, . . . ,∆}, the row vector A[ik, [n]] is not spanned by the row
vectors of A[I, [n]] along with A[i1, [n]], . . . , A[ik−1, [n]]. In other words, rank(A[I ∪ {i1, . . . , i∆}, [n]]) ≥
rank(A[I, [n]]) + ∆. This shows rank(A) ≥ rank(A[I, [n]]) + ∆, as desired. □

We now complete the proof of Lemma 7.2.

Proof of Lemma 7.2. We first apply Lemma 7.3 with γ = q
√
ρ to obtain k ∈ {0, . . . , q} and I ⊆ [n] of

size |I| ≥ (1−q2√ρ)n such that rank(A[I ′, I ′]) = rank(A[I, I]) = k for all I ′ ⊆ I of size |I ′| ≥ |I|−q√ρn.
Write rank(A[[n], I]) = k+∆1 and rank(A[I, [n]]) = k+∆2; clearly, ∆1,∆2 ≥ 0. According to Lemma 7.5,
q ≥ rank(A) ≥ k + ∆1 + k + ∆2 − k = k + ∆1 + ∆2. Without loss of generality, we assume ∆1 ≤ ∆2

(otherwise replace A with AT ). Hence, k + 2∆1 ≤ k +∆1 +∆2 ≤ q.
Now, Lemma 7.4 applied to A[I, I] (with r = k) yields a symmetric matrix C ∈ FI×I such that

∥A[I, I]− C∥0 ≤ (q2 + 1)ρn2 (7.4)

and such that the row space of C is the same as that of A[I, I]. The latter property implies that
A[I, I] = P1C for some P1 ∈ FI×I .

We have shown how to approximate A[I, I] with the symmetric matrix C; we now need to deal with
the other parts of the matrix A. Recall that rank(A[[n], I]) = rank(A[I, I]) + ∆1. Letting Ic = [n] \ I,
this means we can write A[Ic, I] = P2A[I, I] + Q, for some P2, Q ∈ FIc×I and rank(Q) = ∆1. Let
P := P2P1 ∈ FIc×I , so A[Ic, I] = PC +Q.

Now, let B ∈ Fn×n be the symmetric matrix defined by

B[I, I] = C, B[Ic, I] = B[I, Ic]T = PC +Q, B[Ic, Ic] = PCPT + PQT +QPT .

By construction, and our assumption on A, we have

∥B[Ic, I]−A[Ic, I]∥0 = 0, (7.5)
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∥B[I, Ic]−A[I, Ic]∥0 = ∥B[Ic, I]T −A[I, Ic]∥0 = ∥A[Ic, I]T −A[I, Ic]∥0 ≤ ρn2. (7.6)

Combining (7.5) and (7.6) with (7.4) yields

∥A−B∥0 ≤ ∥C −A[I, I]∥0 + ∥B[Ic, I]−A[Ic, I]∥0 + ∥B[I, Ic]−A[I, Ic]∥0 + |Ic|2

≤ (q2 + 1)ρn2 + ρn2 + q4ρn2 = O(q4ρn2).

It remains to show that rank(B) ≤ q. This follows from a short sequence of elementary row and column
operations:

rank(B) = rank

[
C CPT +QT

PC +Q PCPT + PQT +QPT

]
= rank

[
C QT

PC +Q PQT

]
= rank

[
C QT

Q 0

]
≤ rank(C) + 2 rank(Q) = k + 2∆1 ≤ q . □

8. Decoupling inequalities

In this section we prove Lemmas 2.12 and 2.16, which are the decoupling inequalities that will be used
in the proofs of Theorems 1.10 and 1.11 respectively. Both lemmas use the following fact, which is an
easy application of Jensen’s inequality.

Lemma 8.1 (Decoupling with multiple copies). Let E(E,F ) be an event depending on independent
random objects E,F . Then, for any k ∈ N, we have

P[E(E,F )] ≤ P
[
E(E0, F ) ∩ · · · ∩ E(Ek, F )

]1/(k+1)
,

where E0, . . . , Ek are independent copies of E.

Proof. By the law of total probability and the independence of E0, . . . , Ek, we have

P
[
E(E0, F ) ∩ · · · ∩ E(Ek, F )

]
= E

[
P
[
E(E0, F ) ∩ · · · ∩ E(Ek, F )

∣∣F ]] = E
[
P
[
E(E,F )

∣∣F ]k+1
]
.

By Jensen’s inequality, this is at least

E
[
P
[
E(E,F )

∣∣F ]]k+1

= P
[
E(E,F )

]k+1
.

Rearranging yields the desired result. □

We now prove Lemma 2.12 and Lemma 2.16. The proof approach is the same for both of these
statements, but Lemma 2.16 involves somewhat more complicated manipulations of equations.

Proof of Lemma 2.12. Fix any z ∈ F, and let ξ⃗ (0), . . . , ξ⃗ (k) be independent copies of ξ⃗. Applying
Lemma 8.1 with E = ξ⃗[X] and F = ξ⃗[Y ], and with E(E,F ) being the event that f(ξ⃗[X], ξ⃗[Y ]) = z,
we see

P[f(ξ⃗) = z] ≤ P[f(ξ⃗ (i)[X], ξ⃗[Y ]) = z for all i ∈ {0, . . . , k}]1/(k+1) .

Subtracting the equation for i = 0 from each of the other k equations, and using that f(x⃗) = x⃗TAx⃗ +

b⃗T x⃗+ c (for some b⃗ ∈ Fn and c ∈ F), we deduce

sup
z∈F

P[f(ξ⃗) = z]

≤ P
[
f(ξ⃗ (i)[X], ξ⃗[Y ])− f(ξ⃗ (0)[X], ξ⃗[Y ]) = 0 for all i ∈ {1, . . . , k}

]1/(k+1)

= P
[
(ξ⃗ (i)[X]− ξ⃗ (0)[X])TA[X,Y ] ξ⃗[Y ] + ψ0(ξ⃗

(0)[X], ξ⃗ (i)[X]) = 0 for all i ∈ {1, . . . , k}
]1/(k+1)

,

where

ψ0(ξ⃗
(0)[X], ξ⃗ (i)[X]) =

1

2

(
ξ⃗ (i)[X]TA[X,X]ξ⃗ (i)[X]− ξ⃗ (0)[X]TA[X,X]ξ⃗ (0)[X]+ b⃗[X]T (ξ⃗ (i)[X]− ξ⃗ (0)[X])

)
.

Let x⃗ ∈ {−1, 1}X maximise the expression

P
[
(ξ⃗ (i)[X]− x⃗)TA[X,Y ] ξ⃗[Y ] + ψ0(x⃗, ξ⃗

(i)[X]) = 0 for all i ∈ {1, . . . , k}
]
.

Then, we conclude

sup
z∈F

P[f(ξ⃗) = z] ≤ P
[
(α⃗ (i))TA[X,Y ] ξ⃗[Y ] = ψ(α⃗ (i)) for all i ∈ {1, . . . , k}

]1/(k+1)

,

where α⃗ (i) = ξ⃗ (i)[X]− x⃗ is a shifted Rademacher random variable and ψ(α⃗ (i)) = −ψ0(x⃗, α⃗
(i) + x⃗). □
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Proof of Lemma 2.16. Fix any z ∈ F and let ξ⃗ ′ be an independent copy of ξ⃗. We apply the k = 1 case
of Lemma 8.1 twice, first with

E = ξ⃗[X], F = ξ⃗[Y ∪ Z], E(E,F ) = {f(ξ⃗[X], ξ⃗[Y ], ξ⃗[Z]) = z},
and then with

E = ξ⃗[Y ], F = (ξ⃗[X], ξ⃗ ′[X], ξ⃗[Z]), E(E,F ) =

 f(ξ⃗[X], ξ⃗[Y ], ξ⃗[Z]) = z,

f(ξ⃗ ′[X], ξ⃗[Y ], ξ⃗[Z]) = z

.
This yields

P[f(ξ⃗) = z] ≤ P


f(ξ⃗[X], ξ⃗[Y ], ξ⃗[Z]) = z, (8.1)

f(ξ⃗ ′[X], ξ⃗[Y ], ξ⃗[Z]) = z, (8.2)

f(ξ⃗[X], ξ⃗ ′[Y ], ξ⃗[Z]) = z, (8.3)

f(ξ⃗ ′[X], ξ⃗ ′[Y ], ξ⃗[Z]) = z (8.4)



1/4

.

Now, we write f(x⃗) = x⃗TAx⃗ + b⃗T x⃗ + c for some b⃗ ∈ Fn and c ∈ F. If we subtract (8.2) from (8.1), and
(8.4) from (8.3), and (8.3) from (8.1), we obtain

2(ξ⃗[X]− ξ⃗ ′[X])TA[X,Y ∪ Z]ξ⃗[Y ∪ Z] + φ0(ξ⃗[X], ξ⃗ ′[X]) = 0 (8.5)

2(ξ⃗[X]− ξ⃗ ′[X])TA[X,Y ∪ Z](ξ⃗ ′[Y ], ξ⃗[Z]) + φ0(ξ⃗[X], ξ⃗ ′[X]) = 0, (8.6)

2(ξ⃗[Y ]− ξ⃗ ′[Y ])TA[Y,X ∪ Z]ξ⃗[X ∪ Z] + ψ0(ξ⃗[Y ], ξ⃗ ′[Y ]) = 0. (8.7)

where

φ0(ξ⃗[X], ξ⃗ ′[X]) = ξ⃗[X]TA[X,X]ξ⃗[X]− ξ⃗ ′[X]A[X,X]ξ⃗ ′[X] + b⃗[X]T (ξ⃗[X]− ξ⃗ ′[X]),

ψ0(ξ⃗[Y ], ξ⃗ ′[Y ]) = ξ⃗[Y ]TA[Y, Y ]ξ⃗[Y ]− ξ⃗ ′[Y ]A[Y, Y ]ξ⃗ ′[Y ] + b⃗[Y ]T (ξ⃗[Y ]− ξ⃗ ′[Y ]).

Now, let
α⃗ = ξ⃗[X]− ξ⃗ ′[X], β⃗ = ξ⃗[Y ]− ξ⃗ ′[Y ], γ⃗ = ξ⃗[Z].

Subtracting (8.6) from (8.5) yields
α⃗TA[X,Y ]β⃗ = 0.

(8.6) and (8.7) can be written as

α⃗TA[X,Z]γ⃗ = φ1(ξ⃗[X], ξ⃗ ′[X], ξ⃗[Y ], ξ⃗ ′[Y ]) and β⃗ TA[Y,Z]γ⃗ = ψ1(ξ⃗[X], ξ⃗ ′[X], ξ⃗[Y ], ξ⃗ ′[Y ])

respectively, where

φ1(ξ⃗[X], ξ⃗ ′[X], ξ⃗[Y ], ξ⃗ ′[Y ]) = −(ξ⃗[X]− ξ⃗ ′[X])TA[X,Y ]ξ⃗ ′[Y ]− φ0(ξ⃗[X], ξ⃗ ′[X])/2

ψ1(ξ⃗[X], ξ⃗ ′[X], ξ⃗[Y ], ξ⃗ ′[Y ]) = −(ξ⃗[Y ]− ξ⃗ ′[Y ])TA[Y,X]ξ⃗[X]− ψ0(ξ⃗[Y ], ξ⃗ ′[Y ])/2.

Hence,

P[f(ξ⃗) = z] ≤ P


α⃗TA[X,Y ]β⃗ = 0,

α⃗TA[X,Z]γ⃗ = φ1(ξ⃗[X], ξ⃗ ′[X], ξ⃗[Y ], ξ⃗ ′[Y ]), (8.8)

β⃗ TA[Y,Z]γ⃗ = ψ1(ξ⃗[X], ξ⃗ ′[X], ξ⃗[Y ], ξ⃗ ′[Y ]) (8.9)


1/4

.

This is almost the desired conclusion, except that φ1 and ψ1 do not only depend on α⃗, β⃗. To address
this issue, for all possible outcomes of α⃗ ∈ {−1, 0, 1}X and β⃗ ∈ {−1, 0, 1}Y , choose x⃗α⃗,β⃗ ∈ {−1, 1}X and
y⃗α⃗,β⃗ ∈ {−1, 1}Y to maximise the conditional probability

P
[
(8.8) and (8.9) hold

∣∣∣ ξ⃗ ′[X] = x⃗α⃗,β⃗ , ξ⃗
′[Y ] = y⃗α⃗,β⃗ , α⃗, β⃗

]
(among all choices of x⃗α⃗,β⃗ and y⃗α⃗,β⃗ such that this conditional probability is well-defined). In addition,
let φ(α⃗, β⃗) = φ1(x⃗α⃗,β⃗ + α⃗, x⃗α⃗,β⃗ , y⃗α⃗,β⃗ + β⃗, y⃗α⃗,β⃗) and ψ(α⃗, β⃗) = ψ1(x⃗α⃗,β⃗ + α⃗, x⃗α⃗,β⃗ , y⃗α⃗,β⃗ + β⃗, y⃗α⃗,β⃗). Then we
have

sup
z∈F

P[f(ξ⃗) = z] ≤ P
[
α⃗TA[X,Y ]β⃗ = 0, α⃗TA[X,Z]γ⃗ = φ(α⃗, β⃗), β⃗ TA[Y,Z]γ⃗ = ψ(α⃗, β⃗)

]1/4
,

as desired. □
25



9. Bounds in terms of rank, for quadratic polynomials

In this section we prove Lemma 2.13, and use it (together with Lemmas 2.7 and 2.12) to deduce
Theorem 1.11. First, we show how to deduce Theorem 1.11 from Lemma 2.13.

Proof of Theorem 1.11 assuming Lemma 2.13. In what follows, we assume n is even13 and sufficiently
large. Write the quadratic part of f(x⃗) as x⃗TAx⃗.

Suppose C1 does not hold, i.e., for any symmetric matrix B ∈ Fn×n with rank less than 2k2,
f(x⃗) − x⃗TBx⃗ must have more than εn2 nonzero coefficients. Our goal is to show that C2 holds, i.e.,
supz∈F P[f(ξ1, . . . , ξn) = z] ≤ n−1+2/k.

Since f has at most n+1 non-quadratic terms, our assumption that C1 does not hold implies that for
any symmetric matrix B ∈ Fn×n with rank less than 2k2, it must be that ∥A−B∥0 > εn2 − n− 1. By
Lemma 2.7, this means that, for some δ ∈ (0, 1) depending on ε and k, at least a δ-fraction of 2k2 × 2k2

submatrices of A are nonsingular.
By Lemma 3.7, there is a partition of {1, . . . , n} = X ∪ Y into parts of size |X| = |Y | = n/2, such

that more than a (δ/2)-fraction of 2k2 × 2k2 submatrices of A[X,Y ] are nonsingular. By Lemma 2.12
we then have

sup
z∈F

P[f(ξ⃗) = z] ≤ P
[
(α⃗ (i))TA[X,Y ] ξ⃗[Y ] = ψ(α⃗ (i)) for all i ∈ {1, . . . , k}

]1/(k+1)

,

for some function ψ : FX → F, and some i.i.d. random vectors α⃗(1), . . . , α⃗(k) ∈ FX with independent
shifted Rademacher entries (all independent of ξ⃗[Y ]). By Lemma 2.13 (with Ξ as the matrix with rows
α⃗(1), . . . , α⃗(k), and η⃗ = ξ⃗[Y ], and φ⃗(Ξ) = (ψ(α⃗ (i)))ki=1, and ε = 1), we have

P
[
(α⃗ (i))TA[X,Y ] ξ⃗[Y ] = ψ(α⃗ (i)) for all i ∈ {1, . . . , k}

]
≤ (n/2)−k+1 ≤ n−(k+1)(1−2/k).

The desired bound follows. □

In the rest of this section, we prove Lemma 2.13. Recalling the strategy outlined in Section 2.2.1, via
the Nguyen–Vu inverse theorem (Theorem 2.10), the proof boils down to bounding the probability that a
given tuple of columns of ΞA lies in a GAP of “small” rank and of “small” volume (recall Definition 2.9).
To be precise, we need the following two lemmas.

Lemma 9.1. Fix k ≤ m and F ∈ {R,C}. For some ℓ ≤ n, consider a matrix A ∈ Fn×m which has at
least ℓ disjoint nonsingular m ×m submatrices, and let Ξ ∈ Fk×n be a matrix with independent shifted
Rademacher entries. Then,

P[rank(ΞA) < k] = Om(ℓ−(m−k+1)/2).

Proof. This follows from Corollary 3.3. Indeed, write ξ⃗ (i) ∈ Fn for the i-th row of Ξ. If rank(ΞA) < k,
then there is an index i ∈ {1, . . . , k} such that ξ⃗ (i)A lies in span(ξ⃗ (j)A : j < i) (which is a linear subspace
with dimension at most k − 1). Thus, applying Corollary 3.3 (after transposing, with the matrix AT ),
we conclude

P[rank(ΞA) < k] ≤
k∑

i=1

P
[
ξ⃗ (i)A ∈ span(ξ⃗ (j)A : j < i)

]
= k ·Om(ℓ−(m−k+1)/2) = Om(ℓ−(m−k+1)/2). □

Lemma 9.2. Fix k ≤ r ≤ m and F ∈ {R,C}. For some ℓ ≤ n, consider a matrix A ∈ Fn×m which has
at least ℓ disjoint nonsingular m×m submatrices, and let Ξ ∈ Fk×n be a matrix with independent shifted
Rademacher (or lazy Rademacher) entries. Then for any V ≥ 1,

P[the columns of ΞA lie in a symmetric GAP of rank at most r and volume at most V ]

≤ Om(V m(1 + log V )r−1 · ℓ−k(m−r)/2).

Proof. Let Z(N1, . . . , Nr) be the set of integer matrices Z ∈ Zr×m such that, for each i ∈ {1, . . . , r}, the
absolute value of the entries in the ith row is at most Ni. Then, let Z(V ) be the union of all the sets
Z(N1, . . . , Nr), among N1, . . . , Nr satisfying (2Ni + 1)(2N2 + 1) . . . (2Nr + 1) ≤ V .

By definition, if the column vectors of ΞA lie in a single symmetric GAP of rank at most r and
volume at most V , then ΞA = UZ for some U ∈ Fk×r and Z ∈ Z(V ). We will proceed by studying the
probability that ΞA = UZ for some particular Z, and summing over all Z ∈ Z(V ).

Claim 9.3. For every fixed Z ∈ Z(V ), we have P[ΞA = UZ for some U ∈ Fk×r] ≤ ℓ−k(m−r)/2.

13For the odd-n case, we can add a single dummy variable to reduce to the even-n case.
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Proof of claim. This is a consequence of Corollary 3.3, noting that we can interpret ΞA as a (matrix-
valued) linear function of the kn entries of Ξ, and we can interpret {UZ : U ∈ Fk×r} as a kr-dimensional
linear subspace of the vector space of k ×m matrices.

In more detail: let ξ⃗ ∗ ∈ Fkn be the vector obtained by concatenating the k rows of Ξ (so, this is a
row vector of kn independent shifted Rademacher random variables or kn independent lazy Rademacher
random variables), and let A∗ ∈ Fnk×mk be the block-diagonal matrix obtained by concatenating k

copies of A along the diagonal. Then, ξ⃗ ∗A∗ is the concatenation of the k rows of ΞA. If we let W ∈ Fkm

be the set of all vectors obtained by concatenating the k rows of a matrix UZ, for some U ∈ Fk×r, then
the event that ΞA = UZ for some U ∈ Fk×r precisely corresponds to the event that ξ⃗ ∗A∗ ∈ W. Note
that A∗ has at least ℓ disjoint nonsingular km × km submatrices (each obtained by concatenating the
k copies of one of the ℓ disjoint nonsingular m ×m matrices in A), and W is a kr-dimensional linear
subspace of Fkm, so the desired bound follows from Corollary 3.3 (after transposing, with the matrix
(A∗)T ). ■

Claim 9.4. |Z(V )| = Om(V m(1 + log V ))r−1).

Proof of claim. Let d be the minimal positive integer such that V ≤ 2d, so d = log2 V +O(1).
Consider N1, . . . , Nr ∈ N such that (2Ni + 1)(2N2 + 1) . . . (2Nr + 1) ≤ V . For each i ∈ {1, . . . , r}, let

di ∈ N be the minimal integer such that Ni ≤ 2di , so 2Ni + 1 ≥ 2di . We have 2d1+···+dr ≤ V ≤ 2d, i.e.,
d1 + · · ·+ dr ≤ d. It follows that

Z(V ) ⊆
⋃

0≤d1+···+dr≤d

Z(2d1 , . . . , 2dr ),

and hence
|Z(V )| ≤

∑
0≤d1+···+dr≤d

|Z(2d1 , . . . , 2dr )|.

Then, note that |Z(2d1 , . . . , 2dr )| =
∏r

i=1(2
di+1 + 1)m = Om(2m(d1+···+dr)). We deduce that |Z(V )| is

at most (recall r ≤ m)∑
d1,...,dr∈N

d1+···+dr≤d

Om(2m(d1+···+dr)) ≤
d∑

D=0

(
D + r − 1

r − 1

)
Om(2mD) = Om(dr−12md) = Om(V m(1+log V )r−1). ■

The desired bound immediately follows from the above two claims. □

Remark 9.5. Both Lemma 9.1 and Lemma 9.2 seem far from the truth. In the setting of Lemma 9.1 we
anticipate a bound of ℓ−m/2+o(1) (see [29, 30] for related work in the analytic number theory literature,
which can be viewed as special cases of this anticipated bound). If one could prove this, as well as
an improved bound of the form V m−r+o(1) · ℓ−k(m−r)/2+o(1) in Lemma 9.2, then it would be possible
to deduce an optimal version of Lemma 2.13 (see Remark 2.14), using some of the ideas we will see
shortly in the proof of Theorem 1.10 (namely, consideration of “expected inverse volume” quantities as
in Lemma 10.6).

Equipped with Lemmas 9.1 and 9.2, we now present the proof of Lemma 2.13.

Proof of Lemma 2.13. Suppose G2 does not hold, i.e. P
[
ΞAη⃗ = φ⃗(Ξ)

]
> n−k+ε for some function

φ : Fk×n → Fk and some ε ∈ (0, 1]. Taking m := ⌈2k2/ε⌉, the goal is to prove that G1 holds, namely
that at most a δ-fraction of the m×m submatrices of A are nonsingular (for any δ > 0, assuming that
n is sufficiently large in terms of m, δ).

Let E be the event that Ξ satisfies P
[
ΞAη⃗ = φ(Ξ)

∣∣Ξ] > n−k+ε/2. We have

n−k+ε < P
[
ΞAη⃗ = φ(Ξ)

]
≤ P[E ] + P

[
ΞAη⃗ = φ(Ξ)

∣∣Ec] ≤ P[E ] + n−k+ε/2,

so we must have P[E ] > n−k+ε/2 (and so in particular P[E ] > n−k).
Now, note that ΞAη⃗ can be viewed as a linear function of η⃗ (taking values in Fk), where the coefficients

of this linear function are the columns of ΞA. So, if Ξ satisfies E , then Theorem 2.10 tells us that most of
the columns of ΞA are contained in a symmetric GAP of small rank and volume. More precisely, for Ξ
satisfying E , applying Theorem 2.10 with n′ = (δ/(4m))n, we conclude there exists a symmetric GAP φ
in Fk with rank r = Ok(1) and volume V = Ok,δ,ε(n

−r/2+k−ε) ≤ n−r/2+k−7ε/8 such that all but at most
n′ of the columns of ΞA lie in φ. Observe that r < 2k, since otherwise V = o(1), which is impossible
according to the definition of V .
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We define a suitable GAP to be a symmetric GAP in Fk of rank r < 2k and volume V ≤ n−r/2+k−7ε/8.
For an arbitrary outcome of Ξ, define I = I(Ξ) ⊆ {1, . . . , n} to be a maximum-size set of (indices of)
columns of ΞA that are contained in a suitable GAP. Whenever Ξ satisfies E , we have |I| ≥ n − n′ ≥
(1 − δ/(4m))n. By Lemma 3.1 (with m as the “r” in Lemma 3.1), it follows that for all but at most a
δ/2-fraction of m-sets J ⊆ {1, . . . , n}, we have P[J ⊆ I] ≥ P[E ]/2 ≥ n−k+ε/4. Say such subsets J are
good.

If J is good, then the corresponding columns of ΞA are quite likely to lie in a suitable GAP. We
will use Lemmas 9.1 and 9.2 to show that this implies that A has many disjoint nonsingular m × m
submatrices in the columns indexed by J ; summing over good J will then yield the desired result.
Claim 9.6. If J is good, then at most a δ/2-fraction of the m × m submatrices of A in the columns
indexed by J are nonsingular.
Proof of claim. Let Fr be the event that the columns of ΞA indexed by J lie in a suitable GAP with
rank r, so the assumption that J is good implies that P[F0 ∪ · · · ∪ F2k−1] ≥ n−k+ε/4.

Suppose for the purpose of contradiction that the columns indexed by J contain at least (δ/2)
(
n
m

)
nonsingular m ×m submatrices. By Fact 3.4, then these columns in fact contain ℓ = Ωm,δ(n) disjoint
m×m submatrices.

Recall that m = ⌈2k2/ε⌉. First, Lemma 9.1 implies that

P[F0 ∪ · · · ∪ Fk−1] ≤ Om(ℓ−(m−k+1)/2) = om,δ(n
−k+ε),

with plenty of room to spare. Second, if r ≥ k, Lemma 9.2 implies that, for V = nk−7ε/8−r/2,

P[Fr] ≤ Om(V m(log V )r−1 · ℓ−k(m−r)/2) = Om,δ(n
m(k−7ε/8−r/2)+o(1) · n−k(m−r)/2)

= Om,δ(n
km/2−7εm/8−r(m/2−k/2)+o(1))

≤ Om,δ(n
km/2−7εm/8−k(m/2−k/2)+o(1))

≤ Om,δ(n
−7k2/4+k2/2+o(1)) = om,δ(n

−k+ε).

Summing the above bounds yields P[F0∪ · · · ∪F2k−1] = om,δ(n
−k+ε), which is the desired contradiction.

■

Now, using the above claim, the number of nonsingular m ×m submatrices in good sets of columns
is at most (δ/2)

(
n
m

)2. Recalling that all but a (δ/2)-fraction of m-sets of columns are good, the number
of nonsingular m×m submatrices which do not lie in a good set of columns is also at most (δ/2)

(
n
m

)2.
That is to say, at most a δ-fraction of m×m submatrices of A are nonsingular, which proves G1. □

10. A power-saving improvement for robustly irreducible quadratic polynomials

In this section we prove Lemma 2.17, and use it (together with Lemmas 2.7 and 2.16) to deduce
Theorem 1.10. First, we show how to deduce Theorem 1.10 from Lemma 2.17.

Proof of Theorem 1.10 assuming Lemma 2.16 and Lemma 2.17. In what follows, we assume n is divisi-
ble14 by 3, and sufficiently large. Write the quadratic part of f(x⃗) as x⃗TAx⃗ for some symmetric matrix
A ∈ Cn×n.

Suppose B1 does not hold, i.e., for every reducible polynomial g ∈ C[x1, . . . , xn] with degree at most
2, the polynomial f − g must have more than εn2 nonzero coefficients. Our objective is to prove that
B2’ holds, i.e., supz∈C P[f(ξ⃗) = z] ≤ n−1/2−1/24+ε.

Note that a quadratic form is reducible over C if and only if its rank is less than 3. Thus, for every
symmetric matrix B ∈ Cn×n of rank less than 3, the polynomial g(x⃗) = x⃗TBx⃗ is reducible, and so f − g
must have more than εn2 nonzero coefficients. Since f − g has at most n+ 1 non-quadratic terms, this
implies that we must have ∥A−B∥0 > εn2 −n− 1 for every symmetric matrix B ∈ Cn×n with rank less
than 3. By Lemma 2.7, this means that, for some δ > 0 depending on ε, at least a δ-fraction of the 3× 3
submatrices of A are nonsingular.

By Lemma 3.7, there is a partition of {1, . . . , n} = X ∪ Y ∪ Z with |X| = |Y | = |Z| = n/3 such that
for each of the matrices A[X,Y ], A[X,Z], A[Y,Z], more than a (δ/2)-fraction of their 3× 3 submatrices
are nonsingular. By Lemma 2.16 we then have

sup
z∈C

P[f(ξ⃗) = z] ≤ P
[
α⃗TA[X,Y ]β⃗ = 0, α⃗TA[X,Z]γ⃗ = φ(α⃗, β⃗), β⃗ TA[Y, Z]γ⃗ = ψ(α⃗, β⃗)

]1/4
,

14in general, we can add one or two dummy variables to reduce to the case where n is divisible by 3.
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for some functions φ,ψ : CX × CY → C, and independent random vectors α⃗, β⃗, γ⃗, where the entries of
α⃗, β⃗ are i.i.d. lazy Rademacher, and the entries of γ⃗ are i.i.d. Rademacher. By Lemma 2.17 (taking the
“ε” in Lemma 2.17 to be min(δ/2, ε), we have

P
[
α⃗TA[X,Y ]β⃗ = 0, α⃗TA[X,Z]γ⃗ = φ(α⃗, β⃗), β⃗ TA[Y,Z]γ⃗ = ψ(α⃗, β⃗)

]
≤ (n/3)−2−1/6+ε

≤ n−4(1/2+1/24−ε),

and the desired bound follows. □

In the rest of this section, we prove Lemma 2.17. As in the proof of Theorem 1.11, we will use
the Nguyen–Vu inverse theorem (Theorem 2.10), but the estimates are much more delicate. It will be
convenient to use the following reformulation of Theorem 2.10 (which we will apply with q = 3).

Definition 10.1. Let G be a torsion-free additive group. For r ∈ N and δ > 0, and a sequence
v⃗ = (v1, . . . , vn) ∈ Gn of elements of G, let hδr(v⃗) be the minimum volume of a symmetric GAP of rank
at most r that contains all but at most n1−δ entries of v⃗ (let hδr(v⃗) = ∞ if no such GAP exists).

We remark that the only possible rank-0 symmetric GAPs is the singleton {0}. So, hδ0(v⃗) = 1 if at
most n1−δ elements of v⃗ are nonzero; otherwise hδ0(v⃗) = ∞.

Theorem 10.2. Fix q ∈ N and 0 < δ < 1/2 , and let G be a torsion-free additive group. Let n be
sufficiently large (in terms of δ, q) and consider some v⃗ = (v1, . . . , vn) ∈ Gn. Let ξ1, . . . , ξn be i.i.d.
Rademacher (or lazy Rademacher) random variables. We have

sup
z∈G

P[ξ1v1 + · · ·+ ξnvn = z] ≤ n−q/2+qδ +

q−1∑
r=0

n−r/2+qδ · 1

hδr(v⃗)
.

Proof. Let ρ = supz∈G P[ξ1v1 + · · · + ξnvn = z] and suppose for the purpose of contradiction that the
desired bound does not hold. Then, we have ρ ≥ n−q/2+qδ and by15 Theorem 2.10 there is a symmetric
GAP that contains all but n1−δ of v1, . . . , vn, such that the rank r and the volume V of this GAP satisfy

V = Oq(ρ
−1n−(1−δ)(r/2)). (10.1)

We are assuming that ρ > n−r/2+qδ/hδr(v⃗) for all r < q, so (10.1) implies that the volume of our
GAP satisfies V = Oq(n

−qδ+δr/2hδr(v⃗)) < hδr(v⃗) for r < q. By the definition of hδr(v⃗), it follows that
we cannot have r < q. But if r ≥ q, then (10.1) also implies that the volume of our GAP is V =
Oq(n

−qδ+q/2−(1−δ)r/2) = Oq(n
−qδ+q/2−(1−δ)q/2) = Oq(n

−qδ/2) < 1 (recalling that ρ ≥ n−q/2+qδ), which
is impossible. □

10.1. Reduction to technical estimates. Recall that we are working towards a proof of Lemma 2.17;
namely, we are attempting to upper bound the probability of the event that α⃗TA1β⃗ = 0, and α⃗TA2γ⃗ =

φ(α⃗, β⃗), and β⃗ TA3γ⃗ = ψ(α⃗, β⃗). We will want to break this event into sub-events, depending on the
structure of the vectors α⃗TA1, α⃗TA2 and β⃗ TA3; in each case we will reveal our random vectors in
slightly different orders, and estimate probabilities in slightly different ways.

For example, it is quite unlikely that almost all the entries of α⃗TA1 are zero. But if α⃗TA1 has plenty
of nonzero entries, then we can get quite a strong bound on the probability that α⃗TA1β⃗ = 0 using the
randomness of β⃗. Similarly, it is quite unlikely that α⃗TA2 and β⃗ TA3 are nearly collinear. If they are not
nearly collinear, then we can get quite a strong bound on the joint probability that α⃗TA2γ⃗ = φ(α⃗, β⃗),
and β⃗ TA3γ⃗ = ψ(α⃗, β⃗), using the randomness of γ⃗.

In this subsection, we collect various technical probabilistic estimates of this kind (some of whose
proofs will be deferred until the next subsection), and show how to piece together these estimates to
prove Lemma 2.17. To state all these estimates, it will also be convenient to introduce some notation for
the property that a matrix robustly has rank at least 3.

Definition 10.3. We say a matrix A ∈ Cn×n is said to be ε-robust if more than an ε-fraction of its 3×3
submatrices are nonsingular.

15Theorem 2.10 is only stated for Rademacher random variables, but it is easy to deduce the same statement in the
lazy Rademacher case. Indeed, a sequence of independent lazy Rademacher random variables can be expressed as a sum
ξ⃗(1)+ ξ⃗(2) of two independent sequences of independent Rademacher random variables. We can simply apply Theorem 2.10
after conditioning on an outcome of ξ⃗(1).
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First, the following lemma, which is a simple corollary of Halász’ inequality (Theorem 3.2), will be
used to bound the probability that almost all of the entries of α⃗TA1 or α⃗TA2 are zero.

Lemma 10.4. Fix δ > 0 and let n ∈ N be sufficiently large (in terms of δ). Consider a δ-robust matrix
A ∈ Cn×n. Let α⃗ ∈ {−1, 0, 1}n be a vector of i.i.d. lazy Rademacher random variables. Then

P
[
∥α⃗TA∥0 ≤ n1−δ

]
< n−3/2+δ.

In the proof of Lemma 10.4, and some other lemmas later in this section, it is convenient to interpret
a m × n matrix A ∈ Fm×n as a sequence of n column vectors in Fm, so in particular, for a subset
J ⊆ {1, . . . , n} we write A[J ] to denote the m × |J | submatrix of A consisting of just the columns
indexed by J .

Proof of Lemma 10.4. Suppose for the purpose of contradiction that P[∥α⃗TA∥0 ≤ n1−δ] ≥ n−3/2+δ. By
Lemma 3.1, for all but a 6n−δ-fraction of the 3-element subsets J of {1, . . . , n}, we have P[α⃗TA[J ] =

0⃗ ] ≥ 1
2n

−3/2+δ. Say such a J is good.
By Theorem 3.2 (after transposing), if J is good, then A[J ] contains at most O(n1−2δ/3) disjoint

nonsingular 3 × 3 submatrices. By Fact 3.4, it follows that at most a O(n−2δ/3)-fraction of the 3 × 3
submatrices of A[J ] are nonsingular.

Summing over both good and non-good triples of columns, the total number of nonsingular 3 × 3

submatrices in A is at most 6n−δ
(
n
3

)2
+O(n−2δ/3) ·

(
n
3

)2
< δ
(
n
3

)2, contradicting δ-robustness of A. □

Next, given an outcome of α⃗TA2 with many nonzero entries, the following lemma will be used to bound
the probability that α⃗TA2 and β⃗ TA3 are nearly collinear, while α⃗TA1β⃗ = 0 (when applying the lemma,
we will take u⃗ and v⃗ to be α⃗TA1 and α⃗TA2, respectively). It is proved in a similar way to Lemma 10.4,
using Theorem 10.2 instead of Halász’ inequality. (Recall the notation hδr from Definition 10.1).

Lemma 10.5. Fix ε, δ > 0 and let n ∈ N be sufficiently large (in terms of ε, δ). Consider (row) vectors
u⃗, v⃗ with ∥v⃗∥0 > n1−δ, and consider an ε-robust matrix A ∈ Cn×n. Let β⃗ ∈ {−1, 0, 1}n be a (column)
vector of i.i.d. lazy Rademacher random variables. Then

P
[
u⃗ · β⃗ = 0, and ∥av⃗+ bβ⃗ TA∥0 ≤ n1−δ for some a, b ∈ C, not both zero

]
≤ 2n−1+3δ · 1

hδ2(u⃗)
+2n−3/2+3δ.

Proof. First note that if b = 0 and a ̸= 0 then ∥av⃗ + bβ⃗ TA∥0 = ∥v⃗∥0 > n1−δ, so it suffices to consider
b ̸= 0.

Suppose for the purpose of contradiction that the desired inequality does not hold. Then Lemma 3.1
tells us that for all but a 6n−δ-fraction of the triples of columns J , we have

P
[
u⃗ · β⃗ = 0, and av⃗[J ] + bβ⃗ TA[J ] = 0⃗ for some a ∈ C and b ∈ C \ {0}

]
> n−1+3δ 1

hδ2(u⃗)
+ n−3/2+3δ.

Say that such J are good.
For each good triple of columns J , let PJ ∈ C3×2 be a rank-2 matrix whose columns are both in the

orthogonal complement of span(v⃗[J ]), and let ((A[J ]PJ)
T ; u⃗) be the 3× n matrix obtained by attaching

the row u⃗ to the 2× n matrix (A[J ]PJ)
T . So, if u⃗ · β⃗ = 0 and av⃗[J ] + bβ⃗ TA[J ] = 0⃗ for some a ∈ C and

b ∈ C \ {0}, then we have ((A[J ]PJ)
T ; u⃗)β⃗ = 0⃗.

Associating ((A[J ]PJ)
T ; u⃗) with its sequence of n column vectors, we have hδ2((A[J ]PJ)

T ; u⃗) ≥ hδ2(u⃗),
so we deduce

P[((A[J ]PJ)
T ; u⃗)β⃗ = 0⃗] > n−1+3δ 1

hδ2((A[J ]PJ)T ; u⃗)
+ n−3/2+3δ.

By Theorem 10.2, it follows that hδr((A[J ]PJ)
T ; u⃗) <∞ for some r ≤ 1. This means that all but at most

n1−δ of the rows of the n× 2 matrix A[J ]PJ lie in a single symmetric GAP of rank at most 1. So, every
3 × 2 submatrix of A[J ]PJ which has rank 2 must involve at least one of the rows outside this GAP,
meaning that A[J ] has at most n1−δ ·

(
n
2

)
nonsingular 3× 3 submatrices.

Summing over both good and non-good triples of columns, the total number of nonsingular 3 × 3

submatrices in A is at most 6n−δ
(
n
3

)2
+ n1−δ

(
n
2

)
·
(
n
3

)
< ε
(
n
3

)2, contradicting the ε-robustness of A. □

We also need some estimates on the quantities hδr from Definition 10.1.

Lemma 10.6. Fix any δ > 0, and let n be sufficiently large (in terms of δ). Let α⃗ ∈ Cn be a vector of
independent lazy Rademacher random variables.
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(1) For a δ-robust matrix A ∈ Cn×n, we have

E
[

1

hδ2(α⃗
TA)

]
≤ n−1/6+δ.

(2) For δ-robust matrices A1, A2 ∈ Cn×n, we have

E
[

1

hδ1(α⃗
TA1)hδ2(α⃗

TA2)

]
≤ n−2/3+δ.

Remark 10.7. The bounds in Lemma 10.6 are likely far from being optimal; we made no attempt to
optimise them.

We defer the proof of Lemma 10.6 to the next subsection. First, we show how to deduce Lemma 2.17.

Proof of Lemma 2.17. Let

E :=
{
α⃗TA1β⃗ = 0

}
∩
{
α⃗TA2γ⃗ = φ(α⃗, β⃗)

}
∩
{
β⃗ TA3γ⃗ = ψ(α⃗, β⃗)

}
.

We will prove that P[E ] ≤ n−2−1/6+ε (i.e., H2), assuming that A1, A2, A3 are ε-robust (i.e., assuming
that H1 does not hold). Throughout this proof, we assume n is sufficiently large whenever necessary.

Let δ = ε/100, and define two auxiliary events:
• Let E0 be the event that ∥α⃗TA1∥0 ≤ n1−δ or ∥α⃗TA2∥0 ≤ n1−δ. Hence, E0 fails to hold if and

only if hδ0(α⃗TA1) = hδ0(α⃗
TA2) = ∞.

• Let E1 be the event that there are a, b ∈ C, not both zero, such that ∥aα⃗TA2+ bβ⃗
TA3∥0 ≤ n1−δ.

Note that if the event E1 does not hold, then there is no symmetric GAP of rank at most 1 containing
all but n1−δ of the columns in the 2× n matrix whose rows are α⃗TA2 and β⃗ TA3.

Now, P[E ] is at most
P[E ∩ E0] + P[E ∩ Ec

0 ∩ E1] + P[E ∩ Ec
0 ∩ Ec

1 ]. (10.2)
In the rest of the proof, we will show that each of the three terms above is at most n−2−1/6+ε/3.
Throughout the proof, we will put subscripts on probabilistic notation to remind the reader whether we
are using the randomness of α⃗, β⃗ or γ⃗. Also, we simply write h0, h1, h2 instead of hδ0, hδ1, hδ2.

The first term. By Lemma 10.4, we have Pα⃗[E0] ≤ 2n−3/2+δ. By Fact 3.6, A3 differs in more than
(ε/9)n2 entries from every matrix of rank at most 2 (in particular, this holds for every matrix of rank at
most 1). So by Theorem 6.3, for any outcome of α⃗, we have

Pβ⃗,γ⃗ [E | α⃗] ≤ Pβ⃗,γ⃗

[
β⃗ TA3γ⃗ = ψ(α⃗, β⃗)

∣∣ α⃗] ≤ n−1+ε/9.

We deduce
P[E ∩ E0] ≤ 2n−3/2+δ · n−1+ε/9 < n−2−1/6+ε/3

(with plenty of room to spare in the final inequality).

The second term. For any outcome of α⃗ for which E0 does not hold (in particular, ∥α⃗TA2∥0 > n1−δ),
Lemma 10.5 tells us that

Pβ⃗ [α⃗
TA1β⃗ = 0, and E1 occurs | α⃗ ] ≤ 2·n−1+3δ · 1

h2(α⃗TA1)
+2·n−3/2+3δ ≤ n−1+4δ · 1

h2(α⃗TA1)
+n−3/2+4δ.

Then, for any outcomes of α⃗, β⃗ for which E0 does not hold (in particular, ∥α⃗TA2∥0 > n1−δ), we can
apply Theorem 10.2 (with q = 2, using that h0(α⃗TA2) = ∞) to see that

Pγ⃗ [α⃗
TA2γ⃗ = φ(α⃗, β⃗) | α⃗, β⃗ ] ≤ n−1/2+2δ 1

h1(α⃗TA2)
+ n−1+2δ.

So, we have

P[E ∩ Ec
0 ∩ E1] ≤ Eα⃗

[(
n−1+4δ · 1

h2(α⃗TA1)
+ n−3/2+4δ

)
·
(
n−1/2+2δ 1

h1(α⃗TA2)
+ n−1+2δ

)]
≤ n−3/2+6δ Eα⃗

[
1

h1(α⃗TA2)h2(α⃗TA1)

]
+ n−2+6δ Eα⃗

[
1

h2(α⃗TA1)

]
+ n−2+6δ Eα⃗

[
1

h2(α⃗TA2)

]
+ n−5/2+6δ

(Here we used that h1(α⃗TA2) ≥ h2(α⃗
TA2)). Using Lemma 10.6, we deduce

P[E ∩ Ec
0 ∩ E1] ≤ n−2−1/6+7δ + 2n−2−1/6+7δ + n−5/2+6δ ≤ n−2−1/6+ε/3.
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The third term. For any outcome of α⃗ for which E0 does not hold (in particular, ∥α⃗TA1∥0 > n1−δ),
Theorem 10.2 (with q = 2, using that h0(α⃗TA1) = ∞) tells us that

Pβ⃗ [α⃗
TA1β⃗ = 0 | α⃗ ] ≤ 1

h1(α⃗TA1)
n−1/2+2δ + n−1+2δ.

Then, write M for the 2×n matrix whose rows are α⃗TA2 and β⃗ TA3 (which we may view as a sequence of
n vectors in F2). For any outcomes of α⃗, β⃗ for which E1 does not hold, another application of Theorem 10.2
(with q = 3, using that h0(M) = h1(M) = ∞, and h2(M) ≥ h2(α⃗

TA2)) tells us that

Pγ⃗ [α⃗
TA2γ⃗ = φ(α⃗, β⃗) and β⃗ TA3γ⃗ = ψ(α⃗, β⃗) | α⃗, β⃗ ] ≤ 1

h2(α⃗TA2)
n−1+3δ + n−3/2+3δ.

So, we have

P[E ∩ Ec
0 ∩ Ec

1 ] ≤ Eα⃗

[(
1

h1(α⃗TA1)
n−1/2+2δ + n−1+2δ

)
·
(

1

h2(α⃗TA2)
n−1+3δ + n−3/2+3δ

)]
≤ n−3/2+5δ Eα⃗

[
1

h1(α⃗TA1)h2(α⃗TA2)

]
+ n−2+5δ Eα⃗

[
1

h2(α⃗TA1)

]
+ n−2+5δ Eα⃗

[
1

h2(α⃗TA2)

]
+ n−5/2+5δ

(Here we used that h1(α⃗TA1) ≥ h2(α⃗
TA1)). Proceeding in the same way as for the second term, it

follows from Lemma 10.6 that P[E ∩ Ec
0 ∩ Ec

1 ] ≤ n−2−1/6+ε/3, as desired. □

10.2. Proofs of technical estimates. In this subsection we prove Lemma 10.6, which is the remaining
ingredient for the proof of Lemma 2.17. It will be convenient to introduce some additional notation.

Definition 10.8. For a matrix A ∈ Cn×n and a subset J ⊆ {1, . . . , n}, recall that A[J ] denotes the
submatrix of A containing just the columns indexed by J . For r ∈ N and a vector u⃗ ∈ Cm, let h∗r(u⃗) be
the minimum volume of a symmetric GAP of rank at most r that contains all the entries of u⃗.

We start by proving Lemma 10.6(1), which is a fairly simple consequence of Lemma 9.2.

Proof of Lemma 10.6(1). Since 1/hδ2(α⃗
TA) only takes values in the range [0, 1], we have

E
[

1

hδ2(α⃗
TA)

]
=

∫ 1

0

P
[

1

hδ2(α⃗
TA)

> u

]
du =

∫ ∞

1

V −2 P[hδ2(α⃗TA) < V ] dV. (10.3)

To apply this identity, we need to estimate probabilities of the form P[hδ2(α⃗TA) < V ], as follows.

Claim 10.9. For any V ≥ 1, we have P[hδ2(α⃗TA) < V ] ≤ Oδ(V
3(1 + log V )n−1/2).

Proof of claim. We will apply Lemma 3.1 to reduce studying hδ2(α⃗TA) to studying hδ2(α⃗TA[J ]) for 3-
element subsets J ⊆ {1, . . . , n}. Similar arguments appeared in the proof of Lemma 2.13, so we will be
quite brief with details. Suppose that P[hδ2(α⃗TA) < V ] > CδV

3(1+ log V )n−1/2. We will show that this
is a contradiction for large Cδ.

First, Lemma 3.1 tells us that for all but an 6n−δ-fraction of 3-element subsets J ⊆ {1, . . . , n} we
have P[h∗2(α⃗TA[J ]) < V ] > CδV

3(1 + log V )n−1/2/2. Say that such J are good.
For each good J , Lemma 9.2 (with m = 3 and k = 1 and r = 2) tells us that A[J ] has at most

O(n/C2
δ ) disjoint nonsingular 3×3 submatrices, so by Fact 3.4 at most a O(C−2

δ )-fraction of all the 3×3
submatrices of A[J ] are nonsingular.

Recalling that all but a 6n−δ-fraction of J are good, we see that the total number of nonsingular
3 × 3 submatrices in A is at most 6n−δ

(
n
3

)2
+ O(C−2

δ )
(
n
3

)2, which contradicts the δ-robustness of A for
sufficiently large Cδ. ■

Now, given (10.3) and Claim 10.9, we compute

E
[

1

hδ2(α⃗
TA)

]
≤
∫ n1/6

1

V −2 ·Oδ(V
3(1 + log V )n−1/2) dV +

∫ ∞

n1/6

V −2 dV = n−1/6+o(1),

as desired. □
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The proof of Lemma 10.6(2) is similar, but Lemma 9.2 is not quite strong enough to get a non-trivial
bound. Instead, we need the following more refined estimate of Costello [9, Lemma 8]16. He proved this
via (elementary) number-theoretic considerations.

Lemma 10.10. Consider any vectors u⃗, v⃗ ∈ Cm, such that for each i ∈ {1, . . . ,m}, at least one of ui
and vi is nonzero. Let α⃗ ∈ Cm be a vector of i.i.d. lazy Rademacher random variables. For any real
number q ≥ 1, let E(q) be the event that there are integers x, y ∈ Z such that

• |x|, |y| ≤ q,
• xu⃗− yv⃗ has at least m/10 nonzero entries,
• x(u⃗ · α⃗) = y(v⃗ · α⃗).

Then for any 1 ≤ q ≤
√
m we have

P[E(q)] ≤ qm−1/2+o(1).

Lemma 10.10 has the following corollary in terms of rank-1 GAPs.

Corollary 10.11. Suppose A ∈ Cn×2 contains at least ℓ disjoint nonsingular 2× 2 submatrices. Then,
for every 1 ≤ q ≤

√
2ℓ,

P
[
h∗1(α⃗

TA) < q
]
≤ q · n−1/2+o(1).

Proof. Write u⃗ and v⃗ for the two columns of A. Let I ⊆ {1, . . . , n} be a set of 2ℓ row indices corresponding
to ℓ disjoint nonsingular 2 × 2 submatrices, so for each i ∈ I at least one of ui and vi is nonzero. Note
that for any x, y ∈ C which are not both zero, the vector xu⃗[I]− yv⃗[I] has at least ℓ nonzero entries.

Now, if the two entries u⃗ · α⃗ and v⃗ · α⃗ of α⃗TA lie in a symmetric rank-1 GAP with volume 2q+1, then
there are integers x, y ∈ Z with |x|, |y| ≤ q and x(u⃗ · α⃗) = y(v⃗ · α⃗), such that x and y are not both zero.
We also know that x(u⃗ · α⃗) = x(u⃗[I] · α⃗[I]) and y(v⃗ · β⃗) = y(v⃗[I] · β⃗[I]). We then apply Lemma 10.10
(with m = 2ℓ) to u⃗[I] and v⃗[I]. □

Now we prove Lemma 10.6(2).

Proof of Lemma 10.6(2). Here, our starting point is the inequality

E
[

1

hδ1(α⃗
TA1)hδ2(α⃗

TA2)

]
=

∫ ∞

1

t−2 P[hδ1(α⃗TA1)h
δ
2(α⃗

TA2) < t] dt

≤
∫ n2/3

1

t−2 P[hδ1(α⃗TA1) < t3/4 or hδ2(α⃗
TA2) < t1/4] dt+

∫ ∞

n2/3

t−2 dt

≤
∫ n2/3

1

t−2
(
P[hδ1(α⃗TA1) < t3/4] + P[hδ2(α⃗TA2) < t1/4]

)
dt+ n−2/3. (10.4)

To apply (10.4), we need Claim 10.9, together with the following additional estimate.

Claim 10.12. For any 1 ≤ V ≤
√
2δn, we have P[hδ1(α⃗TA1) < V ] ≤ V · n−1/2+o(1).

Claim 10.12 can be proved using Corollary 10.11, in a very similar way to the proof of Claim 10.9
using the r = 2 case of Lemma 9.2, but now studying hδ1(α⃗TA[J ]) for 2-element subsets J ⊆ {1, . . . , n}
and counting nonsingular 2× 2 submatrices (recalling Fact 3.5 to obtain the final contradiction). Now,
substituting Claims 10.9 and 10.12 into (10.4), we obtain

E
[

1

hδ1(α⃗
TA1)hδ2(α⃗

TA2)

]
≤
∫ n2/3

1

t−2
(
t3/4n−1/2+o(1) + t3/4 · n−1/2+o(1)

)
dt+ n−2/3

≤ n−1/2+o(1) ·
∫ n2/3

1

t−5/4 dt+ n−2/3

= n−1/2+o(1) · (n2/3)−1/4 + n−2/3 = n−2/3+o(1). □

16[9, Lemma 8] is stated for Rademacher random variables, not lazy Rademacher random variables. This does not have
any impact on the proof (also, one can deduce the lazy Rademacher case from the Rademacher case by first revealing which
of ξ1, . . . , ξn are zero; conditionally, the nonzero ξi are Rademacher).
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Appendix A. A Littlewood–Offord theorem for varieties

In this appendix we prove Theorem 2.5, giving a bound of the form P[ξ1a⃗1 + · · · + ξna⃗n ∈ Z] ≤
n−1/2+o(1) unless almost all the vectors a⃗1, . . . , a⃗n lie in a linear subspace W such that some translate
w⃗ +W of W is contained in Z.

Proof of Theorem 2.5. Assume E1 does not hold; we will prove the bound in E2. We may also assume
that Z ̸= ∅ (otherwise E2 holds trivially). Let P1, . . . , Pz be nonzero polynomials with Z = {y⃗ ∈ Fd :
P1(y⃗) = · · · = Pz(y⃗) = 0}, and let q∗ = max(degP1, . . . ,degPz).

We first find a subspace W ⊆ Fd, for which one can find “many” disjoint basis among the vectors
a⃗1, . . . , a⃗n. Writing nb = n − εn(d − b)/d, let b ∈ {0, . . . , d} be the minimum integer such that at least
nb of the vectors a⃗i lie in a common linear subspace W ⊆ Fd of dimension b (certainly such a b exists,
considering b = d). We cannot have b = 0, as otherwise E1 would hold with W = {⃗0} and with w⃗ as an
arbitrary element of Z. In addition, there is no proper subspace W ′ ⊊ W containing at least nb−1 of the
vectors a⃗i, meaning that among the vectors a⃗i we can find at least (nb − nb−1)/b ≥ εn/d2 disjoint bases
of W.

Upon relabelling the indices, without loss of generality we may assume that a⃗jb+1, a⃗jb+2, . . . , a⃗(j+1)b

form a basis of W for all integers 0 ≤ j < ⌊εn/d2⌋. Let m = ⌊εn/d2⌋ · b, then we have a⃗1, . . . , a⃗m ∈ W.
35
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Now, condition on any outcome of (ξi)i>m; we will prove the desired bound conditional on this
outcome (all probabilistic notation for the rest of the proof is implicitly with respect to the corresponding
conditional probability space).

Let w⃗ =
∑

i>m ξia⃗i (which we no longer view as a random variable). Fix a linear isomorphism
φ : W → Fb and let Z ′ = φ(W∩ (Z − w⃗)) ⊆ Fb. Recall that at least nb ≥ (1− ε)n of the vectors a⃗i lie in
W, and we are assuming E1 does not hold, so w⃗+W is not fully contained in Z, meaning that Z ′ ⊊ Fb.

Let P ∈ F[x1, . . . , xb] be a nonzero polynomial of degree q := degP ≤ q∗ vanishing on Z ′. To see
that such a polynomial exists, note that W ∩ (Z − w⃗) = {y⃗ ∈ W : P1(y⃗ + w⃗) = · · · = Pz(y⃗ + w⃗) = 0},
and hence Z ′ ⊂ Fb can be described as the vanishing set of up to z polynomials with degrees at most
degP1, . . . ,degPz, respectively (at least one of these polynomials is nonzero, since Z ′ ̸= Fb).

Now, for i = 1, . . . ,m, let a⃗ ′
i = φ(⃗ai). Then for each j = 0, . . . , ⌊εn/d2⌋−1, the vectors a⃗ ′

jb+1, . . . , a⃗
′
(j+1)b

form a basis of Fb. Furthermore, we have

P[ξ1a⃗1 + · · ·+ ξna⃗n ∈ Z] = P[ξ1a⃗1 + · · ·+ ξma⃗m ∈ Z − w⃗] = P[ξ1a⃗1 + · · ·+ ξma⃗m ∈ W ∩ (Z − w⃗)]

= P[ξ1a⃗ ′
1 + · · ·+ ξma⃗

′
m ∈ Z ′] ≤ P[P (ξ1a⃗ ′

1 + · · ·+ ξma⃗
′
m) = 0].

Note that we can interpret P (ξ1a⃗ ′
1 + · · ·+ ξma⃗

′
m) as a polynomial of degree (at most) q in the variables

ξ1, . . . , ξm. It suffices to show that this polynomial has at least ε′mq nonzero coefficients for ε′ =
min(ε/2, 1/(2d)q

∗
). Indeed, then the Meka–Nguyen–Vu bound for the polynomial Littlewood–Offord

problem (see Theorem 1.1) implies

P[ξ1a⃗1 + · · ·+ ξna⃗n ∈ Z] ≤ P[P (ξ1a⃗ ′
1 + · · ·+ ξma⃗

′
m) = 0] ≤ m−1/2+ε′ ≤ n−1/2+ε,

establishing E2.
For any distinct indices i(1), . . . , i(q) ∈ {1, . . . ,m}, the coefficient of ξi(1) · · · ξi(q) in the polynomial

P (ξ1a⃗
′
1 + · · · + ξma⃗

′
m) is the same as the coefficient of ξi(1) · · · ξi(q) in P (ξi(1)a⃗

′
i(1) + · · · + ξi(q)a⃗

′
i(q))

and hence the same as the coefficient of t1 · · · tq in P (t1a⃗
′
i(1) + · · · + tqa⃗

′
i(q)). But note that for any

vectors v⃗1, . . . , v⃗q ∈ Fb the coefficient of t1 · · · tq in P (t1v⃗1 + · · · + tq v⃗q) is a multilinear function of
v⃗1, . . . , v⃗q (more formally, the function assigning a q-tuple (v⃗1, . . . , v⃗q) the value of this coefficient is a
multilinear function Fb × · · · × Fb → F). Since P has degree q, this multilinear function is nonzero
(indeed, the homogeneous degree-q part Pq of the polynomial P is non-zero, so we can find a vector
w⃗ ∈ Fb with Pq(w⃗) ̸= 0, and observe that the coefficient of t1 · · · tq in P (t1w⃗+ · · ·+ tqw⃗) is the same as in
Pq(t1w⃗+ · · ·+ tqw⃗) = (t1 + · · ·+ tq)

qPq(w⃗) and therefore equal to q!Pq(w⃗) ̸= 0). This means that, given
any bases B1, . . . , Bq of Fb, we can choose vectors v⃗1 ∈ B1, . . . , v⃗q ∈ Bq such that the coefficient of t1 · · · tq
in P (t1v⃗1 + · · · + tq v⃗q) is nonzero. In particular, for any distinct j(1), . . . , j(q) ∈ {0, . . . , ⌊εn/d2⌋ − 1},
we can find i(1) ∈ {j(1)b + 1, . . . , (j(1) + 1)b}, . . . , i(q) ∈ {j(q)b + 1, . . . , (j(q) + 1)b} such that the
coefficient of t1 · · · tq in P (t1a⃗

′
i(1) + · · · + tqa⃗

′
i(q)) is nonzero and hence the coefficient of ξi(1) · · · ξi(q) in

P (ξi(1)a⃗
′
i(1) + · · · + ξi(q)a⃗

′
i(q)) is nonzero. This means that we can find at least

(⌊εn/d2⌋
q

)
=
(
m/b
q

)
>

(m/(2d))q ≥ mq/(2d)q
∗ ≥ ε′mq distinct q-element sets {i(1), . . . , i(q)} ⊂ {1, . . . ,m}, such that the

coefficient of ξi(1) · · · ξi(q) in the polynomial P (ξ1a⃗ ′
1 + · · · + ξma⃗

′
m) is nonzero. Thus, the polynomial

P (ξ1a⃗
′
1 + · · ·+ ξma⃗

′
m) has indeed at least ε′mq nonzero coefficients. This completes the proof. □

Appendix B. A counterexample to some conjectures of Costello
(By Matthew Kwan, Ashwin Sah and Mehtaab Sawhney)

Here we prove Proposition 1.4. First, the second bullet point is straightforward: note that

P[f(ξ1, . . . , ξn) = 0] ≥ P
[
L1(ξ1, . . . , ξn) = 0 and L2d(ξ1, . . . , ξn) = 0

]
= Ω((1/

√
n)2) ≥ ε/n,

for sufficiently small ε.
In the rest of this appendix we prove that B1 does not hold for this polynomial f , showing that

there are no non-constant polynomials g1, g2 for which f − g1g2 has fewer than εnd nonzero terms. The
idea is that if f − g1g2 had fewer than εnd nonzero terms (i.e., if f had an “approximate factorisation”),
this would lead to an exact factorisation of the irreducible polynomial y1 · · · yd + yd+1 · · · y2d, which is
impossible.

To execute this idea, we start with a random sampling argument to strengthen our “approximate
factorisation”, showing that the only obstruction comes from non-multilinear terms. We then use a
Ramsey-theoretic argument (related to ideas of Alon and Beigel [1]) to “clean up” g1 and g2. We start
with some preparations.
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Definition B.1. Fix a vector t⃗ = (t1, . . . , tr) ∈ Nr, with entries summing to k = ∥t⃗∥1. Let I1, . . . , Ir
be disjoint sets of size m, and let Km(⃗t) be the k-uniform hypergraph on the vertex set I1 ∪ · · · ∪ Ir,
containing every possible edge e for which |e1 ∩ I1| = t1, . . . , |er ∩ Ir| = tr.

For example, Km((k)) is the complete k-uniform hypergraph on m vertices, and Km((1, 1)) is the
complete bipartite graph on m+m vertices. We will need the following Ramsey-type theorem.

Lemma B.2. For any r, s, b ≥ 1 and t⃗ ∈ Nr, there is M ∈ N such that the following holds. Let m ≥M
and consider any colouring of the hyperedges of Km(⃗t) with b different colours. Then there are subsets
I ′1 ⊆ I1, . . . , I

′
r ⊆ I ′r of size at least s such that all the edges of Km(⃗t) inside I ′1 ∪ · · · ∪ I ′r have the same

colour.

Proof. Put k := ∥t⃗∥1 and let G be the complete k-uniform hypergraph on the vertex set {1, . . . ,m}. We
will use the edge-colouring of Km(⃗t) to define an edge-colouring of G, to which we will apply Ramsey’s
theorem.

Let j(0) = 0, and for ℓ ∈ {1, . . . , k}, define j(ℓ) to satisfy t1 + · · · + tj(ℓ)−1 < ℓ ≤ t1 + · · · + tj(ℓ).
Writing Ij = {ij1, . . . , ijm} for each j ∈ {1, . . . , r}, we define a mapping φ from edges of G to edges
of Km(⃗t) as follows. For an edge e = {q(1), . . . , q(k)} of G, where q(1) < q(2) < · · · < q(k), let
φ(e) =

{
i
j(1)
q(1), . . . , i

j(k)
q(k)

}
.

Via this mapping, our edge-colouring of Km(⃗t) induces an edge-colouring of G. So, by Ramsey’s
theorem, assuming m is sufficiently large there is a subset Q of sr vertices of G such that all edges of G
inside Q have the same colour. Order the elements of Q as

q(1, 1) < · · · < q(1, s) < · · · < q(r, 1) < · · · < q(r, s),

and for each j ∈ {1, . . . , r} let I ′j = {ijq(j,1), . . . , i
j
q(j,s)}. □

We also need a simple combinatorial fact about of sums of vectors.

Definition B.3. For a vector v⃗ ∈ Nr let v⃗↓ be the decreasing rearrangement of v⃗ (obtained by sorting
the entries of v⃗ in decreasing order). Recall that in the lexicographic order ⪯ on Nr, we write p⃗ ⪯ q⃗ if
p⃗ = q⃗ or if pi < qi for the first i where pi and qi differ.

Lemma B.4. Let s⃗1, s⃗2, t⃗1, t⃗2 ∈ Nr be vectors with s⃗1 + s⃗2 = t⃗1 + t⃗2 = v⃗. If (s⃗1, s⃗2) ̸= (⃗t1, t⃗2) then

(s⃗1 + t⃗2)↓ ≻ v⃗↓ or (⃗t1 + s⃗2)↓ ≻ v⃗↓.

Proof. Without loss of generality, suppose that v⃗↓ = v⃗. Note that the condition (s⃗1, s⃗2) ̸= (⃗t1, t⃗2) is
equivalent to the condition s⃗1 ̸= t⃗1 (since s⃗1 + s⃗2 = t⃗1 + t⃗2). Let i ∈ {1, . . . , r} be minimal such that
s1,i ̸= t1,i. If s1,i > t1,i then s2,i < t2,i and (s⃗1 + t⃗2)↓ ⪰ s⃗1 + t⃗2 ≻ v⃗. On the other hand, if s1,i < t1,i
then s2,i > t2,i and (⃗t1 + s⃗2)↓ ⪰ t⃗1 + s⃗2 ≻ v⃗. □

Now we prove Proposition 1.4.

Proof of Proposition 1.4. Fix d ≥ 2. As discussed at the start of this appendix, we need to show that
for our particular polynomial f , B1 does not hold. Suppose for the purpose of contradiction that

f = g1g2 + p, (B.1)

for some polynomials g1g2, p ∈ C[x1, . . . , xn] such that deg(g1),deg(g2) ≥ 1 and deg(g1g2),deg(p) ≤ d,
and p has at most εnd nonzero coefficients. Let d1 = deg(g1) and d2 = d− d1 ≥ deg(g2).

Let N be a large integer (we will need it to be sufficiently large in terms of d, at a later point in the
proof).

Claim B.5. If ε > 0 is sufficiently small (in terms of N, d), then there are subsets I ′1 ⊆ I1, . . . , I
′
2d ⊆ I2d

of size N , such that for every set {i1, . . . , id} ∈ I ′1 ∪ · · · ∪ I ′2d of d distinct indices, the coefficient of
xi1 . . . xid in p is zero.

Proof of claim. Independently for each j ∈ {1, . . . , 2d}, let I ′j ⊆ Ij be a uniformly random subset of size
N . We will show that the sets I ′j satisfy the desired property with positive probability.

Indeed, note that for any particular set Q ⊆ Ij , we have P[Q ⊆ I ′j ] ≤ (N/|Ij |)|Q|. Thus, for each
monomial xi1 . . . xid of p with nonzero coefficient and distinct indices i1, . . . , id (there are at most εnd of
them), the probability of having {i1, . . . , id} ⊆ I ′1 ∪ · · · ∪ I ′2d is at most (N/(2⌊n/(4d)⌋))d < 1/(εnd) for
sufficiently small ε. The claim follows from a union bound over all such monomials. ■
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Claim B.5 tells us that if we restrict our polynomials f, g1, g2, p to the variables in I ′1 ∪ · · · ∪ I ′2d, then
we have a slightly “cleaner” version of (B.1) in which we have eliminated all the degree-d multilinear
terms in p. Unfortunately, the non-multilinear degree-d terms in p can still cause problems, so we need
to refine the situation further.

For S ⊂ I ′1 ∪ · · · ∪ I ′2d, let type(S) = (|S ∩ I ′1|, . . . , |S ∩ I ′2d|) be a vector encoding the number of
elements of S that lie in each I ′j . Slightly abusively, we conflate the set S ⊂ I ′1 ∪ · · · ∪ I ′2d with the
multilinear monomial

∏
i∈S xi (so we can also talk about the type of a multilinear monomial, or the type

of a multilinear term of a polynomial). Say a k-type is a vector t⃗ ∈ N2d with entries summing to k. So,
the degree-d1 multilinear terms of g1 can be categorised by d1-type, the degree-d2 multilinear terms of
g2 can be categorised by d2-type, and the terms of f (all of which are degree-d, and multilinear) can be
categorised by d-type.

For z ∈ C, with argument arg(z) ∈ [0, 2π), define the direction

dir(z) =



∗ if z = 0

π/2 if arg(z) ∈ [π/4, 3π/4)

π if arg(z) ∈ [3π/4, 5π/4)

3π/2 if arg(z) ∈ [5π/4, 7π/4)

0 otherwise.

In other words, if z ∈ C is nonzero, then dir(z) is chosen such that arg(z) differs from dir(z) by an angle
of at most π/4. Slightly abusively, we conflate each term of a polynomial with its coefficient (so we can
talk about the directions of terms of g1 and g2). We will need the following (easy) fact about directions.

Fact B.6. For any x1, . . . , xk, y1, . . . , yk ∈ C \ {0}, if

dir(x1) = · · · = dir(xk), dir(y1) = · · · = dir(yk),

then x1y1 + · · ·+ xkyk ̸= 0.

Now, by iteratively applying Lemma B.2 (once for each d1-type and once for each d2-type), assuming
N is sufficiently large (in terms of d), we can find I ′′1 ⊆ I ′1, . . . , I

′′
2d ⊆ I ′2d, each of size d, such that, among

multilinear degree-d1 terms of g1 (respectively, degree-d2 terms of g2) containing variables indexed by
I ′′1 ∪ · · · ∪ I ′′2d, the direction of a term depends only on its type.

Now, let h1, h2, q, R1, . . . , R2d ∈ C[xi : i ∈ I ′′1 ∪ · · · ∪ I ′′2d] be the 2d2-variable polynomials obtained
from g1, g2, q, L1, . . . , L2d by setting all variables not indexed by I ′′1 ∪ · · · ∪ I ′′2d to zero. (So, in particular,
we have Rj =

∑
i∈I′′

j
xi for j = 1, . . . , 2d.) Then, (B.1) gives rise to the “cleaner” identity

R1 · · ·Rd +Rd+1 · · ·R2d = h1h2 + q, (B.2)

where q has no multilinear degree-d terms (by Claim B.5), and in h1 (respectively, h2), the direction of
a degree-d1 (respectively, degree d2) multilinear term only depends on its type. So, we can talk about
the direction of a d1-type in h1 or the direction of a d2-type in h2.

Now, say that a type is simple if all of its entries are at most 1.

Claim B.7. Let t⃗1 be a d1-type and let t⃗2 be a d2-type, such that t⃗1 + t⃗2 is not simple. Then t⃗1 has
direction ∗ in h1 or t⃗2 has direction ∗ in h2.

Proof of claim. Suppose for the purpose of contradiction that the statement of this claim is false, so
there are t⃗1, t⃗2 such that t⃗1 + t⃗2 is not simple but t⃗1 does not have direction ∗ in h1 and t⃗2 does not have
direction ∗ in h2. Choose such a pair t⃗1, t⃗2 such that (⃗t1 + t⃗2)↓ is lexicographically maximal.

Now, let {i1, . . . , id} ⊆ I ′′1 ∪· · ·∪I ′′2d be a set of distinct indices with type t⃗1+ t⃗2 (such a set exists, since
each I ′′j has size d). Since t⃗1 + t⃗2 is not simple, the coefficient of xi1 · · ·xid in R1 · · ·Rd +Rd+1 . . . R2d is
zero. By (B.2), this coefficient can also be written as

0 =
∑
A,B

αAβB , (B.3)

where we write αA for the coefficient of
∏

i∈A xi in h1, and we write βB for the coefficient of
∏

i∈B xi in
h2, and the sum is over all partitions of {i1, . . . , id} into a set of A of size d1 and a set B of size d2. Note
that for all such A,B we always have type(A) + type(B) = t⃗1 + t⃗2.

By Fact B.6, and the choice of t⃗1, t⃗2 (and the meaning of the direction ∗), there is a nonzero contribution
to (B.3) from pairs A,B with type(A) = t⃗1 and type(B) = t⃗2. So, there must be an additional d1-type
s⃗1 and an additional d2-type s⃗2, such that (s⃗1, s⃗2) ̸= (⃗t1, t⃗2) and such that s⃗1 + s⃗2 = t⃗1 + t⃗2, but s⃗1
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does not have direction ∗ in h1 and s⃗2 does not have direction ∗ in h2. But by Lemma B.4, at least one
of (⃗t1 + s⃗2)↓ or (s⃗1 + t⃗2)↓ is lexicographically greater than (⃗t1 + t⃗2)↓ (and therefore not simple), which
contradicts the choice of t⃗1, t⃗2. ■

Now, say a term of h1 (respectively, of h2) is good if it has degree d1 (respectively, degree d2) and is
multilinear. If two terms with types t⃗1, t⃗2 share a variable, then t⃗1 + t⃗2 is not simple. So, Claim B.7
tells us that no variable appears in nonzero good terms of both h1 and h2. Now, arbitrarily choose
i1 ∈ I ′′1 , . . . , i2d ∈ I ′′2d. Let h∗1, h∗2 ∈ C[xi1 , . . . , xi2d ] be the 2d-variable polynomials obtained from h1, h2
by setting all variables other than xi1 , . . . , xi2d to zero, and deleting all terms which are not good. By
the above discussion, h∗1 and h∗2 involve disjoint sets of variables (so each term of h∗1h∗2 is multilinear, so
there can be no cancellation between h∗1h∗2 and q). Also, there can be no cancellation between h∗1h∗2 and
terms arising from the non-good terms omitted in h∗1 and h∗2 (since the terms arising this way cannot be
degree-d multilinear). So, (B.2) gives rise to the identity

xi1 · · ·xid + xid+1
· · ·xi2d = h∗1h

∗
2.

(Specifically, on both sides of (B.2), we have set all variables other than xi1 , . . . , xi2d to zero, and restricted
to degree-d multilinear terms). But it is easy to see that this factorisation is impossible. □
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