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Abstract

Consider a quadratic polynomial f(ξ1, . . . , ξn) of independent Bernoulli random variables. What can
be said about the concentration of f on any single value? This generalises the classical Littlewood–
Offord problem, which asks the same question for linear polynomials. As in the linear case, it is known
that the point probabilities of f can be as large as about 1/

√
n, but still poorly understood is the

“inverse” question of characterising the algebraic and arithmetic features f must have if it has point
probabilities comparable to this bound. In this paper we prove some results of an algebraic flavour,
showing that if f has point probabilities much larger than 1/n then it must be close to a quadratic
form with low rank. We also give an application to Ramsey graphs, asymptotically answering a
question of Kwan, Sudakov and Tran.

1 Introduction

Consider a random variable of the form X = a1ξ1 + · · ·+ anξn, where (a1, . . . , an) ∈ Rn is a sequence of
real numbers and ξ = (ξ1, . . . , ξn) ∼ Radn is a sequence of independent Rademacher random variables
(meaning that Pr(ξi = 1) = Pr(ξi = −1) = 1/2 for each i). Broadly speaking, the classical Littlewood–
Offord problem asks for anti-concentration estimates for random variables of this type: what can we say
about the maximum probability that X is equal to a single value, or falls in an interval of prescribed
length?

In connection with their work on random polynomials, Littlewood and Offord [29] first proved that if
each |ai| ≥ 1, then the small-ball probabilities Pr(|X − x| ≤ 1), for x ∈ R, are bounded by O(log n/

√
n).

(here, and for the rest of the paper, all asymptotics are as n → ∞). Erdős [13] later proved the
optimal upper bound

(
n
bn/2c

)
/2n = O(1/

√
n), and further work by Halász [24], Tao and Vu [43, 45],

Rudelson and Vershynin [40] and Nguyen and Vu [34] explored the relationship between the concentration
behaviour of X and the arithmetic structure of the coefficients (a1, . . . , an). This work has had far-
reaching consequences: in particular, these Littlewood–Offord-type theorems were essential tools in some
of the landmark results in random matrix theory (see for example [42, 45, 47]).

Observe that a1ξ1 + · · · + anξn is a linear polynomial in ξ = (ξ1, . . . , ξn), so a natural variation on
the Littlewood–Offord problem is to consider quadratic polynomials in ξ. This direction of research
was popularised by Costello, Tao and Vu [12] in connection with their proof of Weiss’ conjecture that
a random symmetric ±1 matrix typically has full rank, and was further explored by Costello [11]
and Nguyen [35] (higher-degree polynomials were also considered by Rosiński and Samorodnitsky [39],
Razborov and Viola [38], Meka, Nguyen and Vu [32], and Fox, Kwan and Sauermann [21]). Specifically,
Costello [11] proved that if f is a quadratic polynomial in n variables with Θ

(
n2
)
nonzero coefficients,

then Pr(f(ξ) = x) ≤ no(1)−1/2.

The exponent of 1/2 in Costello’s result is best-possible, as can be seen by considering the polynomial
(ξ1 + · · ·+ ξn)

2. However, it seems that for a “typical” quadratic polynomial f we should expect a much
stronger bound. For example, if all the coefficients of f are integers of bounded size (and Θ

(
n2
)
of them

are non-zero), then the standard deviation of f(ξ) is of order Θ(n). In this case it seems reasonable
to assume that “typically” the probability mass is roughly evenly distributed over the integer points
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in a standard-deviation-sized interval around the mean, yielding a bound of about 1/n for the point
probabilities. Costello made a conjecture (see [11, Conjecture 3]) to this effect, suggesting that the only
way f(ξ) can have point probabilities greater than nε−1, for any constant ε > 0, is if f “differs in only a
few coefficients” from a polynomial which splits into two linear factors. We remark that Costello’s paper
was about polynomials with complex coefficients, and splitting over C is a weaker property than splitting
over R. Nevertheless, Costello’s conjecture appears to be plausible over both R and C.

To put Costello’s conjecture in a wider context, an important goal for Littlewood–Offord-type problems is
to prove inverse theorems: in addition to proving general bounds on the maximum point probability, we
would also like to understand the structural features exhibited whenever the random variable has a point
probability close to this maximum. In the linear case, as previously mentioned, the point probabilities
are only affected by the arithmetic structure of the multiset of coefficients (a1, . . . , an), and state-of-the-
art inverse theorems due to Rudelson and Vershynin [40] and Nguyen and Vu [34] give a very refined
understanding of the way this arithmetic structure is influenced by the maximum point probability (these
results build on an earlier, coarser, inverse theorem due to Tao and Vu [45]). However, in the quadratic
case the point probabilities are influenced not only by the values of the coefficients, but also by how the
different coefficients are arranged in the polynomial (for example, even the case where all the coefficients
lie in {0, 1} is not well understood). Nguyen [35] proved a coarse inverse theorem (whose exact statement
is too technical to reproduce here) showing that if, for a quadratic polynomial f , the maximum point
probability of f(ξ) is only polynomially small (that is, Pr(f(ξ) = x) ≥ n−O(1) for some x), then f enjoys
some algebraic and arithmetic structure. One can interpret Costello’s conjecture as asking for a much
more refined inverse theorem, albeit one that only takes algebraic structure into account.

In this paper, we prove some inverse theorems of a similar flavour to Costello’s conjecture, giving a
connection between anti-concentration of f(ξ) and algebraic properties of f . Roughly speaking, we prove
that if f has concentration probability much larger than 1/n then it must be close to a quadratic form
with low rank1. Our first result is in terms of “coefficient L1 distance”.

Theorem 1.1. Let F ∈ {C,R,Q}. For any integer r ≥ 3, and any 0 < ε ≤ 1, there is a constant
C = C(r, ε) such that the following holds. Let f ∈ F[x1, . . . , xn] be a quadratic polynomial all of whose
coefficients have absolute value at most 1. Let ξ = (ξ1, . . . , ξn) ∈ Radn, and suppose that we have

sup
x∈F

Pr(f(ξ) = x) ≥ C · (log n)
r/2

n1−2/(r+2)
.

Then there is a quadratic form h ∈ F[x1, . . . , xn] of rank strictly less than r such that the sum of the
absolute values of the coefficients of f − h is at most εn2.

Note that if r is large, then the bound on the point probabilities in Theorem 1.1 is close to 1/n. Also, note
that we can rescale any quadratic polynomial f ∈ F[x1, . . . , xn] so that all of its coefficients have absolute
value at most 1, so Theorem 1.1 can be interpreted as giving a bound in terms of the largest coefficient
of f . We remark that for the linear Littlewood–Offord problem, it essentially suffices to consider the
case where the coefficients are of bounded size, because if there are many coefficients with dramatically
different orders of magnitude, the point probabilities are small for trivial reasons (Littlewood and Offord’s
original work [29] proceeded along these lines). Unfortunately we were not able to find such a reduction
for the quadratic Littlewood–Offord problem.

In certain combinatorial applications, the coefficients of f are integers of bounded size, or lie in some
other bounded set of “allowed coefficients”. For such polynomials, our next result gives a bound analogous
to Theorem 1.1 where the quadratic form h differs in only few coefficients from f (so this version is in
terms of “coefficient Hamming distance” as in Costello’s conjecture, instead of “coefficient L1 distance”
as in Theorem 1.1).

Theorem 1.2. Let F ∈ {C,R,Q}. For any integer r ≥ 3, any 0 < ε ≤ 1, and any finite set S ⊆ F, there
is a constant C = C(r, ε, S) such that the following holds. Let f ∈ F[x1, . . . , xn] be a quadratic polynomial

1Recall that an n-variable quadratic form over a field F is a homogeneous quadratic polynomial h ∈ F[x1, . . . , xn]. If F
has characteristic not equal to 2, there is a unique representation h(x) = xTQx with a symmetric matrix Q ∈ Fn×n (where
x denotes the column vector with entries x1, . . . , xn). The rank of h is defined to be the rank of this matrix Q. Equivalently,
the rank of h is the minimum r such that there is a representation h = λ1h21 + · · ·+λrh2r as a linear combination of squares
of homogeneous linear polynomials h1, . . . , hr ∈ F[x1, . . . , xn].
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all of whose degree-2 coefficients are elements of the set S. Let ξ = (ξ1, . . . , ξn) ∈ Radn, and suppose that
we have

sup
x∈F

Pr(f(ξ) = x) ≥ C · (log n)
r/2

n1−2/(r+2)
.

Then there is a quadratic form h ∈ F[x1, . . . , xn] of rank strictly less than r such that f and h differ in
at most εn2 coefficients.

We remark that Theorems 1.1 and 1.2 can in fact be used to give anti-concentration estimates substantially
stronger than 1/

√
n for polynomials that are not close to factorising over C, as in Costello’s conjecture.

If a complex quadratic form has rank at most 2, then it is a sum of two squares of linear forms. Over C,
such forms always split into linear factors. Therefore, applying Theorems 1.1 and 1.2 with r = 3, we see
that if the point probabilities of f(ξ) are much larger than n−3/5, then there is a quadratic form h, close
to f , which splits into linear factors over the complex numbers.

The proofs of Theorems 1.1 and 1.2 involve a number of ideas and ingredients that may be independently
interesting. In Subsection 1.2 we will outline the proofs and discuss these ideas, but first we describe
an application of Theorem 1.2 to anti-concentration of edge-statistics in Ramsey graphs, asymptotically
answering a question of Kwan, Sudakov and Tran [27].

1.1 Ramsey graphs

An induced subgraph of a graph is said to be homogeneous if it is a clique or independent set. A classical
result in Ramsey theory, proved in 1935 by Erdős and Szekeres [18], is that every n-vertex graph has a
homogeneous subgraph with at least 1

2 log2 n vertices. On the other hand, Erdős [14] famously used the
probabilistic method to prove that, for all n, there exists an n-vertex graph with no homogeneous subgraph
on 2 log2 n vertices. Despite significant effort (see for example [5, 8, 9, 23, 28]), there are no known non-
probabilistic constructions of graphs whose largest homogeneous subgraphs are of a comparable size.

Say an n-vertex graph is C-Ramsey if it has no homogeneous subgraph of size C log2 n. It is widely
believed that for any fixed constant C all C-Ramsey graphs must in some sense resemble random graphs,
and this belief has been supported by a number of theorems showing that certain “richness” properties
characteristic of random graphs hold for all C-Ramsey graphs. The first result of this type was due to
Erdős and Szemerédi [19], who showed that every C-Ramsey graph G has edge-density bounded away
from zero and one. Note that this implies fairly strong information about the edge distribution on
induced subgraphs of G, because any nα-vertex induced subgraph of an n-vertex C-Ramsey graph is
itself (C/α)-Ramsey.

This basic result was the foundation for a large amount of further research on Ramsey graphs; over the
years many conjectures have been proposed and resolved (see [1, 3, 4, 7, 15, 16, 17, 25, 26, 33, 37, 41]). In
particular, we mention two results regarding the edge distribution on induced subgraphs. First, solving
a conjecture of Narayanan, Sahasrabudhe and Tomon [33] (inspired by an old question of Erdős and
McKay [15, 16]), Kwan and Sudakov [26] proved that for any n-vertex C-Ramsey graph there are induced
subgraphs with Ω

(
n2
)
different numbers of edges. Second, resolving a conjecture of Erdős, Faudree and

Sós [15, 16] (improving results of Alon and Kostochka [3] and Alon, Balogh, Kostochka and Samotij [1]),
Kwan and Sudakov [25] also proved that every n-vertex C-Ramsey graph has the property that for Ω(n)
of the choices ` ∈ {0, . . . , n}, there are `-vertex induced subgraphs with Ω

(
n3/2

)
different numbers of

edges.

The aforementioned Erdős–Szemerédi theorem can be interpreted as a (weak) “concentration” theorem:
the numbers of edges in induced subgraphs cannot be “too extreme”. On the other hand, the two results in
the last paragraph point in the opposite direction: there are many different possibilities for the numbers of
edges in induced subgraphs. In connection with some recent work on anti-concentration of edge-statistics
(see [2, 22, 27, 30]), Kwan, Sudakov and Tran [27] asked about anti-concentration of the edge distribution
in Ramsey graphs. Specifically, for an n-vertex C-Ramsey graph, let X be the number of edges induced
by a uniformly random set of (say) n/2 vertices. Is it true that Pr(X = x) = O(1/n) for all x ∈ N? If
true, this would be best-possible, as can be seen by considering a random graph G(n, 1/2). One of the
motivations for this question was that better understanding of edge-statistics in Ramsey graphs could
lead to a unified and more conceptual proof of the conjectures of Narayanan–Sahasrabudhe–Tomon and
Erdős–Faudree–Sós concerning induced subgraphs of Ramsey graphs with different numbers of edges. We
discuss this further in Section 8.
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As an application of Theorem 1.2, we answer Kwan, Sudakov and Tran’s question asymptotically. Roughly
speaking, we express X as a quadratic polynomial and show that Ramsey graphs are too disordered for
this polynomial to be close to a low-rank quadratic form.

Theorem 1.3. The following holds for any fixed constants C, c > 0. Let G be an n-vertex C-Ramsey
graph, and, for some cn ≤ k ≤ (1− c)n, let X be the number of edges induced by a uniformly random
subset of k vertices of G. Then for any x ∈ Z, we have

Pr(X = x) ≤ no(1)−1.

In Section 8 we discuss a further related conjecture, and some connections between this line of research
and some older conjectures about Ramsey graphs.

1.2 Outline of the paper and the proofs

The structure of the paper is as follows. First, in Section 2 we present the deduction of Theorem 1.3
(our result about Ramsey graphs) from Theorem 1.2. This illustrates some ideas that might be more
generally useful in other applications of Theorems 1.1 and 1.2. Via a coupling trick (Lemma 2.3), our
random variable X can be represented as a certain quadratic polynomial. To apply Theorem 1.2 we then
need to show that a certain n×n matrixM corresponding to this quadratic polynomial (defined in terms
of a Ramsey graph) is far from being low-rank, in the sense that for any fixed r ∈ N, changing any o

(
n2
)

entries of M results in a matrix with rank at least r. We observe that, to this end, it suffices to show
that for any r ∈ N, our matrix M contains Ω

(
n2r
)
invertible r × r submatrices. This will follow from a

simple generalisation (Lemma 2.2) of an old result due to Erdős and Hajnal: for fixed h and C, every
C-Ramsey graph contains Ω

(
nh
)
copies of every possible h-vertex induced subgraph.

Next, in Section 3 we state and prove an anti-concentration inequality for real quadratic polynomials
satisfying a certain technical non-degeneracy condition (Lemma 3.2). This will be a key ingredient in
the proofs of Theorems 1.1 and 1.2. The main idea that allows us to prove bounds stronger than 1/

√
n

is a decoupling trick applied to the characteristic function (Fourier transform) of our random variable of
interest. In circumstances where the characteristic function decays in a “Gaussian-like” way, this allows
us to reduce from the quadratic case to the linear case without incurring the square-root loss that is
usually associated with decoupling tricks of this type.

In Section 4 we state and prove a lemma concerning “real projections” of complex matrices (Lemma 4.1),
which essentially allows us to deduce the complex cases of Theorems 1.1 and 1.2 from the real cases.
This lemma may also be of independent interest. To illustrate, a special case is the fact that for any
nonsingular complex matrix A, there is a phase θ ∈ [−π, π] such that <

(
eiθA

)
is nonsingular.

Then, in Section 5 we outline how to deduce Theorems 1.1 and 1.2 from Lemmas 3.2 and 4.1. The main
step of the deduction is to show that quadratic polynomials which are far from a low-rank quadratic form
satisfy the technical non-degeneracy condition of Lemma 3.2. As it happens, this step is more challenging
than it may first seem; it basically amounts to proving that if a matrix is close to being symmetric, and
close to having low rank, then it is close to a matrix that is simultaneously symmetric and has low rank.
This fact about “symmetric low-rank approximation” is encapsulated in Lemmas 5.5 and 5.7 (there are
slightly different versions for the proofs of Theorems 1.1 and 1.2), and most of the rest of the paper is
devoted to proving these lemmas. Indeed, in Section 6 we prove some general-purpose lemmas about a
certain notion of “robust linear independence”, and in Section 7 we use these lemmas to prove Lemmas 5.5
and 5.7.

Finally, Section 8 contains some concluding remarks. In particular, we present a new conjecture about
edge-statistics in Ramsey graphs, generalising Theorem 1.3, which would imply the conjectures of Erdős–
Faudree–Sós and Narayanan–Sahasrabudhe–Tomon regarding subgraphs of Ramsey graphs with different
numbers of edges.

1.3 Notation

We use standard asymptotic notation throughout. For functions f = f(n) and g = g(n) we write
f = O(g) to mean there is a constant C such that |f | ≤ C|g|, we write f = Ω(g) to mean there is a
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constant c > 0 such that f ≥ c|g| for sufficiently large n, we write f = Θ(g) to mean that f = O(g) and
f = Ω(g), and we write f = o(g) or g = ω(f) to mean that f/g → 0 as n → ∞. All asymptotics are as
n→∞ unless specified otherwise.

For a non-negative integer n we define [n] = {1, . . . , n}, and for a real number x, the floor function is
denoted bxc = max{i ∈ Z : i ≤ x}. For a vector v ∈ Cn or a matrix A ∈ Cm×n, we let <(v) ∈ Rn and
<(A) ∈ Rm×n denote the vector or matrix obtained by taking the real part of each entry. We adopt the
convention that the determinant of the 0 × 0 empty matrix is 1. All logarithms are in base e, unless
explicitly noted otherwise.

We also use standard graph-theoretic notation. Given a graph G, we denote its vertex set by V (G). For
subsets X,Y ⊆ V (G), let e(X) denote the number of edges inside X, and let e(X,Y ) denote the number
of edges between X and Y . Let d(X) = e(X)/

(|X|
2

)
and d(X,Y ) = e(X,Y )/(|X||Y |) denote the density

of edges inside X, and between X and Y , respectively. Abusing notation, we write e(x, Y ) or e(x, y) to
denote e({x}, Y ) or e({x}, {y}), respectively.

Given a field F and non-negative integers m and n, let Fm×n denote the set of all m × n matrices with
entries in F. For a matrix A ∈ Fm×n, for i = 1, . . . ,m we write rowi(A) ∈ Fn for the vector corresponding
to the i-th row of A, and for j = 1, . . . , n we write colj(A) ∈ Fm for the vector corresponding to the j-th
column. Given a matrix A ∈ Fm×n and a subset I ⊆ [n], let AI be the m× |I| submatrix of A consisting
of the columns with indices in I. Similarly, for a vector v ∈ Fn and a subset I ⊆ [n], let vI ∈ FI be the
vector consisting of the entries of v with indices in I.

For a matrix A ∈ Cm×n, we denote the sum of the absolute values of the entries of A by ‖A‖1, and we
denote the maximum of the absolute values of the entries by ‖A‖∞ (these are entrywise norms of A,
not to be confused with the more common operator norms). For a vector v ∈ Cn, we denote the usual
Lp-norm by ‖v‖p, and for vectors v, w ∈ Rn we write 〈v, w〉 for the standard inner product of v and w.

2 Anti-concentration in Ramsey graphs

In this section we deduce Theorem 1.3 from Theorem 1.2. Our plan will be to express the random
variable X in Theorem 1.3 as a quadratic polynomial of independent Rademacher random variables. We
can obtain an upper bound on the point probabilities of this polynomial from Theorem 1.2 if we can
show that our quadratic polynomial is not close to a low-rank quadratic form. In order to do so, we will
apply the following simple lemma to the matrix associated with the homogeneous degree-2 part of the
polynomial.

Lemma 2.1. Let r be a positive integer, let δ ≥ 0, and let M be an m×m matrix over any field which
has more than δm2r full-rank r×r submatrices. Then, if we change up to δm2 entries of M , the resulting
matrix has rank at least r.

Proof. If we change at most δm2 entries, we can affect at most δm2m2(r−1) = δm2r of the r×r submatrices
of M , so a full-rank r × r submatrix remains.

Next, the only fact about Ramsey graphs we will need is the fact that they have many copies of every
possible induced subgraph on a small number of vertices. This generalises an old result of Erdős and
Hajnal [17], which asserts the existence of at least one copy of each such subgraph.

Lemma 2.2. For any fixed h ≥ 1 and any fixed constant C > 0, there is δ = δ(h,C) > 0 such that the
following holds for sufficiently large n. Every n-vertex C-Ramsey graph G contains at least δnh induced
copies of every graph H on h vertices.

Proof. A graph is said to be ε-regular if for all subsets X,Y ⊆ V (G) with |X| ≥ ε|V (G)| and |Y | ≥
ε|V (G)|, we have |d(X,Y ) − d(V (G))| ≤ ε. It is a consequence of Szemerédi’s regularity lemma that
for any fixed ε > 0, every n-vertex graph G contains an ε-regular induced subgraph G[U ] on m = Ω(n)
vertices (see also [10, Lemma 5.2] for a version of this fact with better dependence on ε). Now, if G is C-
Ramsey, then G[U ] is still (C + o(1))-Ramsey, so by the theorem of Erdős and Szemerédi [19] mentioned
in the introduction, the density of G[U ] is bounded away from zero and one: that is, there is η > 0
depending only on C such that η ≤ d(U) ≤ 1− η for sufficiently large n.

5



Then, provided ε is sufficiently small with respect to η, we can conclude the proof by applying a counting
lemma to G[U ] (see for example [10, Lemma 5.12]): if an m-vertex graph has density bounded away from
zero and one, and it is ε-regular for sufficiently small ε, then it has Ω(mh) induced copies of every graph
H on h vertices. Thus, we obtain Ω(mh) = Ω(nh) induced copies of H in G[U ] and therefore in G.

Another crucial ingredient is a variant of [27, Lemma 2.8], to express the random variable X in Theo-
rem 1.3 as a quadratic polynomial of independent random variables. Consider any graph G with vertex
set [n] and any 0 ≤ k ≤ n, and let m = min(k, n − k). First, we want a way to generate a random
k-vertex subset of G in a way which involves independent random choices. Let π be a uniformly random
permutation of [n] and let ξ = (ξ1, . . . , ξm) ∼ Radm be a sequence of independent Rademacher random
variables (also independent from π). Note that

Uπ,ξ = {π(i) : i ∈ [m], ξi = 1} ∪ {π(i+m) : i ∈ [m], ξi = −1} ∪ {π(i) : 2m+ 1 ≤ i ≤ m+ k} (2.1)

is a uniformly random subset of k vertices of G. Indeed, the union of the first two sets on the right-hand
side has size m, the third set has size k −m ≥ 0, and all three sets are disjoint.

Now, recall that for two vertices v, w ∈ V (G), we defined e(v, w) = 1 if there is an edge between v and
w and e(v, w) = 0 otherwise. For any fixed outcome of π, the number of edges in U = Uπ,ξ is

e(Uπ,ξ) =
∑

1≤i<j≤n

1π(i)∈U1π(j)∈Ue(π(i), π(j)). (2.2)

Note that by the definition of U = Uπ,ξ, we have

1π(i)∈U =


1
2 (1 + ξi) if 1 ≤ i ≤ m
1
2 (1− ξi−m) if m+ 1 ≤ i ≤ 2m

1 if 2m+ 1 ≤ i ≤ m+ `

0 if m+ `+ 1 ≤ i ≤ n

.

Plugging this into (2.2), and using that ξ2
i = 1 for all i, we obtain the following lemma.

Lemma 2.3. Let G be a graph with vertex set [n]. Furthermore, let 0 ≤ k ≤ n and m = min(k, n−k). Let
π be a random permutation of [n], and ξ = (ξ1, . . . , ξm) ∼ Radm be a sequence of independent Rademacher
random variables, and define Uπ,ξ ⊆ V (G) as in (2.1). Then Uπ,ξ is a uniformly random subset of k
vertices of G. Furthermore we can write

e(Uπ,ξ) = fπ(ξ) =
∑

1≤i<j≤m

aijξiξj +
∑

1≤i≤m

aiξi + a0,

where the coefficients aij, ai and a0 of the quadratic polynomial fπ only depend on π (and not on ξ). In
addition, for 1 ≤ i < j ≤ m we have

aij =
1

4
e(π(i), π(j))− 1

4
e(π(i), π(j +m))− 1

4
e(π(i+m), π(j)) +

1

4
e(π(i+m), π(j +m)). (2.3)

Note that (2.3) in particular implies that aij ∈ {− 1
2 ,−

1
4 , 0,

1
4 ,

1
2} for all i < j. One can also give explicit

formulas for the other coefficients ai and a0 of fπ, but this is not necessary for our argument.

Now we put everything together to prove Theorem 1.3.

Proof of Theorem 1.3. Fix some r ≥ 3, which we treat as a constant in all asymptotic notation. We will
prove that Pr(X = x) ≤ n−1+2/(r+2)+o(1). Since r was arbitrary, this suffices to prove Theorem 1.3.

Let G be an n-vertex C-Ramsey graph, and let cn ≤ k ≤ (1−c)n. As before, definem = min(k, n−k) and
note that cn ≤ m ≤ n/2. As in Lemma 2.3, we can model the random variable X as X = e(Uπ,ξ) = fπ(ξ),
where π is a random permutation of [n], and ξ = (ξ1, . . . , ξm) ∼ Radm is a sequence of independent
Rademacher random variables.

Let us say that a (2r)-tuple (i1, . . . , ir, j1, . . . , jr) ∈ [m]2r is strong if i1 < · · · < ir < j1 < · · · < jr and if
we have ai`j` = 1/2 for ` = 1, . . . , r, but ai`jq = 0 whenever ` 6= q (note that this definition depends on
the permutation π; recall (2.3)). We first use Lemma 2.2 to show that there are likely to be many strong
(2r)-tuples.
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Claim 2.4. Subject to the randomness of the random permutation π, with probability 1 − e−Ω(n) there
are Ω(m2r) strong (2r)-tuples.

Proof of Claim 2.4. Since G is a C-Ramsey graph, by Lemma 2.2, it has Ω(n4r) induced copies of a
perfect matching on 4r vertices (consisting of 2r edges). That is to say, there are Ω(n4r) sequences of
distinct vertices (v1, . . . , v4r) ∈ V (G)4r such that for i = 1, . . . , 2r there is an edge between vi and vi+2r

and there are no other edges between v1, . . . , v4r.

There are
(
m
2r

)
= Ω(m2r) different (2r)-tuples (i1, . . . , ir, j1, . . . , jr) ∈ [m]2r with i1 < · · · < ir < j1 <

· · · < jr. For each such (2r)-tuple,

(π(i1), . . . , π(ir), π(i1 +m), . . . , π(ir +m), π(j1), . . . , π(jr), π(j1 +m), . . . , π(jr +m))

is a uniformly random sequence of 4r distinct vertices of G. Thus, with probability Ω(1), it is one of the
sequences (v1, . . . , v4r) considered above. But if that is the case, then (i1, . . . , ir, j1, . . . , jr) is strong: by
(2.3), ai`j` = 1

4 − 0− 0 + 1
4 = 1

2 for ` = 1, . . . , r, but ai`jq = 0− 0− 0 + 0 = 0 whenever ` 6= q.

Let Z be the number of strong (2r)-tuples: we have just proved that EZ = Ω(m2r). Now we can
conclude the proof with a concentration inequality. Note that changing π by a transposition (swapping
some π(t) and π(t′)) changes the number of strong (2r)-tuples by at most 8r · m2r−1. Indeed, there
are at most 8r ·m2r−1 different (2r)-tuples (i1, . . . , ir, j1, . . . , jr) ∈ [m]2r such that t or t′ occur among
i1, . . . , ir, i1 +m, . . . , ir +m, j1, . . . , jr, j1 +m, . . . , jr +m (which are the only places where the value of
π affects whether (i1, . . . , ir, j1, . . . , jr) is strong). Thus, by a McDiarmid-type concentration inequality
for random permutations (see for example [31, Section 3.2]), we have

Pr(Z < EZ/2) ≤ exp

(
−Ω

(
(EZ/2)2

n · (8r ·m2r−1)2

))
= exp

(
−Ω

(
(m2r)2

n · (8r ·m2r−1)2

))
= exp(−Ω(n)),

recalling that m ≥ cn.

Now, condition on an outcome of π satisfying the conclusion of Claim 2.4. Conditionally, X can be rep-
resented as a quadratic polynomial fπ(ξ) in ξ = (ξ1, . . . , ξm) ∼ Radm. We can express the homogeneous
degree-2 part of fπ(ξ) as ξTQπξ for some symmetric m×m matrix, and note that for i < j the (i, j)-entry
of Qπ equals aij/2. Claim 2.4 implies that the matrix Qπ has Ω(m2r) full-rank r × r submatrices (note
that for every strong (2r)-tuple (i1, . . . , ir, j1, . . . , jr) the submatrix with rows i1, . . . , ir and columns
j1, . . . , jr is a diagonal matrix with entries 1/4 on the diagonal). Hence by Lemma 2.1 there is ε = Ω(1)
such that whenever we change up to 2εm2 entries of Qπ, the resulting matrix has rank at least r. Now,
if h(ξ) is a quadratic form differing from f in at most εm2 coefficients, then h is of the form ξTQ′πξ for a
symmetric m×m matrix Q′π which differs from Qπ in at most 2εm2 entries and consequently has rank
at least r. Thus, using that the degree-2 coefficients aij of fπ all lie in the set S = {− 1

2 ,−
1
4 , 0,

1
4 ,

1
2},

applying Theorem 1.2 yields

sup
x∈Q

Pr(fπ(ξ) = x) < C(r, ε, S) · (log n)
r/2

(cn)1−2/(r+2)
≤ no(1)

n1−2/(r+2)
.

Recalling that we have been conditioning on an event that holds with probability 1 − e−Ω(n), it follows
that

sup
x∈Q

Pr(X = x) =
no(1)

n1−2/(r+2)
+ e−Ω(n) = n−1+2/(r+2)+o(1),

as desired.

3 A technical anti-concentration inequality for real polynomials

In this section, we will prove an anti-concentration bound for real quadratic polynomials satisfying a
certain technical non-degeneracy condition. This will be one of the key ingredients for the proofs of
Theorems 1.1 and 1.2.

To cleanly state our anti-concentration inequality, we first make some simple definitions.
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Definition 3.1. For an n×nmatrixM and a tuple (i1, . . . , ir) ∈ [n]r, letM(i1, . . . , ir) be the r×nmatrix
whose rows are rowi1(M), . . . , rowir (M). For δ > 0, let us say that a r×n matrixM ′ is δ-non-degenerate
if for any unit vector e ∈ Rr, there are at least δn columns w of M ′ satisfying |〈w, e〉| ≥ δ.

Now, our anti-concentration inequality is as follows.

Lemma 3.2. For any integer r ≥ 3 and any δ > 0 there is a constant C = C(r, δ) such that the following
holds. Consider a real quadratic polynomial f(x) =

∑
1≤i≤j≤n aijxixj+

∑
1≤i≤n aixi+a0, let aji = aij for

i > j, and let M = (aij)i,j ∈ Rn×n. Suppose that each |aij | ≤ 1, and suppose that there is a set T ⊆ [n]r

of δn disjoint r-tuples such that for each (i1, . . . , ir) ∈ T , the matrix M(i1, . . . , ir) is δ-non-degenerate.
Then, for ξ ∈ Radn and any x ∈ R, we have

Pr
(
|f(ξ)− x| ≤ n2/(r+2)

)
≤ C · (log n)

r/2

n1−2/(r+2)
.

The notion of being δ-non-degenerate is closely related to the condition in an anti-concentration theorem
due to Halász [24] (stated as Theorem 3.5 below), which will be used in the proof of Lemma 3.2. A
matrix M ′ being δ-non-degenerate can be interpreted as a robust version of M ′ having full row rank, so
if an n × n matrix M has many r × n submatrices that are δ-non-degenerate, then there is some sense
in which M robustly has rank at least r. The reader may wish to compare the statement of Lemma 3.2
with the statements of Theorems 1.1 and 1.2 in the introduction.

Before proving Lemma 3.2, we discuss some of the main ideas and ingredients. The most crucial idea is
a variant of a decoupling trick due to Costello, Tao and Vu [12], as follows. If [n] = I ∪ J is a partition
of the index set into two subsets, then we can break ξ = (ξ1, . . . , ξn) into two subsequences ξI and ξJ .
The quadratic polynomial f(ξ) can then be written as f(ξ) = f(ξI , ξJ). The crucial observation is that
if ξ′J is an independent copy of ξJ then it is possible to relate the anti-concentration of f(ξ) to the anti-
concentration of Y := f(ξI , ξJ) − f(ξI , ξ

′
J): for example, one can use the Cauchy–Schwarz inequality to

prove that
Pr(f(ξ) = x) ≤ Pr

(
f(ξI , ξJ) = x and f

(
ξI , ξ

′
J

)
= x

)1/2 ≤ Pr(Y = 0)1/2. (3.1)

After conditioning on an outcome of (ξJ , ξ
′
J), the random variable Y then becomes a linear polynomial

in ξI , which is much easier to study.

This approach results in a square-root loss, and therefore seems unsuitable to prove Lemma 3.2. However,
a variation on this approach is to instead use decoupling to study the modulus of the characteristic func-
tion (Fourier transform) t 7→ Ee2πitf(ξ) of f(ξ). Specifically, we will use the following simple observation.

Lemma 3.3. Let ξI and ξJ be independent random vectors, and let f(ξI , ξJ) be a real-valued random
variable defined in terms of these random vectors. Let ξ′J be an independent copy of ξJ . Then for any
t ∈ R, ∣∣∣Ee2πitf(ξI ,ξJ )

∣∣∣2 ≤ E
[∣∣∣E[e2πit(f(ξI ,ξJ )−f(ξI ,ξ

′
J )) | ξJ , ξJ′ ]

∣∣∣].
Proof. First, by convexity we have∣∣∣Ee2πitf(ξI ,ξJ )

∣∣∣2 =
∣∣∣E[E[e2πitf(ξI ,ξJ )|ξI ]

]∣∣∣2 ≤ E
[∣∣∣E[e2πitf(ξI ,ξJ )|ξI ]

∣∣∣2].
Then, observe that for independent identically distributed complex-valued random variables Z,Z ′, we
have

|EZ|2 = EZEZ = EZEZ ′ = E
[
ZZ ′

]
.

In particular, we obtain ∣∣∣E[e2πitf(ξI ,ξJ ) | ξI ]
∣∣∣2 = E[e2πit(f(ξI ,ξJ )−f(ξI ,ξ

′
J )) | ξI ].

It follows that∣∣∣Ee2πitf(ξI ,ξJ )
∣∣∣2 ≤ E

[
E[e2πit(f(ξI ,ξJ )−f(ξI ,ξ

′
J )) | ξI ]

]
= E

[
E[e2πit(f(ξI ,ξJ )−f(ξI ,ξ

′
J )) | ξJ , ξJ′ ]

]
,

from which we can conclude the desired result.

8



We remark that while we were working on this paper, some similar decoupling tricks were independently
developed by Berkowitz [6] in connection with his work on local central limit theorems for clique counts in
random graphs. We also remark that a very similar argument appears implicitly in a paper of Nguyen [35].

Next, the following result is called Esséen’s concentration inequality [20]. It gives a way to prove anti-
concentration bounds by integrating bounds on the characteristic function of a random variable. This
particular statement is a special case of [46, Lemma 7.17].

Lemma 3.4 ([46]). There is a constant C > 0 such that the following holds. Let X be a real-valued
random variable which takes only a finite number of values. Then for any ε > 0, any s > 0 and any
x ∈ R, we have

Pr(|X − x| ≤ s) ≤ C(s+ 1/ε)

∫ ε

−ε

∣∣Ee2πitX
∣∣ d t.

It may not be immediately obvious how one can benefit from using a decoupling trick for characteristic
functions (as in Lemma 3.3) instead of using a decoupling trick for point probabilities directly (as in (3.1)).
Indeed, Lemma 3.3 also involves a square-root loss when studying f(ξI , ξJ) via f(ξI , ξJ)− f(ξI , ξ

′
J). The

key is that the square-root loss is “inside the integral”. It turns out that in the setting of Lemma 3.2, the
characteristic function has “sharp threshold” behaviour: if |t| is much smaller than 1/n, then |Ee2πitf(ξ)|
is very close to one, whereas if |t| is much larger than 1/n then |Ee2πitf(ξ)| is very close to zero. Therefore
taking the square root of the modulus of the characteristic function has a relatively small effect on its
integral.

In order to effectively apply Lemma 3.3, we will need some understanding of the typical structure of
f(ξI , ξJ) − f(ξI , ξ

′
J) as a linear polynomial in ξI , subject to the randomness of ξJ and ξ′J . In particu-

lar, we need to show that this polynomial is unlikely to have many coefficients that are close to zero.
To accomplish this, we use the following multi-dimensional extension of the (linear) Littlewood–Offord
theorem due to Halász [24]2.

Theorem 3.5. For any integer d ≥ 1 and any δ > 0, there is C = C(d, δ) > 0 such that the following
holds. Let a1, . . . , an be a collection of vectors in Rd and let s > 0. Suppose that for any unit vector
e ∈ Rd, there are at least δn vectors ai with |〈ai, e〉| ≥ s. Then for ξ = (ξ1, . . . , ξn) ∈ Radn we have

sup
u∈Rd

Pr

(∥∥∥∥∥
n∑
i=1

ξiai − u

∥∥∥∥∥
2

< s

)
≤ Cn−d/2.

We have still not yet described how to choose the partition [n] = I∪J for decoupling. We will actually just
choose the partition randomly; we will then need the fact that a random submatrix of a non-degenerate
matrix is typically still non-degenerate, as follows. Recall that for a matrix M ∈ Rr×n and a subset
I ⊆ [n], we defined MI to be the r×|I| submatrix of M consisting of the columns with indices in I. Also
recall that matrix norms in this paper are entrywise.

Lemma 3.6. Fix an integer r ≥ 1 and fix δ > 0. Suppose M ∈ Rr×n is a δ-non-degenerate matrix with
‖M‖∞ ≤ 1. Then, for a uniformly random subset I ⊆ [n], with probability 1− e−Ω(n), the matrix MI is
(δ/3)-non-degenerate. (Here, the implicit constant in the Ω-term may depend on r and δ.)

Proof. Let ε = δ/(2r) > 0, and fix a finite set E ⊆ {e ∈ Rr : ‖e‖2 = 1} such that for any unit vector
e ∈ Rr we can find e′ ∈ E with ‖e− e′‖2 ≤ ε (that is, E is an ε-net of the unit sphere in Rr).

Note that every column w ∈ Rr of M satisfies ‖w‖2 ≤ r. Thus, whenever e′ ∈ E and w is a column of
M with |〈w, e′〉| ≥ δ, then all unit vectors e ∈ Rr with ‖e− e′‖2 ≤ ε satisfy

|〈w, e〉| ≥ |〈w, e′〉| − |〈w, e′ − e〉| ≥ δ − ‖w‖2‖e− e′‖2 ≥ δ − rε ≥ δ/3.

For every e′ ∈ E, the δ-non-degenerate matrix M has at least δn columns w such that |〈w, e′〉| ≥ δ. By a
Chernoff bound, with probability 1− e−Ω(n), at least (δ/3)n of these columns are still in MI . By taking
the union bound over all e′ ∈ E, we see that with probability 1 − e−Ω(n), for every e′ ∈ E the matrix
MI has (δ/3)n columns w with |〈w, e′〉| ≥ δ. Whenever this happens, for every unit vector e ∈ Rr, the
matrix MI has (δ/3)n columns w with |〈w, e〉| ≥ δ/3. As MI has at most n columns in total, this means
that MI is (δ/3)-non-degenerate.

2We remark that a very similar inequality was also proved by Tao and Vu [44, Theorem 1.4], and that there is a large body
of work generalising the Erdős–Littlewood–Offord theorem to higher dimensions without this non-degeneracy condition (in
which case the bounds are much weaker; see for example the survey [36, Section 2]).
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We are now ready to prove Lemma 3.2.

Proof of Lemma 3.2. Fix an integer r ≥ 3 and fix δ > 0. For all asymptotic notation in this proof, we
treat r and δ as constants. Let f ∈ R[x1, . . . , xn] and T ⊆ [n]r be as in the lemma statement. For any
subset J ⊆ [n] and tuple (i1, . . . , ir) ∈ T , let MJ(i1, . . . , ir) be the submatrix of M(i1, . . . , ir) consisting
of the columns with indices j ∈ J .

Now, consider a uniformly random subset J ⊆ [n], and let I = [n] \ J . By Lemma 3.6 and the union
bound, with probability 1−e−Ω(n) eachMJ(i1, . . . , ir), for (i1, . . . , ir) ∈ T , is (δ/3)-non-degenerate. Also,
by a Chernoff bound, with probability 1− e−Ω(n) we have |J | ≥ n/3 and |Ir ∩T | ≥ 2−r−1|T | ≥ 2−r−1δn.

Thus, we can fix a partition [n] = I ∪ J such that |J | ≥ n/3 and such that there exists a set TI ⊆ Ir ∩ T
of at least 2−r−1δn = Ω(n) disjoint r-tuples, with the property that for each (i1, . . . , ir) ∈ TI , the matrix
MJ(i1, . . . , ir) is (δ/3)-non-degenerate.

Now, let ξI = (ξ`)`∈I and ξJ = (ξj)j∈J . We write f(ξ) = f(ξI , ξJ). Let ξ′J be an independent copy of ξJ ,
so by Lemma 3.3, for any t ∈ R we have∣∣∣Ee2πitf(ξ)

∣∣∣2 ≤ E
[∣∣∣E[e2πit(f(ξI ,ξJ )−f(ξI ,ξ

′
J )) | ξJ , ξJ′ ]

∣∣∣]. (3.2)

Note that f(ξI , ξJ)− f(ξI , ξ
′
J) =

∑
`∈I A`ξ` +A, where A` =

∑
j∈J a`j

(
ξj − ξ′j

)
for all ` ∈ I and

A =
∑

j,j′∈J, j≤j′
ajj′

(
ξjξj′ − ξ′jξ′j′

)
+
∑
j∈J

aj
(
ξj − ξ′j

)
.

Thus, when conditioning on any fixed outcome of ξJ , ξJ′ , we can interpret f(ξI , ξJ)− f(ξI , ξ
′
J) as a linear

function in ξI with coefficients A`. Hence, for any t ∈ R, we obtain∣∣∣E[e2πit(f(ξI ,ξJ )−f(ξI ,ξ
′
J )) | ξJ , ξJ′ ]

∣∣∣ =
∏
`∈I

∣∣∣∣e2πitA` + e−2πitA`

2

∣∣∣∣ =
∏
`∈I

|cos(2πtA`)|. (3.3)

Now, for real s ≥ 0, t ∈ [−1, 1] \ {0} and ` ∈ I, let Es,t` be the event that |2A`− k/t| ≤ s for some integer
multiple k/t of 1/t. Note that if s|t| ≤ 1 and Es,t` does not hold then |cos(2πtA`)| = e−Ω(t2s2). We will
now use a concentration inequality and Halász’ inequality (Theorem 3.5) to find an upper bound for the
probability of the event that Es,t` holds for many different `.

Claim 3.7. Consider some r-tuple (i1, . . . , ir) ∈ TI ⊆ Ir, and let Es,ti1,...,ir = Es,ti1 ∩ · · · ∩ E
s,t
ir

. Then
Pr
(
Es,ti1,...,ir

)
= O(p(s, t)), where p(s, t) = (|t| log n+ 1/

√
n)
r
(s+ 1)

r.

Proof. We may assume that s|t| ≤ 1 as otherwise the claim is trivial. Let J∗ be the subset of indices j ∈ J
such that (ξj−ξ′j) 6= 0. This is a uniformly random subset of J , so by the Chernoff bound and Lemma 3.6,
with probability 1 − e−Ω(n), we have |J∗| ≥ |J |/3 ≥ n/9 and MJ∗(i1, . . . , ir) is (δ/9)-non-degenerate.
Condition on such an outcome of J∗.

Now, conditionally, the random variables ξ∗j :=
(
ξj − ξ′j

)
/2, for j ∈ J∗, are Rademacher distributed and

mutually independent. For j ∈ J∗ let bj = (ai1j , . . . , airj) be the column of MJ∗(i1, . . . , ir) indexed by
j ∈ J∗. Recall that for q = 1, . . . , r, we have Aiq =

∑
j∈J aiqj(ξj − ξ′j) = 2

∑
j∈J aiqjξ

∗
j . Hence the vector

(Ai1 , . . . , Aiq ) ∈ Rr equals 2
∑
j∈J ξ

∗
j bj . Thus, by Halász’ inequality (Theorem 3.5), still conditioning on

our outcome of J∗, for each v = (k1, . . . , kr) ∈ Zr we have

Pr
(∣∣2Aiq − kq/t∣∣ ≤ s for all q = 1, . . . , r

)
= Pr

∥∥∥∥∥∥
∑
j∈J∗

ξ∗j bj −
v

4t

∥∥∥∥∥∥
∞

≤ s

4

 = O

(
(s+ 1)

r

nr/2

)
.

(Note that the above equation features the norm ‖ · ‖∞, while Theorem 3.5 concerns the norm ‖ · ‖2.
We can cover a r-dimensional box of side-length s/2 with O(s+ 1)r balls of radius δ/9, and then we can
apply Theorem 3.5 to each of these balls using that the matrix MJ∗(i1, . . . , ir) is (δ/9)-non-degenerate.)
Also, by the Azuma–Hoeffding inequality and the union bound,

Pr
(∣∣2Aiq ∣∣ ≥ √n log n for some q ∈ [r]

)
= e−Ω((logn)2).
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Finally, note that there are O
(
(|t|(
√
n log n+ s) + 1)

r) choices (k1, . . . , kr) ∈ Zr such that each |kq/t| ≤√
n log n+ s, so we can conclude that

Pr
(
Es,ti1,...,ir

)
= O

((
|t|(
√
n log n+ s) + 1

)r (s+ 1)
r

nr/2
+ e−Ω((logn)2) + e−Ω(n)

)
= O(p(s, t)).

Now, let W s,t be the number of r-tuples (i1, . . . , ir) ∈ TI satisfying Es,ti1,...,ir . By Claim 3.7, EW s,t =

O(p(s, t)|TI |), so Pr(W s,t ≥ |TI |/2) = O(p(s, t)) by Markov’s inequality. But observe that if W s,t <
|TI |/2, then at least |TI |/2 different r-tuples (i1, . . . , ir) ∈ TI contain some index iq such that Es,tiq does
not hold. As the r-tuples in TI are all disjoint, this means that there are at least |TI |/2 = Ω(n) indices
` ∈ I such that Es,t` does not hold, so

∏
`∈I |cos(2πtA`)| = e−Ω(t2s2n).

We have proved that for any x ∈ (0, 1), there is s = O
(√
− log(x)/(t2n)

)
such that

Pr

(∏
`∈I

|cos(2πtA`)| ≥ x

)
≤ Pr

(
W s,t ≥ |TI |/2

)
= O(p(s, t)). (3.4)

For this value of s, we compute

p(s, t) = O
((
|t| log n+ 1/

√
n
)(√

log(1/x)/(t2n) + 1
))r

=


O

((
log n√
n

)r
+ (log(1/x))

r/2

(
log n

|t|n

)r)
for |t| ≤ 1√

n
,

O

(
(|t| log n)

r
+ (log(1/x))

r/2

(
log n√
n

)r)
for |t| ≥ 1√

n
.

(3.5)

Note that ∫ 1

0

(log(1/x))
r/2

dx ≤
∞∑
j=1

∫ 2−j+1

2−j

(log2(1/x))
r/2

dx ≤
∞∑
j=1

2−jjr/2 = O(1). (3.6)

Combining Equations (3.2) to (3.6), we have

∣∣∣Ee2πitf(ξ)
∣∣∣2 ≤ E

[∏
`∈I

|cos(2πtA`)|

]

=

∫ 1

0

Pr

(∏
`∈I

|cos(tA`)| ≥ x

)
dx

=


O

((
log n√
n

)r
+

(
log n

|t|n

)r)
= O

( log n

|t|n

)r for |t| ≤ 1√
n
,

O

(
(|t| log n)

r
+

(
log n√
n

)r)
= O

(
(|t| log n)

r

)
for |t| ≥ 1√

n
.

(3.7)

Finally, we apply Esséen’s concentration inequality (Lemma 3.4) with s = n2/(r+2) and ε = 1/s (note
that we need to take the square root of the bound in (3.7)). This yields

Pr
(
|f(ξ)− x| ≤ n2/(r+2)

)
≤ O(s)

∫ 1/s

−1/s

|Ee2πitf(ξ)|d t

= O

(
s

n
+ s

∫ 1/
√
n

1/n

(
log n

tn

)r/2
d t+ s

∫ 1/s

1/
√
n

(log n)
r/2
tr/2 d t

)

= O

(
s

n
+ s

(
log n

n

)r/2
· (1/n)−r/2+1 + s(log n)r/2 · (1/s)r/2+1

)
= O

(
(log n)r/2

( s
n

+ s−r/2
))

= O
(

(log n)
r/2
n−r/(r+2)

)
.
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4 Real projections of complex nonsingular matrices

The anti-concentration inequality in the last section (Lemma 3.2) was only for quadratic polynomials
with real coefficients, whereas in Theorems 1.1 and 1.2 we wish to consider complex polynomials as well.
The following lemma will be an important tool to reduce from the complex case to the real case, and
may be of independent interest. Recall that matrix norms in this paper are entrywise.

Lemma 4.1. For every integer r ≥ 1 and any ε > 0, there exists c = c(r, ε) > 0 such that the following
holds. Let A be a complex r × r matrix with |detA| ≥ ε and ‖A‖∞ ≤ 1. Let θ ∈ [−π, π] be a uniformly
random phase. Then with probability at least c, the matrix <

(
eiθA

)
satisfies |det<

(
eiθA

)
| ≥ c.

Proof. Define the polynomial p(z) = det
(
z2A+A

)
, so that

det
(
<
(
eiθA

))
= det

(
eiθA+ e−iθA

2

)
=
e−irθ

2r
p
(
eiθ
)
.

Let φ be the phase of p(0) = detA. We have E<
(
e−iφ+ikθ

)
= 0 for each positive integer k, so

E
∣∣det

(
<
(
eiθA

))∣∣ = 2−rE
∣∣p(eiθ)∣∣ ≥ 2−rE<

(
e−iφp

(
eiθ
))

= 2−r<
(
e−iφp(0)

)
≥ ε2−r.

On the other hand, since the entries of
∣∣<(eiθA)∣∣ each have absolute value at most 1, we have

∣∣det
(
<
(
eiθA

))∣∣ ≤
r!. So, by Markov’s inequality,

Pr
(∣∣det

(
<
(
eiθA

))∣∣ ≥ c) = 1− Pr
(
r!−

∣∣det
(
<
(
eiθA

))∣∣ ≥ r!− c) ≥ 1− r!− c
r!− ε2−r

.

For sufficiently small c > 0, this probability is at least c.

In this section we also prove that if a small matrix has bounded entries and determinant bounded away
from zero, then its least singular value is bounded away from zero as well.

Lemma 4.2. For some integer q ≥ 1, let B be a complex nonsingular q×q matrix with ‖B‖∞ ≤ 1. Then
for any unit vector e ∈ Cq, the vector Be satisfies ‖Be‖1 ≥ (q!)−1 · | detB|.

Proof. Let v = Be. First, we have ‖B−1v‖1 = ‖e‖1 ≥ ‖e‖2 = 1. On the other hand, observe that B−1

can be calculated from the determinant of B and the adjugate matrix of B. All entries of the adjugate
matrix of B have absolute value at most (q − 1)!, and therefore all entries of B−1 all have absolute
value at most (q − 1)! · |detB|−1. Thus, each entry of the vector e = B−1v has absolute value at most
(q − 1)! · | detB|−1 · ‖v‖1. It follows that

1 ≤ ‖B−1v‖1 ≤ q · (q − 1)! · | detB|−1 · ‖v‖1,

from which the desired result immediately follows.

5 Deducing the main theorems

In this section we explain how to prove Theorems 1.1 and 1.2. Before getting into the details, we
first observe that Theorem 1.2 actually follows from a slight variant of Theorem 1.1, where we control
“coefficient-L1 norm” but we demand that certain coefficients lie in a certain finite set.

Theorem 5.1. Let F ∈ {C,R,Q}. For any integer r ≥ 3, any 0 < ε ≤ 1, and any finite set S ⊆ F with
|s| ≤ 1 for all s ∈ S, there is a constant C = C(r, ε, S) and a finite set S∗ = S∗(r, S) ⊆ F such that the
following holds. Let f ∈ F[x1, . . . , xn] be a quadratic polynomial, let f̃ be the homogeneous degree-2 part
of f and assume that the coefficients of f̃ are elements of the set S. Let ξ = (ξ1, . . . , ξn) ∈ Radn, and
suppose that we have

sup
x∈F

Pr(f(ξ) = x) ≥ C · (log n)
r/2

n1−2/(r+2)
.

Then there is a quadratic form h ∈ F[x1, . . . , xn] of rank strictly less than r such that the sum of the
absolute values of the coefficients of f̃ − h is at most εn2, and such that all coefficients of h are elements
of the set S∗.
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Proof of Theorem 1.2 given Theorem 5.1. First of all, by rescaling we may assume that the set S in
Theorem 1.2 satisfies |s| ≤ 1 for all s ∈ S. Now, let S∗ = S∗(r, S) be the finite set in Theorem 5.1, and
let ∆ be the minimum distance between two elements of S∗ ∪ S.

Let f ∈ F[x1, . . . , xn] be as in Theorem 1.2, and note that we may assume that n is large with respect
to ε. Let f̃ be the homogeneous degree-2 part of f . By Theorem 5.1 applied with the error parameter
ε ·∆/2, we either have the desired inequality on point probabilities of f(ξ), or there is a quadratic form
h ∈ F[x1, . . . , xn] of rank less than r with coefficients in S∗ such that the sum of absolute values of f̃−h is
at most ε · (∆/2) ·n2. By the choice of ∆, this implies that h and f̃ differ in at most (ε/2) ·n2 coefficients.
Thus, h and f differ in at most (ε/2) · n2 + n+ 1 ≤ εn2 coefficients (if n is sufficiently large).

Now, for the proofs of Theorems 1.1 and 5.1 we will need a robust version of linear independence.

Definition 5.2. Consider F ∈ {C,R,Q}. For any 0 ≤ ε ≤ 1, let us say that vectors v1, . . . , vq ∈ Fn are
ε-dependent (over F) if there are linearly dependent vectors v′1, . . . , v′q ∈ Fn with

‖v1 − v′1‖1 + · · ·+ ‖vq − v′q‖1 ≤ εn.

Otherwise, say that v1, . . . , vq are ε-independent.

Note that the usual notion of being linearly independent corresponds to being 0-independent. Also note
that the empty collection of vectors (taking q = 0) is ε-independent for any 0 ≤ ε ≤ 1. In Section 6
we will observe some more basic properties of ε-independence, and prove some analogues of simple facts
about ordinary linear independence.

Recall that we already introduced the notion of being δ-non-degenerate in Definition 3.1, which can also
be interpreted as a type of robust linear independence. The following lemma connects these two notions.

Lemma 5.3. For any integer r ≥ 1 and any 0 < ε ≤ 1, there is a constant c = c(r, ε) > 0 such that the
following holds. Suppose that v1, . . . , vr ∈ Rn are ε-independent vectors with ‖vi‖∞ ≤ 1 for each i. Then
the r × n matrix with rows v1, . . . , vr is c-non-degenerate.

We will also need a variant of Lemma 5.3 for complex vectors, incorporating our lemma concerning real
projections of complex matrices (Lemma 4.1).

Lemma 5.4. For any integer r ≥ 1 and any 0 < ε ≤ 1, there is a constant c = c(r, ε) > 0 such
that the following holds. Suppose v1, . . . , vr ∈ Cn are ε-independent vectors with ‖vi‖∞ ≤ 1 for each i.
Furthermore, let θ ∈ [−π, π] be a uniformly random phase. Then with probability at least c, the r × n
matrix with rows <(eiθv1), . . . ,<(eiθvr) ∈ Rn is c-non-degenerate.

We defer the proofs of Lemmas 5.3 and 5.4 to Section 6.

Now, the remaining ingredient for the proofs of Theorems 1.1 and 5.1 is the following lemma. It states
that if a symmetric matrix does not “robustly” have rank at least r, then it must be close (in terms of
entrywise L1 norm) to a symmetric matrix of rank less than r.

Lemma 5.5. Fix F ∈ {C,R,Q} and an integer r ≥ 1. Let 0 < α ≤ 1 and 0 < δ < 1/r and let
A ∈ Fn×n be a symmetric matrix with ‖A‖∞ ≤ 1. Suppose that there do not exist δn disjoint r-tuples of
α-independent rows of A. Then there exists a symmetric matrix H ∈ Fn×n of rank less than r such that
‖A−H‖1 ≤ O(δ + α(6r)−r

) · n2.

Here, the implicit constant in the O-term may depend on r. We defer the proof of Lemma 5.5 to Section 7.

We remark that Lemma 5.5 also implies the following corollary, which may be of independent interest: if
a symmetric matrix is close to a matrix which has rank less than r, then it is close to a symmetric matrix
with rank less than r.

Corollary 5.6. Fix F ∈ {C,R,Q} and an integer r ≥ 1. Let 0 < α ≤ 1 and let A ∈ Fn×n be a
symmetric matrix with ‖A‖∞ ≤ 1. Suppose that there is a matrix A′ ∈ Fn×n of rank less than r such
that ‖A − A′‖1 ≤ αn2. Then there exists a symmetric matrix H ∈ Fn×n of rank less than r such that
‖A−H‖1 ≤ O(α1/(2·(6r)r)) · n2.

13



Proof. It suffices to prove that A cannot have α1/2n disjoint r-tuples of α1/2-independent rows; we would
then be able to apply Lemma 5.5. So, suppose there were α1/2n disjoint r-tuples (i1, . . . , ir) ∈ [n]r such
that the rows rowi1(A), . . . , rowir (A) are α1/2-independent.

As in Definition 3.1, for each of our r-tuples (i1, . . . , ir) we use notation like A(i1, . . . , ir) to represent
the r× n submatrix of A with these rows. Since our r-tuples are disjoint, for at least one of our r-tuples
(i1, . . . , ir) we have ‖A(i1, . . . , ir)−A′(i1, . . . , ir)‖1 ≤ ‖A−A′‖1/(α1/2n) ≤ α1/2n2. Since A′ has rank less
than r, the rows of A′(i1, . . . , ir) are linearly dependent, so the rows of A(i1, . . . , ir) are α1/2-dependent,
a contradiction.

In order to prove Theorem 5.1, we also need the following variant of Lemma 5.5, stating that if the
entries of A lie in a finite set S, then the matrix H can be chosen such that its entries lie in a finite set
S′ (depending only on S and r).

Lemma 5.7. For F ∈ {C,R,Q}, an integer r ≥ 1, and a finite set S ⊆ F with |s| ≤ 1 for all s ∈ S,
there is a finite set S′ = S′(r, S) ⊆ F such that the following holds: let 0 < α ≤ 1 and 0 < δ < 1/r and
let A ∈ Fn×n be a symmetric matrix all of whose entries are in S. Suppose that there do not exist δn
disjoint r-tuples of α-independent rows of A. Then there exists a symmetric matrix H ∈ Fn×n of rank
less than r such that ‖A−H‖1 ≤ O(δ + α(6r)−r

) · n2 and such that all entries of H are elements of S′.

Now, we can deduce Theorems 1.1 and 5.1. The proofs are virtually the same (the only difference is
whether we use Lemma 5.7 or Lemma 5.5), so we present both proofs together.

Proof of Theorems 1.1 and 5.1. First, choose some small 0 < α ≤ 1 and 0 < δ < 1/r such that the
O(δ+ α(6r)−r

)-term in Lemmas 5.5 and 5.7 is at most ε. Also, note that we may assume n is sufficiently
large with respect to ε. For each i, j, let aij be the coefficient of xixj and in f (so aii is the coefficient
of x2

i ), and define the (symmetric) “coefficient matrix” A = (aij)i,j . Note that by our assumptions on f ,
‖A‖∞ ≤ 1. We consider two cases.

Case 1: A does not have δn disjoint r-tuples of α-independent rows

By Lemma 5.5 (and our choice of δ and α), there exists a symmetric matrix H = (hij)1≤i,j≤n ∈ Fn×n
of rank less than r such that ‖A − H‖1 ≤ εn2. In the setting of Theorem 5.1, we can instead apply
Lemma 5.7 to get the same conclusion, with the additional property that all entries of H lie in some fixed
finite set S′ that only depends on r and S.

Now, let h ∈ F[x1, . . . , xn] be the quadratic form defined by h(x) = 1
2x

THx =
∑
i<j hijxixj+

∑
i(hii/2)x2

i ,
which also has rank less than r (and in the setting of Theorem 5.1, the coefficients of h lie in the finite set
S∗ = S′ ∪ {s/2 : s ∈ S′}). Let f̃ be the homogeneous degree-2 part of f . Then, the sum of the absolute
values of the coefficients of f̃ − h is∑

i<j

|aij − hij |+
∑
i

|aii − hii/2| ≤
1

2
‖A−H‖1 +

∑
i

|aii/2| ≤ (ε/2)n2 + n/2.

For the proof of Theorem 5.1, this already gives the desired conclusion (for sufficiently large n). In the
setting of Theorem 1.1, we additionally note that the sum of the absolute values of the coefficients of
f̃ − f is at most n+ 1 = o(n2).

Case 2: A has δn disjoint r-tuples of α-independent rows

In this case, we use Lemma 3.2 to prove that

sup
x∈F

Pr(f(ξ) = x) = O

(
(log n)

r/2

n1−2/(r+2)

)
,

showing that the assumptions of Theorems 1.1 and 5.1 cannot hold for large C. (For the rest of the proof,
all asymptotic notation treats r, δ and α as fixed constants.) Let TA ⊆ [n]r be a collection of δn disjoint
r-tuples, such that for any (i1, . . . , ir) ∈ TA the corresponding rows of A are α-independent.
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If F = R or F = Q, then by Lemma 5.3, for each (i1, . . . , ir) ∈ TA, the r × n matrix of A(i1, . . . , ir),
defined as in Definition 3.1, is c-non-degenerate for c = Ω(1). Thus, Lemma 3.2 implies that for random
ξ = (ξ1, . . . , ξn) ∈ Radn, we have

sup
x∈F

Pr(f(ξ) = x) ≤ sup
x∈F

Pr
(
|f(ξ)− x| ≤ n2/(r+2)

)
= O

(
(log n)

r/2

n1−2/(r+2)

)
,

as desired.

For the case F = C, choose c = Ω(1) such that if θ ∈ [−π, π] is a uniformly random phase then for
each (i1, . . . , ir) ∈ TA, the matrix <(eiθA)(i1, . . . , ir) is c-degenerate with probability at least c. Such a
c exists by Lemma 5.4. Then, let Tθ be the set of all (i1, . . . , ir) ∈ TA such that <(eiθA)(i1, . . . , ir) is
c-degenerate. For random θ we have E|Tθ| ≥ cδn, so we can fix θ such that |Tθ| ≥ cδn. Then, let f∗ be
the polynomial obtained from eiθf by taking the real part of each coefficient, so for ξ ∈ Radn Lemma 3.2
implies

sup
x∈C

Pr(f(ξ) = x) ≤ sup
x∈C

Pr
(
<(eiθf(ξ)) = <(eiθx)

)
= sup

x∈R
Pr(f∗(ξ) = x) = O

(
(log n)

r/2

n1−2/(r+2)

)
,

as desired.

6 Lemmas on robust linear independence

In this section we prove Lemmas 5.3 and 5.4, and several other auxiliary lemmas concerning ε-independence
(defined in Definition 5.2). Throughout this section we fix F ∈ {C,R,Q}.

First, with a view towards proving Lemmas 5.3 and 5.4, we start with the fact that if the rows of a q×n
matrix are ε-independent then there is a q × q submatrix with large determinant.

Lemma 6.1. For any 0 ≤ ε ≤ 1 and any ε-independent vectors v1, . . . , vq ∈ Fn, the q × n matrix with
rows v1, . . . , vq has a q × q submatrix whose determinant has absolute value at least εq.

Lemma 6.1 will be an immediate consequence of a more general lemma (Lemma 6.3) that we prove later
in this section. Now we prove Lemma 5.3.

Proof of Lemma 5.3. We will take c = εr/(2rr!r). Let M be the r × n matrix with rows v1, . . . , vr.

First, we claim that M has m ≥ ε/(2r2) · n disjoint r × r submatrices B1, . . . , Bm whose determinants
have absolute value at least (ε/2)r. Indeed, consider a maximal collection such disjoint submatrices
and suppose that this collection consists of fewer than ε/(2r2) · n submatrices. Let M ′ ∈ Rr×n be
obtained from M by setting all the entries in our identified submatrices to zero. By maximality, every
r × r submatrix of M ′ has determinant bounded in absolute value by (ε/2)r. On the other hand, since
‖M‖∞ ≤ 1, we have ‖M −M ′‖1 ≤ ε/(2r2) · n · r2 ≤ (ε/2)n. Since the rows of M are ε-independent, this
shows that the rows of M ′ are (ε/2)-independent. But then, by Lemma 6.1, the matrix M ′ has a r × r
submatrix whose determinant has absolute value at least (ε/2)r, which is a contradiction.

Now, in order to show that M is c-non-degenerate, we need to show that for every unit vector e ∈ Rr,
there are at least cn columns w of M such that |〈w, e〉| ≥ c. As m ≥ ε/(2r2) · n ≥ cn, it suffices to
show that for each j = 1, . . . ,m there is a column w of Bj with |〈w, e〉| ≥ c. This is equivalent to
showing that the vector BTj e ∈ Rr has at least one entry with absolute value at least c. However, since
|detBTj | ≥ (ε/2)r, Lemma 4.2 implies that ‖BTj e‖1 ≥ (r!)−1 · (ε/2)r = r ·c. Therefore one of the r entries
of BTj e must indeed have absolute value at least c. This finishes the proof of Lemma 5.3.

Next, to prove Lemma 5.4, we modify the proof Lemma 5.3 to incorporate our lemma concerning real
projections of complex matrices (Lemma 4.1).

Proof of Lemma 5.4. Let M be the r × n matrix with rows v1, . . . , vr. As in the proof of Lemma 5.3, in
M we can find m ≥ ε/(2r2) · n disjoint r × r submatrices B1, . . . , Bm whose determinants have absolute
value at least (ε/2)r.
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Consider a random phase θ ∈ [−π, π]. By Lemma 4.1, for some 0 < c′ < 1 only depending on r and
ε, for each 1 ≤ j ≤ m, with probability at least c′ we have |det<(eiθBj)| ≥ c′. Let J be the random
set of j such that this holds, and observe that E|J | ≥ c′m. Then, since |J | − c′m/2 ≤ m we have
mPr(|J | − c′m/2 ≥ 0) ≥ E[|J | − c′m/2], so

Pr(|J | ≥ c′m/2) = Pr(|J | − c′m/2 ≥ 0) ≥ E[|J | − c′m/2]

m
≥ c′m− c′m/2

m
=
c′

2
.

But, if |J | ≥ c′m/2 then <(eiθM) has c′m/2 ≥ c′ε/(4r2) ·n disjoint r×r submatrices whose determinants
have absolute value at least c′. As in the proof of Lemma 5.3, it follows from Lemma 4.2 that <(eiθM) is
c-non-degenerate for some 0 < c < c′/2 depending only on ε and r (via c′). The desired result follows.

In the remainder of this section, we prove some simple facts about ε-independence that will be useful for
the proof of Lemma 5.5 in Section 7. From now on, fix any F ∈ {C,R,Q}.
The following lemma says that for ε-dependent vectors v1, . . . , vq with entries of absolute value at most
1, the vectors v′1, . . . , v′q in Definition 5.2 can be chosen in such a way that their entries have absolute
value at most q + 1.

Lemma 6.2. Let 0 ≤ ε ≤ 1 and let v1, . . . , vq ∈ Fn be ε-dependent such that ‖vi‖∞ ≤ 1 for each i. Then
there are linearly dependent vectors v′1, . . . , v′q ∈ Fn with

‖v1 − v′1‖1 + · · ·+ ‖vq − v′q‖1 ≤ εn

and such that all entries of the vectors v′1, . . . , v′q have absolute value at most q + 1.

Proof. By the definition of v1, . . . , vq ∈ Fn being ε-dependent, there are linearly dependent vectors
v′1, . . . , v

′
q ∈ Fn with

‖v1 − v′1‖1 + · · ·+ ‖vq − v′q‖1 ≤ εn.
It may be the case that for one or more indices i, the i-th entry of one of the vectors v′1, . . . , v′q has absolute
value larger than q + 1. For all such i, let us change the i-th entry of each of the vectors v′1, . . . , v′q to
zero. It is not hard to see that this does not increase the value of ‖v1 − v′1‖1 + · · ·+ ‖vq − v′q‖1, and that
the new vectors v′1, . . . , v′q are still linearly dependent.

The next lemma is a generalisation of Lemma 6.1 where we can specify some forbidden pairs of vectors.

Lemma 6.3. Let 0 ≤ ε ≤ 1 and 0 ≤ δ ≤ 1. For some integer q ≥ 0, let M be a q× n matrix whose rows
are (ε+ q(q− 1)δ)-independent and whose entries have absolute value at most 1. Consider a graph G on
the vertex set [n] in which every vertex has degree at most δn. Then there exists a q-vertex independent
set I ⊆ [n] of G, such that the q × q matrix MI satisfies |detMI | ≥ εq.

Note that Lemma 6.1 follows from Lemma 6.3 by taking δ = 0 and the graph G with no edges.

Proof of Lemma 6.3. Let ε′ = ε+ q(q − 1)δ. We prove the lemma by induction on q. Note that the base
case q = 0 is trivial (since we adopted the convention that the determinant of the 0×0 empty matrix is 1).
So assume that q ≥ 1 and that we have already proved the lemma for q−1. Let M = (aij)i,j be the q×n
matrix with rows v1, . . . , vq. As v1, . . . , vq are ε′-independent, the vectors v1, . . . , vq−1 are ε′-independent
as well and in particular (ε + (q − 1)(q − 2)δ)-independent. Let M ′ be the matrix obtained from M
by removing the last row. Then, by the induction hypothesis, there is a (q − 1)-vertex independent set
I ′ ⊆ [n] of G such that |detM ′I′ | ≥ εq−1. Let us assume without loss of generality that I ′ = [q − 1].

Now, let J ⊆ {q, . . . , n} be the set of those vertices which have a neighbour in I ′ in the graph G. By the
degree assumption, we have |J | ≤ (q−1)δn. Then, consider all the q× q submatrices of M formed by the
first q − 1 columns together with a column which has index in {q, . . . , n} \ J . Assume for contradiction
that for all of these submatrices the absolute value of their determinant is smaller than εq.

We want to modify M to create a matrix M ′ contradicting the definition of ε′-independence. First, for
j ∈ {q, . . . , n} \ J , let us change the entry aqj in such a way that the determinant of the q× q submatrix
of M formed by the first q − 1 columns together with the j-th column becomes zero. By the assumption
in the last paragraph, we need to change aqj by at most εq/|detM ′I′ | ≤ εq/εq−1 = ε in order to achieve
this. Second, for every j ∈ J change all the entries in column j to zero. The resulting matrix M ′ then
satisfies ‖M −M ′‖1 ≤ ε(n− (q − 1)) + q(q − 1)δn ≤ ε′n. But by construction, the first q − 1 columns of
M ′ span its entire column space, so M ′ has rank less than q and its rows are not linearly independent.
This is in contradiction to the rows of M being ε′-independent.
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Next, the following lemma states that for robustly independent vectors v1, . . . , vq ∈ Fn and a vector
v ∈ Fn, either v1, . . . , vq and v are robustly independent together, or v is close to a linear combination of
v1, . . . , vq.

Lemma 6.4. Fix an integer q ≥ 0. Let 0 < ε ≤ 1 and let v1, . . . , vq ∈ Fn be ε-independent vectors such
that ‖vi‖∞ ≤ 1 for each i. Furthermore let 0 ≤ δ < ε/2 and let v ∈ Fn be a vector with ‖v‖∞ ≤ 1. Then
at least one of the following two conditions holds:

(a) v1, . . . , vq, v are δ-independent, or
(b) there is a vector v∗ ∈ span(v1, . . . , vq) with ‖v − v∗‖1 ≤ O(ε−qδ) · n.

Here the implicit constant in the O-term may depend on q.

Proof. Suppose (a) is not satisfied, so v1, . . . , vq, v are δ-dependent. Thus, by Lemma 6.2 there are linearly
dependent vectors v′1, . . . , v′q, v′ ∈ Fn with

‖v1 − v′1‖1 + · · ·+ ‖vq − v′q‖1 + ‖v − v′‖1 ≤ δn, (6.1)

such that all entries of v′1, . . . , v′q, v′ have absolute value at most q + 1. Now, since v1, . . . , vq ∈ Fn
are ε-independent, and δ < ε/2, the vectors v′1, . . . , v′q are (ε/2)-independent, and in particular linearly
independent. Thus, as v′1, . . . , v′q, v′ are linearly dependent, we can write v′ as v′ = a1v

′
1 + · · ·+ aqv

′
q for

some a1, . . . , aq ∈ F.

We claim that |ai| = O(ε−q) for all i. Indeed, since v′1, . . . , v′q are (ε/2)-independent, by Lemma 6.1 the
matrix with rows v′1, . . . , v′q has a q × q submatrix A whose determinant has absolute value Ω(εq). Let
I ⊆ [n] be the set of the indices of the columns contained in this submatrix. Consider the row vector
(v′)I ∈ Fq obtained from v′ by taking the coordinates indexed by I. Now, since v′ = a1v

′
1 + · · ·+ aqv

′
q we

have (a1, . . . , aq)A = (v′)I , so (a1, . . . , aq) = (v′)IA
−1. Since ‖A‖∞ ≤ q+ 1 = O(1), and |detA| = Ω(εq),

we can see (from the formula for A−1 in terms of the adjugate of A) that all entries of the matrix A−1

are of the form O(ε−q). Since ‖(v′)I‖∞ ≤ q+ 1 = O(1) as well, we can conclude that the absolute values
of a1, . . . , aq are of the form O(ε−q), as claimed.

Now, define the linear combination v∗ = a1v1 + · · ·+ aqvq. We have

‖v − v∗‖1 ≤ ‖v − v′‖1 + ‖v′ − v∗‖1 = ‖v − v′‖1 +
∥∥a1(v′1 − v1) + · · ·+ aq(v

′
q − vq)

∥∥
1
.

Recalling (6.1) and that |ai| = O(ε−q) for all i, we deduce that ‖v− v∗‖1 ≤ O(ε−q) · δn, so (b) holds.

We then deduce the following lemma. It is a “robust version” of the fact that if a list of vectors does
not contain r linearly independent vectors, then among the vectors on this list we can find a linearly
independent set of size less than r whose span contains the entire list.

Lemma 6.5. Fix a positive integer r. Consider some 0 < ε ≤ 1/2, and consider a list of vectors
v1, . . . , vk ∈ Fn such that ‖vi‖∞ ≤ 1 for all i. Suppose that there is no subset of r vectors from this list
which are ε(6r)r -independent. Then for some 0 ≤ q ≤ r− 1, we can choose vectors w1, . . . , wq among the
list v1, . . . , vk such that both of the following conditions are satisfied:

(i) w1, . . . , wq are ε(6r)q -independent, and
(ii) for each i = 1, . . . , k, there is a vector v′i ∈ span(w1, . . . , wq) with ‖vi − v′i‖1 ≤ O(ε5r·(6r)q ) · n.

Here the implicit constant in the O-term may depend on r.

Proof. Let us choose a collection of ε(6r)q -independent vectors w1, . . . , wq among the list v1, . . . , vk, with
q ∈ {0, . . . , r} as large as possible (this is well-defined, since q = 0 is definitely possible). By our
assumption on v1, . . . , vk we must have q ≤ r − 1.

We need to check condition (ii). Note that for all i for which vi is one of the vectors w1, . . . , wq, condition
(ii) holds trivially with v′i = vi. For all other 1 ≤ i ≤ k, the q + 1 vectors w1, . . . , wq, vi cannot be
ε(6r)q+1

-independent by maximality of q, so by Lemma 6.4 there is v′i ∈ span(w1, . . . , wq) with

‖vi − v′i‖1 ≤ O
((

ε(6r)q
)−q
· ε(6r)q+1

)
· n = O

(
ε5r·(6r)q

)
· n.
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Finally, the following lemma is not strictly about ε-independence but will be used several times in
the proofs of Lemmas 5.5 and 5.7. For given vectors w1, . . . , wq, the lemma is about finding a vector
v ∈ span(w1, . . . , wq) with certain prescribed coordinates, and controlling the distance of v to another
given vector ṽ in this span.

Lemma 6.6. Fix a non-negative integer q. Let w1, . . . , wq ∈ Fn be vectors satisfying ‖wi‖∞ ≤ 1 for each
i, and let M be the q × n matrix whose rows are the vectors w1, . . . , wq. Consider some subset I ⊆ [n] of
size q, and suppose that the q × q matrix MI satisfies detMI 6= 0.

Now, for each i ∈ I let us specify a value v(i) ∈ F. Then there is a unique vector v ∈ span(w1, . . . , wq) hav-
ing the prescribed values v(i) in the coordinates i ∈ I. Furthermore, for any vector ṽ ∈ span(w1, . . . , wq)
we have

‖v − ṽ‖1 ≤ O(|detMI |−1) · n · ‖ṽI − vI‖1.

Here the implicit constant in the O-term may depend on q.

Proof. The existence and uniqueness of v follow directly from the fact that detMI 6= 0. Then, consider
some vector ṽ ∈ span(w1, . . . , wq), and write v − ṽ = a1w1 + · · ·+ aqwq for some a1, . . . , aq ∈ F.

Note that we can determine the coefficients a1, . . . , aq by the equation (a1, . . . , aq)MI = (v − ṽ)I , where
we interpret (v − ṽ)I ∈ FI as a row vector. In other words, we have (a1, . . . , aq) = (v − ṽ)IM

−1
I .

The entries of M−1
I have absolute value O(|detMI |−1) (by the formula for the inverse of a matrix in

terms of its determinant and its adjugate). Thus, the absolute values of a1, . . . , aq are of the form
O(|detMI |−1) · ‖ṽI − vI‖1. Since ‖wi‖∞ ≤ 1 for each i, we conclude

‖v − ṽ‖1 = ‖a1w1 + · · ·+ aqwq‖1 ≤ (|a1|+ · · ·+ |aq|) · n ≤ O(|detMI |−1) · n · ‖ṽI − vI‖1.

7 Proving closeness to a low-rank symmetric matrix

7.1 Proof of Lemma 5.5

In this section, we finally prove Lemma 5.5: given a symmetric matrix A which does not have δn disjoint
r-tuples of α-independent rows, we show that there is a symmetric matrix H that is close to A (in terms
of the entrywise L1 norm) and has rank less than r. We outline the approach with a sequence of claims,
whose proofs we will provide afterwards. We assume that α is sufficiently small, and for all asymptotic
notation we treat r as a constant.

First, we find a symmetric matrix A∗ ∈ Fn×n which is close to A and does not have any r-tuple of
α-independent rows, as in the following claim.

Claim 7.1. Consider the setting of Lemma 5.5. Then we can find a symmetric matrix A∗ ∈ Fn×n with
‖A∗‖∞ ≤ 1, such that ‖A∗ − A‖1 ≤ O(δ) · n2 and such that the matrix A∗ does not have any r-tuple of
α-independent rows.

Second, we use Lemma 6.5 to identify a subset of rows w1, . . . , wq of A∗, where 0 ≤ q ≤ r − 1, such that
every row of A∗ can be approximated by a linear combination of w1, . . . , wq. We then form a matrix B∗
by replacing the rows of A∗ by these approximations. This will give the following.

Claim 7.2. Let the matrix A∗ be as in Claim 7.1. For some 0 ≤ q ≤ r − 1 and 0 < α̃ ≤ α(6r)−r

we
can find α̃-independent rows w1, . . . , wq of A∗, and a matrix B∗ ∈ Fn×n, such that each row of B∗ lies
in span(w1, . . . , wq) and such that ‖ rowi(A

∗)− rowi(B
∗)‖1 ≤ O(α̃4r) · n for all i ∈ [n].

Claim 7.2 ensures that each row of A∗ is close to the corresponding row of B∗. However, we have no
control over the columns of A∗ and B∗. In the next step, we “zero out” some rows and columns of A∗
and B∗ to obtain matrices A′ and B′ such that every row and column of A′ is close to the corresponding
row or column of B′.
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Claim 7.3. Consider A∗, B∗, α̃ and w1, . . . , wq as in Claim 7.2. We can find a symmetric matrix
A′ ∈ Fn×n, a matrix B′ ∈ Fn×n, and (α̃/2)-independent vectors w′1, . . . , w′q ∈ Fn such that each row of
B′ lies in span(w′1, . . . , w

′
q), such that each ‖w′i‖∞ ≤ 1, and such that we have

‖A′ −A∗‖1 ≤ O(α̃r) · n2

and, for each i ∈ [n],

‖ rowi(A
′)− rowi(B

′)‖1 ≤ O(α̃3r) · n and ‖ coli(A
′)− coli(B

′)‖1 ≤ O(α̃3r) · n.

While Claim 7.3 ensures that each row or column of A′ is close to the corresponding row or column of
B′, it does not give control over individual entries of A′. However, the following claim (proved using
Lemma 6.3) states that we can find a subset I ⊆ [n] such that for all distinct i, j ∈ I, the (i, j)-entry of
A′ is close to the (i, j)-entry of B′.

Claim 7.4. Let A′ = (a′ij)i,j, B′ = (b′ij)i,j and w′1, . . . , w′q be as in Claim 7.3, and let M be the q × n
matrix whose rows are w′1, . . . , w′q. There is a subset I ⊆ [n] of size q such that for all distinct i, j ∈ I we
have |a′ij − b′ij | < α̃2r, and such that the q × q matrix MI satisfies |detMI | ≥ Ω(α̃r−1).

We can then use this subset I ⊆ [n] to construct our final matrix H, in the following claim.

Claim 7.5. Let A′ = (a′ij)i,j, B′ = (b′ij)i,j and w′1, . . . , w
′
q be as Claim 7.3 and let I ⊆ [n] be as in

Claim 7.4. Define hii = b′ii for all i ∈ I and hij = a′ij for all distinct i, j ∈ I. Then we can extend these
values to a symmetric matrix H = (hij) ∈ Fn×n such that every row of H is in span(w′1, . . . , w

′
q) and

such that ‖H −B′‖ ≤ O(α̃) · n2.

The proof of Claim 7.5 will require Lemma 6.6 and the following technical lemma.

Lemma 7.6. Consider vectors v1, . . . , vq ∈ Fn, and let M be the matrix with these vectors as rows.
Consider a subset I ⊆ [n] with size q, such that the q×q matrix MI is invertible. Let H = (hij)i,j ∈ Fn×n
be a matrix each of whose rows is in span(v1, . . . , vq), such that hij = hji for all i ∈ I and all j ∈ [n].
Then H is symmetric.

It is not hard to see that Claims 7.1 to 7.5 imply Lemma 5.5. Indeed, the symmetric matrixH in Claim 7.5
clearly has rank at most q ≤ r−1. Furthermore, using that ‖A′−B′‖1 =

∑n
i=1 ‖ rowi(A

′)−rowi(B
′)‖1 ≤

O(α̃3r) · n2 by Claim 7.3, we obtain

‖H −A‖1 ≤ ‖H −B′‖1 + ‖B′ −A′‖1 + ‖A′ −A∗‖1 + ‖A∗ −A‖1 ≤ O(α̃+ δ) · n2 = O(α(6r)−r

+ δ) · n2.

It remains to prove Claims 7.1 to 7.5 and Lemma 7.6.

Proof of Claim 7.1. By assumption, there do not exist δn disjoint r-tuples of α-independent rows of A.
Choose a maximal collection of such r-tuples and let J ⊆ [n] be the set of all rows involved (so |J | ≤ rδn).
Let A∗ = (a∗ij)i,j ∈ Fn×n be the symmetric matrix obtained from A by setting to zero all rows and all
columns with indices in J . As ‖A‖∞ ≤ 1, we have ‖A∗ − A‖1 ≤ 2|J |n ≤ 2rδn2 = O(δ) · n2. We claim
that A∗ does not have any r-tuple of α-independent rows. Clearly, no r-tuple containing a zero row can
be α-independent. For any r-tuple of rows of A∗ with indices in [n]\J , the corresponding r-tuple of rows
in A must be α-dependent (by the maximality of the collection chosen in the beginning). It is not hard
to see that this r-tuple stays α-dependent when setting to zero the columns with indices in J .

Proof of Claim 7.2. We can apply Lemma 6.5 with ε = α(6r)−r

and the list of rows v1, . . . , vn of A∗, to
obtain α(6r)q−r

-independent rows w1, . . . , wq of A∗ for some 0 ≤ q ≤ r − 1, as well as a list of vectors
v′1, . . . , v

′
n ∈ span(w1, . . . , wq) satisfying ‖vi − v′i‖1 ≤ O(α5r(6r)q−r

)n ≤ O(α4r(6r)q−r

)n for all i ∈ [n] (the
wasteful second inequality here will make it easier to explain how to adapt this proof to prove Lemma 5.7
in Subsection 7.2). Then define α̃ = α(6r)q−r ≤ α(6r)−r

and let B∗ ∈ Fn×n be the matrix with rows
v′1, . . . , v

′
n.
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Proof of Claim 7.3. Note that by the assumptions on A∗ and B∗, we have

n∑
i=1

‖ coli(A
∗)− coli(B

∗)‖1 = ‖A∗ −B∗‖1 =

n∑
i=1

‖ rowi(A
∗)− rowi(B

∗)‖1 ≤ O(α̃4r) · n2.

Defining J ⊆ [n] be the set of those indices j ∈ [n] such that ‖ colj(A
∗)− colj(B)‖1 ≥ α̃3r · n, we obtain

that |J | ≤ O(α̃r) · n. Let the matrices A′ and B′ be obtained from A∗ and B∗ by setting to zero all the
entries in all rows and columns with indices in J . Similarly, let the vectors w′1, . . . w′q be obtained from
w1, . . . , wq by setting the entries with indices in J to zero. Since each row of B∗ lies in span(w1, . . . , wq),
each row of B′ lies in span(w′1, . . . , w

′
q) (note that this is trivially true for the all-zero rows with indices

in J).

Note that A′ is symmetric, since A∗ is symmetric. Furthermore, ‖A∗‖∞ ≤ 1, so ‖wi‖∞ ≤ 1 and ‖w′i‖∞ ≤ 1
for each i. We claim that w′1, . . . , w′q are (α̃/2)-independent. For q = 0 this is trivially true, so we may
assume that q ≥ 1 and therefore r ≥ 2. Recall that w1, . . . , wq are α̃-independent, and that we changed
only r|J | = O(α̃r) · n ≤ (α̃/2) · n entries of w1, . . . , wq to zero to obtain w′1, . . . , w′q. Thus, the vectors
w′1, . . . , w

′
q are indeed (α̃/2)-independent.

We have ‖A′ − A∗‖1 ≤ 2|J |n ≤ O(α̃r) · n2. For each i ∈ J , we have rowi(A
∗) = 0 = rowi(B

∗) and
coli(A

∗) = 0 = coli(B
∗). On the other hand, for i ∈ [n] \ J , we have ‖ rowi(A

′) − rowi(B
′)‖1 ≤

‖ rowi(A
∗) − rowi(B

∗)‖1 ≤ O(α̃4r) · n by the properties in Claim 7.2 and ‖ coli(A
′) − coli(B

′)‖1 ≤
‖ coli(A

∗)− coli(B
∗)‖1 < α̃3r · n by the definition of J .

Proof of Claim 7.4. Note that the case q = 0 is trivial, so we may assume that q ≥ 1 and therefore r ≥ 2.
Consider the graph G on the vertex set [n] where for any 1 ≤ i < j ≤ n we draw an edge between the
vertices i and j if |a′ij − b′ij | ≥ α̃2r or if |a′ji − b′ji| ≥ α̃2r. By the last part of Claim 7.3, this graph has
maximum degree O(α̃r) · n, so the desired result follows from Lemma 6.3 with ε = α̃/4 and δ = O(α̃r)
(using that ε+ q(q − 1)δ ≤ α̃/4 +O(α̃r) ≤ α̃/2 as r ≥ 2, and also recalling that q ≤ r − 1).

Proof of Claim 7.5. Recall that for i ∈ I, we defined hii = b′ii, and for distinct i, j ∈ I we defined hij = a′ij .
For every i ∈ I, we can uniquely extend the vector (hij)j∈I ∈ FI to a vector rowi(H) = (hij)1≤j≤n ∈
span(w′1, . . . , w

′
q), using Lemma 6.6. Then, using that every row of B′ is also in span(w′1, . . . , w

′
q), by the

second part of Lemma 6.6 we have (recalling the defining properties of I in Claim 7.4)

‖ rowi(H)− rowi(B
′)‖1 ≤ O(|detMI |−1) ·n ·

∑
j∈I\{i}

|a′ij − b′ij | ≤ O(α̃1−r) ·n · q · α̃2r = O(α̃r+1) ·n. (7.1)

for every i ∈ I. So far we have defined hij for i ∈ I and j ∈ [n]. Since A′ is symmetric, we have
hij = a′ij = a′ji = hji for distinct i, j ∈ I. Now, for j ∈ I and i ∈ [n] \ I, let us define hij = hji. Then,
for i ∈ [n] \ I, we proceed very similarly to before: we can uniquely extend the vector (hij)j∈I ∈ FI to
a vector rowi(H) = (hij)1≤j≤n ∈ span(w′1, . . . , w

′
q). The resulting matrix H = (hij)i,j satisfies hij = hji

for all i ∈ I and j ∈ [n] and all of its rows lie in span(w′1, . . . , w
′
q). So by Lemma 7.6, H is therefore

symmetric. Furthermore, for all i ∈ [n] by the second part of Lemma 6.6 we have

‖ rowi(H)− rowi(B
′)‖1 ≤ O(α̃1−r) · n ·

∑
j∈I
|hij − b′ij |

and therefore we obtain

‖H −B′‖1 =

n∑
i=1

‖ rowi(H)− rowi(B
′)‖1 ≤ O(α̃1−r) · n ·

n∑
i=1

∑
j∈I
|hij − b′ij | = O(α̃1−r) · n · ‖(H −B′)I‖1.

For an n×n matrix B, let BI denote the submatrix consisting of the rows indexed by I. By the properties
of A′ and B′ in Claim 7.3 we have

‖(A′ −B′)I‖1 ≤ O(α̃3r) · n and ‖(A′ −B′)I‖1 ≤ O(α̃3r) · n,

and by symmetry of H and A′, we have ‖(H −A′)I‖1 = ‖(H −A′)I‖1, so

‖(H −B′)I‖1 ≤ ‖(H −A′)I‖1 + ‖(A′ −B)I‖1
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≤ ‖(H −A′)I‖1 +O(α̃3r) · n ≤ ‖(H −B′)I‖1 +O(α̃3r) · n.

On the other hand, from (7.1) we obtain ‖(H −B′)I‖1 ≤ O(α̃r+1) · n, so it follows that ‖(H −B′)I‖1 ≤
O(α̃r+1) · n and therefore ‖H −B′‖1 ≤ O(α̃1−r) · n ·O(α̃r+1) · n = O(α̃2) · n2.

Proof of Lemma 7.6. Write vij for the jth component of vi. Without loss of generality we may assume
that I = [q] ⊆ [n]. Also, we may assume that MI is the q × q identity matrix (we can replace v1, . . . , vq
by different vectors with the same span).

Now, each row of H is a linear combination of v1, . . . , vq, and given the above assumptions it is easy to
read off the coefficients: rowi(H) = hi1v1 + · · · + hiqvq for all i ∈ [n]. So, using the assumption that
hik = hki for all k ∈ I = [q] and all i ∈ [n], we have

hij =

q∑
k=1

hikvkj =

q∑
k=1

hkivkj =

q∑
k=1

(
q∑
`=1

hk`v`i

)
vkj =

∑
k,`∈[q]

hk`v`ivkj

for all i, j ∈ [n]. (For the third equality, we read off the coefficients for rowk(H) in the same way we
read off the coefficients for rowi(H).) This expression is symmetric in i and j, since hk` = h`k for all
k, ` ∈ [q].

7.2 Adapting the proof for Lemma 5.7

In this section we describe how to prove Lemma 5.7, by slightly modifying the proof of Lemma 5.5 in the
previous subsection. Specifically, given a finite set S ⊆ F we define a finite set S′ = S′(r, S), and given
a matrix A with entries in S, we describe how to adapt the proof of Lemma 5.5 to ensure that H has
entries in S′.

Definition 7.7. Given a non-negative integer q and a finite set S ⊆ F with 0 ∈ S, define Tq(S) ⊆ Fr to
be the set of those vectors v ∈ Fr which are the solution to an equation of the form Mv = z for some
invertible matrix M ∈ Sq×q and some vector z ∈ Sq. Also, define τq(S) = {vTw : v ∈ Tq(S), w ∈ Sq}.
Finally, for a positive integer r, define σr(S) = S ∪ τ1(S) ∪ · · · ∪ τr−1(S) and S′(r, S) = σr(σr(σr(S))).

Note that the sets Tq(S), τq(S), σr(S) and S′(r, S) in Definition 7.7 are finite.

Recall that in the proof of Lemma 5.5 (more specifically, in the proof of Claim 7.5) all rows of the matrix
H were chosen by applying Lemma 6.6 to find a vector in span(w′1, . . . , w

′
q) with certain prescribed entries.

In order to ensure that the entries of H are in S′, we need a way to control the entries of the vectors
found when applying Lemma 6.6. The following lemma gives such control.

Lemma 7.8. Fix a non-negative integer q and a finite set S ⊆ F with 0 ∈ S. Consider vectors
w1, . . . , wq ∈ Sn and a subset I ⊆ [n] of size q. Let M be the q × n matrix whose rows are the vectors
w1, . . . , wq, and suppose that its q× q submatrix MI is invertible. Finally, consider v = (v(1), . . . , v(n)) ∈
span(w1, . . . , wq) such that v(i) ∈ S for all i ∈ I. Then v ∈ (τq(S))n. In particular, if r is a positive
integer such that q ≤ r − 1, we have v ∈ (σr(S))n.

Note that Lemma 7.8 implies the following: if we apply Lemma 6.6 to vectors w1, . . . , wq with entries
in S, and the prescribed values v(i) also all lie in S, then the resulting vector v in Lemma 6.6 satisfies
v ∈ (τq(S))n ⊆ (σr(S))n.

Proof of Lemma 7.8. Write v = λ1w1 + · · · + λqwq for some λ = (λ1, . . . , λq) ∈ Fq. Only considering
the coordinates with indices in I, this implies vI = MT

I λ. We have vI ∈ Sq, and MT
I ∈ Sq×q is an

invertible matrix, so λ ∈ Tq(S). Now, for each i ∈ [n], the entry v(i) is the product of the row vector
λ = (λ1, . . . , λn) with the column vector formed by the i-th coordinates of w1, . . . , wq (this column vector
is in Sq). Hence v(i) ∈ τq(S) ⊆ σr(S) for all i ∈ [n].

In order to control the entries of the rows of H when applying Lemma 6.6 together with Lemma 7.8, we
clearly also need to control the entries we prescribe. These prescribed entries ultimately depend on the
entries of A′ and B′ (see our definition of hij for i, j ∈ I in Claim 7.5). Each entry of A′ is also an entry
of A or equals zero (by the way we constructed A′ and A∗ in the proofs of Claims 7.1 and 7.2), so we
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can easily control the entries of A′ (and similarly A∗). However, in order to control the entries of B′, we
need to control the entries of B∗, which were obtained by applying Lemma 6.5 to the list of rows of A∗.

The following lemma will be used in combination with Lemma 6.5. While it does not give direct control
over the vectors v′i ∈ span(w1, . . . , wq) obtained from Lemma 6.5 as approximations of the rows of A∗, it
states that we can find slightly weaker approximations ensuring that the entries of these approximating
vectors lie in a certain set.

Lemma 7.9. Fix a non-negative integer q and a finite set S ⊆ F with 0 ∈ S and |s| ≤ 1 for all s ∈ S.
Consider 0 < α ≤ 1 and 0 < η ≤ 1, as well as α-independent vectors w1, . . . , wq ∈ Sn and a vector
v ∈ Sn, such that there is some vector ṽ ∈ span(w1, . . . , wq) with ‖v− ṽ‖1 ≤ η · n. Then there is a vector
v∗ ∈ (τq(S))n ∩ span(w1, . . . , wq) with ‖v − v∗‖1 ≤ O(α−(q+1)) · η · n.

Proof. Note that for q = 0 the statement is trivial: Indeed, we must have ṽ = 0 and can therefore take
v∗ = ṽ = 0 ∈ (τ0(S))n ∩ span(w1, . . . , wq). So let us from now on assume that q ≥ 1.

Let v = (v(1), . . . , v(n)) ∈ Sn and ṽ = (ṽ(1), . . . , ṽ(n)) ∈ Fn. Since ‖v − ṽ‖1 ≤ η · n, there are at most
(α/(2q)) · n indices i ∈ [n] with |ṽ(i) − v(i)| ≥ 2qα−1η. Let J be the set of those indices i ∈ [n], then
|J | ≤ (α/(2q)) · n. Then, let w′1, . . . , w′q be obtained from w1, . . . , wq by setting to zero all entries with
coordinates in J . Since all entries of the α-independent vectors w1, . . . , wq have absolute value at most
1, and |J | · q ≤ (α/2) · n, these new vectors w′1, . . . , w′q are (α/2)-independent.

Let M (respectively M ′) be the q × n matrix with w1, . . . , wq (respectively w′1, . . . , w
′
q) as rows. By

Lemma 6.1, there exists a subset I ⊆ [n] of size q such that |detM ′I | ≥ (α/2)q. Note that I ∩ J = ∅,
since if M ′I had a zero column it would have zero determinant. Hence MI = M ′I and |detMI | ≥ (α/2)q.

Now we can apply Lemma 6.6 to obtain a vector v∗ ∈ span(w1, . . . , wq) such that for each i ∈ I the i-th
entry of v∗ equals v(i) ∈ S. By Lemma 7.8 we have v∗ ∈ (τq(S))n, and by the second part of Lemma 6.6
we have (using that |ṽ(i) − v(i)| < 2qα−1η for all i ∈ I ⊆ [n] \ J)

‖v∗ − ṽ‖1 ≤ O(|detMI |−1) · n ·
∑
i∈I
|ṽ(i) − v(i)| ≤ O(α−q) · n · q · 2qα−1η = O(α−(q+1)) · η · n.

Hence ‖v − v∗‖1 ≤ ‖v − ṽ‖1 + ‖ṽ − v∗‖1 ≤ O(α−(q+1)) · η · n.

Now, using Lemma 7.8 and Lemma 7.9, it is not hard to modify the proof of Lemma 5.5 to prove
Lemma 5.7.

Proof of Lemma 5.7. Let r, S and A be as in Lemma 5.7. Then A satisfies the assumptions in Lemma 5.5
with the additional property that all entries of A are in the set S. Let S′ = S′(r, S) be as in Definition 7.7
(note that we may assume that 0 ∈ S, since otherwise we can replace S by S ∪ {0}).

We can now proceed as in the proof of Lemma 5.5 in the previous subsection. First, without making any
changes to the proof of Claim 7.1, we observe that each entry of A∗ is either zero (which we are assuming is
in S), or is the same as the corresponding entry in A (which is also in S). Second, we consider the matrix
B∗ in Claim 7.2. In the proof of Lemma 5.5 we applied Lemma 6.5 to the rows v1, . . . , vn ∈ Sn of A∗ to
obtain a list of vectors v′1, . . . , v′n ∈ span(w1, . . . , wq) satisfying ‖vi − v′i‖1 ≤ O(α5r(6r)q−r

)n = O(α̃5r)n
for all i ∈ [n]. We then took these vectors as the rows of B∗. For the proof of Lemma 5.7 we need
an additional step: for each i we apply Lemma 7.9 with v = vi and ṽ = v′i, which gives a vector
v∗i ∈ (τq(S))n ∩ span(w1, . . . , wq) with ‖vi − v∗i ‖1 ≤ O(α̃−(q+1)) ·O(α̃5r) · n ≤ O(α̃4r)n (since q ≤ r − 1).
We can then take v∗1 , . . . , v∗n as the rows of B∗, so that all entries of B∗ lie in the set τq(S) ⊆ σr(S).

Next, without making any modifications to the proof of Claim 7.3, observe that the matrices A′ and B′
have entries are in σr(S) (the entries of A′ and B′ were chosen to be zeroes or entries of A∗ or B∗).
Finally, when constructing the matrix H = (hij)i,j as in the proof of Claim 7.5, observe that the entries
of H all lie in σr(σr(σr(S))) = S′. Indeed, the entries hij for i, j ∈ I are in σr(S). We obtained rowi(H)
for i ∈ I by applying Lemma 6.6 to these entries, so by Lemma 7.8 all entries hij with i ∈ I and j ∈ [n]
lie in σr(σr(S)). Then we defined hij = hji for i ∈ [n] \ I and j ∈ I, and applied Lemma 6.6 again to
obtain rowi(H) for i ∈ [n] \ I. Again by Lemma 7.8 all entries of these rows lie in σr(σr(σr(S))). Thus,
all entries of H lie in σr(σr(σr(S))), as desired.
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8 Concluding remarks

There are still a number of future directions of research. Most obviously, Costello’s conjecture remains
open, and there are several weakenings that we think would already be very interesting to prove. For
example, can we remove the restriction on the coefficients in Theorem 1.2? Can we prove any bound of
the form n−1/2−Ω(1) on the point probabilities of a real quadratic polynomial that is not close to splitting
into linear factors over the real numbers, even with strong assumptions on the allowed coefficients?

Costello’s conjecture also concerned higher-degree polynomials, and it would be interesting to investigate
this direction as well. Iterating Lemma 3.3 does give a way to control higher-degree polynomials, but it
seems unlikely that one could prove results as strong as Theorems 1.1 and 1.2 without new ideas.

Regarding Ramsey graphs, it would be interesting if one could remove the o(1)-term in Theorem 1.3. It
would also be very interesting to prove a bound on Pr(X = x) in terms of the variance of X, as follows.
Such a bound would be best-possible due to Chebyshev’s inequality.

Conjecture 8.1. The following holds for any fixed constants C, c > 0. Let G be an n-vertex C-Ramsey
graph, and, for some cn ≤ k ≤ (1− c)n, let X be the number of edges induced by a uniformly random
subset of k vertices of G. Then for any x ∈ Z, we have

Pr(X = x) = O

(
1√

VarX

)
.

We remark that
√

VarX can be as small as Θ(n) (which is typical for a random graph G(n, 1/2)), and
can be as large as Θ(n3/2) (for example, consider a disjoint union of two random graphs G(n/2, 1/2) on
n/2 vertices). We find Conjecture 8.1 particularly compelling because, if true, it would give a very simple,
unified proof of the conjectures of Narayanan–Sahasrabudhe–Tomon and Erdős–Faudree–Sós stated in
the introduction, concerning subgraphs of Ramsey graphs with different numbers of edges. For example,
consider an n-vertex C-Ramsey graph G and consider some k ∈ N satisfying k = Ω(n) and n/2−k = Ω(n).
To prove the Erdős–Faudree–Sós conjecture, it suffices to show that G has Ω(n3/2) induced subgraphs
with k vertices and different numbers of edges. This can be shown using Conjecture 8.1, as follows.

Sketch proof of the Erdős–Faudree–Sós conjecture, assuming Conjecture 8.1. Let G and k be as above.
Alon and Kostochka (see [3, Equation (2)]) observed that there is a sequence of 2k-vertex sets U0, . . . , Ut ⊆
V (G) such that e(Ut) − e(U1) = Ω(n3/2), but |e(Ui) − e(Ui−1)| ≤ n for all 1 ≤ i ≤ t. That is, we can
“loosely fill” an interval of length Ω(n3/2) with edge-counts of 2k-vertex induced subgraphs. This can be
shown by using a discrepancy theorem to find two 2k-vertex induced subgraphs whose numbers of edges
differ by Ω(n3/2), and switching vertices one-by-one between these two subgraphs.

Now, let Xi be the number of edges in a random subset of k vertices of G[Ui], and let supp(Xi) be
the support of the random variable Xi. Note that by Chebyshev’s inequality, more than half of the
probability mass of each Xi falls in the interval Ii = [e(Ui)/2−2

√
Var(Xi), e(Ui)/2 + 2

√
Var(Xi)], which

has length O(
√

Var(Xi)). Since each G[Ui] is itself an O(1)-Ramsey graph, Conjecture 8.1 would say
that every individual point in this interval has probability mass only O(1/

√
Var(Xi)), from which one

can show that | supp(Xi) ∩ Ii| = Ω(
√

Var(Xi)) = Ω(|Ii|). Given that
√

Var(Xi) = Ω(n) for all i, the
union

⋃t
i=0 Ii covers an Ω(1)-fraction of the length-Ω(n3/2) interval between e(U0)/2 and e(Ut)/2, which

means that |
⋃t
i=0 Ii| = Ω(n3/2). By a simple greedy algorithm, we can choose a disjoint collection (Ii)i∈J

of intervals covering an Ω(1)-fraction of
⋃t
i=0 Ii. Then

∑
i∈J |Ii| = |

⋃
i∈J Ii| = Ω(n3/2) and therefore

|
⋃
i∈J supp(Xi)| ≥

∑
i∈J | supp(Xi) ∩ Ii| =

∑
i∈J Ω(|Ii|) = Ω(n3/2). This gives Ω(n3/2) different edge-

counts of k-vertex induced subgraphs.

Actually, it is tempting to wonder whether one can strengthen Conjecture 8.1 even further, and prove a lo-
cal central limit theorem estimating each of the point probabilities Pr(X = x) in terms of a Gaussian den-
sity function. With sufficiently detailed understanding of the local behaviour of “edge-statistic” random
variables in Ramsey graphs, it might be possible to prove an old conjecture of Erdős and McKay [15, 16]
that there is an interval I =

{
0, 1, 2 . . . ,Ω

(
n2
)}

such that in every O(1)-Ramsey graph, for every m ∈ I
there is an induced subgraph with exactly m edges (see [4] for some progress on this question).

Finally, there may also be interesting directions of research concerning some of the auxiliary lemmas in
this paper. For example, in Corollary 5.6 we proved that if a matrix with bounded entries is close to being
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low-rank, and close to being symmetric, then it is close to being simultaneously low-rank and symmetric.
Can we drop the assumption that the entries of the matrix are bounded? There may be a connection
between results of this type and the existing literature on low-rank approximation of matrices.

Concluding remarks: We would like to thank Jacob Fox for insightful discussions, and Ragib Zaman
for simplifying the proof of Lemma 4.1.
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