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Abstract. An n-vertex graph is called C-Ramsey if it has no clique or independent set of size C log2 n

(i.e., if it has near-optimal Ramsey behavior). In this paper, we study edge-statistics in Ramsey graphs,
in particular obtaining very precise control of the distribution of the number of edges in a random
vertex subset of a C-Ramsey graph. This brings together two ongoing lines of research: the study
of “random-like” properties of Ramsey graphs and the study of small-ball probability for low-degree
polynomials of independent random variables.

The proof proceeds via an “additive structure” dichotomy on the degree sequence, and involves a wide
range of different tools from Fourier analysis, random matrix theory, the theory of Boolean functions,
probabilistic combinatorics, and low-rank approximation. In particular, a key ingredient is a new
sharpened version of the quadratic Carbery–Wright theorem on small-ball probability for polynomials
of Gaussians, which we believe is of independent interest. One of the consequences of our result is the
resolution of an old conjecture of Erdős and McKay, for which Erdős reiterated in several of his open
problem collections, and for which he offered one of his notorious monetary prizes.

MSC Subject Classification: 60C05 05D10 (05C35)

1. Introduction

An induced subgraph of a graph is called homogeneous if it is a clique or independent set (i.e., all
possible edges are present, or none are). One of the most fundamental results in Ramsey theory, proved in
1935 by Erdős and Szekeres [38], states that every n-vertex graph contains a homogeneous subgraph with
at least 1

2 log2 n vertices1. On the other hand, Erdős [33] famously used the probabilistic method to prove
that, for all n ≥ 3, there is an n-vertex graph with no homogeneous subgraph on 2 log2 n vertices. Despite
significant effort (see for example [1,11,20,21,24,47,48,52,71,75]), there are no known non-probabilistic
constructions of graphs with comparably small homogeneous sets, and in fact the problem of explicitly
constructing such graphs is intimately related to randomness extraction in theoretical computer science
(see for example [89] for an introduction to the topic).

For some C > 0, an n-vertex graph is called C-Ramsey if it has no homogeneous subgraph of size
C log2 n. We think of C as being a constant (not varying with n), so C-Ramsey graphs are those
graphs with near-optimal Ramsey behavior. It is widely believed that C-Ramsey graphs must in some
sense resemble random graphs (which would provide some explanation for why it is so hard to find
explicit constructions), and this belief has been supported by a number of theorems showing that certain
structural or statistical properties characteristic of random graphs hold for all C-Ramsey graphs. The
first result of this type was due to Erdős and Szemerédi [39], who showed that every C-Ramsey graph G
has edge-density bounded away from zero and one (formally, for any C > 0 there is εC > 0 such that for
sufficiently large n, the number of edges in any C-Ramsey graph with n vertices lies between εC

(
n
2

)
and

(1 − εC)
(
n
2

)
). Note that this implies fairly strong information about the edge distribution on induced

subgraphs of G, because any induced subgraph of G with at least nα vertices is itself (C/α)-Ramsey.
This basic result was the foundation for a large amount of further research on Ramsey graphs; over the

years many conjectures have been proposed and many theorems proved (see for example [2–4,7–9,16,34,
37,60,66,67,70,76,84,90]). Particular attention has focused on a sequence of conjectures made by Erdős
and his collaborators, exploring the theme that Ramsey graphs must have diverse induced subgraphs.
For example, for a C-Ramsey graph G with n vertices, it was proved by Prömel and Rödl [84] (answering
a conjecture of Erdős and Hajnal) that G contains every possible induced subgraph on δC log n vertices;

Kwan was supported for part of this work by ERC Starting Grant “RANDSTRUCT” No. 101076777. Sah and Sawhney
were supported by NSF Graduate Research Fellowship Program DGE-2141064. Sah was supported by the PD Soros
Fellowship. Sauermann was supported by NSF Award DMS-2100157, and for part of this work by a Sloan Research
Fellowship.

1Since the original submission of the present paper, this bound was improved to ( 1
2
+ ε) log2 for an absolute constant

ε > 0 in breakthrough work by Campos, Griffiths, Morris, and Sahasrabudhe [18].
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by Shelah [90] (answering a conjecture of Erdős and Rényi) that G contains 2δCn non-isomorphic induced
subgraphs; by the first author and Sudakov [66] (answering a conjecture of Erdős, Faudree, and Sós) that
G contains δCn5/2 subgraphs that can be distinguished by looking at their edge and vertex numbers; and
by Jenssen, Keevash, Long, and Yepremyan [60] (improving on a conjecture of Erdős, Faudree, and Sós
proved by Bukh and Sudakov [16]) that G contains an induced subgraph with δCn

2/3 distinct degrees
(all for some δC > 0 depending on C).

Only one of Erdős’ conjectures (on properties of C-Ramsey graphs) from this period has remained
open until now: Erdős and McKay (see [34]) made the ambitious conjecture that for essentially any
“sensible” integer x, every C-Ramsey graph must necessarily contain an induced subgraph with exactly
x edges. To be precise, they conjectured that there is δC > 0 depending on C such that for any C-
Ramsey graph G with n vertices and any integer 0 ≤ x ≤ δCn

2, there is an induced subgraph of G
with exactly x edges. Erdős reiterated this problem in several collections of his favorite open problems
in combinatorics [34, 35] (also in [36]), and offered one of his notorious monetary prizes ($100) for its
solution (see [22,23,35]).

Progress on the Erdős–McKay conjecture has come from four different directions. First, the canonical
example of a Ramsey graph is (a typical outcome of) an Erdős–Rényi random graph. It was proved by
Calkin, Frieze and McKay [17] (answering questions raised by Erdős and McKay) that for any constants
p ∈ (0, 1) and η > 0, a random graph G(n, p) typically contains induced subgraphs with all numbers of
edges up to (1− η)p

(
n
2

)
. Second, improving on initial bounds of Erdős and McKay [34], it was proved by

Alon, Krivelevich, and Sudakov [8] that there is αC > 0 such that in a C-Ramsey graph on n vertices,
one can always find an induced subgraph with any given number of edges up to nαC . Third, improving
on a result of Narayanan, Sahasrabudhe, and Tomon [76], the first author and Sudakov [67] proved that
there is δC > 0 such that in any C-Ramsey graph on n vertices contains induced subgraphs with δCn

2

different numbers of edges (though without making any guarantee on what those numbers of edges are).
Finally, Long and Ploscaru [72] recently proved a bipartite analog of the Erdős–McKay conjecture.

As our first result, we prove a substantial strengthening of the Erdős–McKay conjecture2. Let e(G)
be the number of edges in a graph G.

Theorem 1.1. Fix C > 0 and η > 0, and let G be a C-Ramsey graph on n vertices, where n is
sufficiently large with respect to C and η. Then for any integer x with 0 ≤ x ≤ (1 − η)e(G), there is a
subset U ⊆ V (G) inducing exactly x edges.

Given prior results due to Alon, Krivelevich and Sudakov [8], Theorem 1.1 is actually a simple corollary
of a much deeper result (Theorem 1.2) on edge-statistics in Ramsey graphs, which we discuss in the next
subsection.

1.1. Edge-statistics and low-degree polynomials. For an n-vertex graph G, observe that the num-
ber of edges e(G[U ]) in an induced subgraph G[U ] can be viewed as an evaluation of a quadratic poly-
nomial associated with G. Indeed, identifying the vertex set of G with {1, . . . , n} and writing E for the
edge set of G, consider the n-variable quadratic polynomial f(ξ1, . . . , ξn) =

∑
ij∈E ξiξj . Then, for any

vertex set U , let ξ⃗ (U) be the characteristic vector of U (with ξ⃗ (U)
v = 1 if v ∈ U , and ξ⃗ (U)

v = 0 if v /∈ U).
It is easy to check that the number of edges e(G[U ]) induced by U is precisely equal to f(ξ⃗ (U)). That
is, to say, the statement that G has an induced subgraph with exactly x edges is precisely equivalent to
the statement that there is a binary vector ξ⃗ ∈ {0, 1}n with f(ξ⃗) = x.

There are many combinatorial quantities of interest that can be interpreted as low-degree polyno-
mials of binary vectors. For example, the number of triangles in a graph, or the number of 3-term
arithmetic progressions in a set of integers, can both be naturally interpreted as evaluations of certain
cubic polynomials. More generally, the study of Boolean functions is the study of functions of the form
f : {0, 1}n → R; every such function can be written (uniquely) as a multilinear polynomial, and the
degree of this polynomial is a fundamental measure of the “complexity” of the Boolean function.

One of the most important discoveries from the analysis of Boolean functions is that it is fruitful to
study the behavior of (low-degree) Boolean functions evaluated on a random binary vector ξ⃗ ∈ {0, 1}n.

2To see that this implies the Erdős–McKay conjecture, first note that we can assume n is sufficiently large in terms
of C (specifically, we can assume n ≥ nC for any nC ∈ N by taking δC small enough that δCn2

C < 1). Now, by the
above-mentioned result of Erdős and Szemerédi [39], there is εC > 0 such that for every C-Ramsey graph G on n vertices
we have e(G) ≥ εC

(n
2

)
≥ εCn2/4. So, taking δC ≤ εC/8, the Erdős–McKay conjecture follows from the η = 1/2 case of

Theorem 1.1.
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This is the perspective we take in this paper: as our main result, for any Ramsey graph G and a random
vertex subset U , we obtain very precise control over the distribution of e(G[U ]).

Theorem 1.2. Fix C, λ > 0, let G be a C-Ramsey graph on n vertices and let λ ≤ p ≤ 1−λ. Then if U
is a random subset of V (G) obtained by independently including each vertex with probability p, we have

sup
x∈Z

Pr[e(G[U ]) = x] ≤ KC,λn
−3/2

for some KC,λ > 0 depending only on C, λ. Furthermore, for every fixed A > 0, we have

inf
x∈Z

|x−p2e(G)|≤An3/2

Pr[e(G[U ]) = x] ≥ κC,A,λn
−3/2

for some κC,A,λ > 0 depending only on C,A, λ, if n is sufficiently large in terms of C, λ and A.

It is not hard to show that for any C-Ramsey graph G, the standard deviation σ of e(G[U ]) is of
order n3/2. So, Theorem 1.2 says (roughly speaking) that in the “bulk” of the distribution of e(G[U ])
(i.e., within roughly standard-deviation-range of the mean), the point probabilities are all of order 1/σ.
In Section 2 we will give the short deduction of Theorem 1.1 from Theorem 1.2 and the aforementioned
theorem of Alon, Krivelevich, and Sudakov.

Remark 1.3. Our proof of Theorem 1.2 can be adapted to handle slightly more general types of graphs
than Ramsey graphs. For example, we can obtain the same conclusions in the case where G is a d-regular
graph with 0.01n ≤ d ≤ 0.99n, such that the eigenvalues λ1 ≥ · · · ≥ λn of the adjacency matrix of G
satisfy max{λ2,−λn} ≤ n1/2+0.01 (i.e., the case where G is a dense graph with near-optimal spectral
expansion). See Remarks 4.2 and 4.5 for some discussion of the necessary adaptations. Notably, this
class of graphs includes Paley graphs, which are “random-like” graphs with an explicit number-theoretic
definition (see for example [63]). These graphs are currently one of the most promising candidates
for explicit constructions of Ramsey graphs, though precisely studying the Ramsey properties of these
graphs seems to be outside the reach of current techniques in number theory (see [29, 56] for recent
developments).

Remark 1.4. If p = 1/2, then the random set U in Theorem 1.2 is simply a uniformly random subset
of vertices. So, for x close to e(G)/4, Theorem 1.2 tells us that the number of induced subgraphs
with x edges is of order 2n/n3/2. It would be interesting to investigate the number of x-edge induced
subgraphs for general x (not close to e(G)/4). From Theorem 1.2 one can deduce a lower bound on this
number approximately matching the behavior of an appropriate Erdős–Rényi random graph (i.e., for any
constant η > 0, and ηn2 ≤ x ≤ (1−η)e(G), there are at least exp(H(

√
x/e(G))n+o(n)) subgraphs with

x edges, where H denotes the base-e entropy function). However, a corresponding upper bound does
not in general hold: to characterize the number of x-edge induced subgraphs up to any sub-exponential
error term, one must incorporate more detailed information about the Ramsey graph G than just its
number of edges. (To see this, consider a union of two disjoint independent Erdős–Rényi random graphs
G(n/2, 0.01) ⊔G(n/2, 0.99), and count subgraphs with 0.001n2 edges.)

There has actually been quite some recent interest (see for example [6, 44, 45, 68, 73]) studying ran-
dom variables of the form e(G[U ]) for a graph G and a random vertex set U , largely due to a sequence
of conjectures by Alon, Hefetz, Krivelevich, and Tyomkyn [6] motivated by the classical topic of graph
inducibility. Specifically, these works studied the anticoncentration behavior of e(G[U ]) (generally speak-
ing, anticoncentration inequalities provide upper bounds on the probability that a random variable falls
in some small ball or is equal to some particular value). As discussed above, e(G[U ]) can be naturally
interpreted as a quadratic polynomial, so this study falls within the scope of the so-called polynomial
Littlewood–Offord problem (which concerns anticoncentration of general low-degree polynomials of var-
ious types of random variables). There has been a lot of work from several different directions (see for
example [26, 55, 61, 65, 77–79, 87, 91, 92]) on the extent to which anticoncentration in the (polynomial)
Littlewood–Offord problem is controlled by algebraic or arithmetic structure, and the upper bound in
Theorem 1.2 can be viewed in this context: Ramsey graphs yield quadratic polynomials that are highly
unstructured in a certain combinatorial sense, and we see that such polynomials have strong anticoncen-
tration behavior.

The first author, Sudakov and Tran [68] previously suggested to study anticoncentration of e(G[W ])
for a Ramsey graph G and a random vertex subset W of a given size. In particular, they asked whether
for a C-Ramsey graph G with n vertices, and a uniformly random subset W of exactly n/2 vertices, we
have supx∈Z Pr[e(G[W ]) = x] ≤ KC/n for some KC > 0 depending only on C. Some progress was made
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Figure 1. On the left is a cartoon of (one possibility for) the probability mass function of e(G[U ]) for a
Ramsey graph G and a uniformly random vertex subset U : the large-scale behavior is Gaussian, but on
a small scale we see many smaller Gaussian-like curves. The two images on the right are two different
histograms at different scales, obtained from real data (namely, from two million independent samples
of a uniformly random vertex subset in a graph G obtained as an outcome of the Erdős–Rényi random
graph G(1000, 0.8)).

on this question by the first and third authors [65]; as a simple corollary of Theorem 1.2, we answer this
question in the affirmative.

Theorem 1.5. For C > 0 and 0 < λ < 1, there is K = K(C, λ) such that the following holds. Let G be
a C-Ramsey graph on n vertices and let W ⊆ V (G) be a random subset of exactly k vertices, for some
given k with λn ≤ k ≤ (1− λ)n. Then

sup
x∈Z

Pr[e(G[W ]) = x] ≤ K

n
.

It is not hard to show that the upper bound in Theorem 1.5 is best-possible (indeed, this can be seen
by taking G to be a typical outcome of an Erdős–Rényi random graph G(n, 1/2)). However, in contrast
to the setting of Theorem 1.2, in Theorem 1.5 one cannot hope for a matching lower bound when x is
close to E[e(G[W ])] (as can be seen by considering the case where G is a typical outcome of the union of
two disjoint independent Erdős–Rényi random graphs G(n, 1/4) ⊔G(n, 3/4)).

1.2. Proof ingredients and ideas. We outline the proof of Theorem 1.2 in more detail in Section 3,
but here we take the opportunity to highlight some of the most important ingredients and ideas.

1.2.1. An approximate local limit theorem. A starting point is that, in the setting of Theorem 1.2,
standard techniques show that e(G[U ]) satisfies a central limit theorem: we have Pr[e(G[U ]) ≤ x] =
Φ((x−µ)/σ)+ o(1/σ) for all x ∈ R, where Φ is the standard Gaussian cumulative distribution function,
and µ, σ are the mean and standard deviation of e(G[U ]). It is natural to wonder (as suggested in [65]
as a potential path towards the Erdős–McKay conjecture) whether this can be strengthened to a local
central limit theorem: could it be that for all x ∈ R we have Pr[e(G[U ]) = x] = Φ′((x−µ)/σ)/σ+o(1/σ)
(where Φ′ is the standard Gaussian density function)? In fact, the statement of Theorem 1.2 can be
interpreted as a local central limit theorem “up to constant factors”. This perspective also suggests a
strategy for the proof of Theorem 1.2: perhaps we can leverage Fourier-analytic techniques previously
developed for local central limit theorems (e.g. [12, 13, 50, 51, 64, 94]), obtaining our desired result as a
consequence of estimates on the characteristic function (i.e., Fourier transform) of our random variable
e(G[U ]).

However, it turns out that a local central limit theorem actually does not hold in general: while the
coarse-scale distribution of e(G[U ]) is always Gaussian, in general e(G[U ]) may have a rather nontrivial
“two-scale” behavior, depending on the additive structure of the degree sequence of G (see Figure 1).
Roughly speaking, this translates to a certain “spike” in the magnitude of the characteristic function of
e(G[U ]), which rules out naïve Fourier-analytic approaches. To overcome this issue, we need to capture
the “reason” for the two-scale behavior: It turns out that this “spike” can only happen if the degree
sequence of G is in a certain sense “additively structured”, implying that there is a partition of the vertex
set into “buckets” such that vertices in the same bucket have almost the same degree. Then, if we reveal
the size of the intersection of U with each bucket, the conditional characteristic function of e(G[U ]) is
suitably bounded. We deduce conditional bounds on the point probabilities of e(G[U ]), and average
these over possible outcomes of the revealed intersection sizes of U with the buckets.

We remark that one interpretation of our proof strategy is that we are decomposing our random
variable into “components” in physical space, in such a way that each component is well-behaved in
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Fourier space. This is at least superficially reminiscent of certain techniques in harmonic analysis; see
for example [54]. Looking beyond the particular statement of Theorem 1.2, we hope that the Fourier-
analytic techniques in its proof will be useful for the general study of small-ball probability for low-degree
polynomials of independent variables, especially in settings where Gaussian behavior may break down.

1.2.2. Small-ball probability for quadratic Gaussian chaos. The general study of low-degree polynomials
of independent random variables (sometimes called chaoses) has a long and rich history. Some highlights
include Kim–Vu polynomial concentration [62], the Hanson–Wright inequality [57], the Bonami–Beckner
hypercontractive inequality (see [81]), and polynomial chaos expansion (see [49]), which are fundamental
tools in probabilistic combinatorics, high-dimensional statistics, the analysis of Boolean functions and
mathematical modelling.

Much of this study has focused on low-degree polynomials of Gaussian random variables, which enjoy
certain symmetry properties that make them easier to study. While this direction may not seem obviously
relevant to Theorem 1.2, in part of the proof we are able to apply the celebrated Gaussian invariance
principle of Mossel, O’Donnell, and Oleszkiewicz [74], to compare our random variables of interest with
certain “Gaussian analogs”. Therefore, a key step in the proof of Theorem 1.2 is to study small-ball
probability for quadratic polynomials of Gaussian random variables.

The fundamental theorem in this area is the Carbery–Wright theorem [19], which (specialized to
the quadratic case) says that for 0 < ε < 1 and any real quadratic polynomial f = f(Z1, . . . , Zn) of
independent standard Gaussian random variables Z1, . . . , Zn ∼ N (0, 1), we have

sup
x∈R

Pr[|f − x| ≤ ε] = O
(√

ε/σ(f)
)
.

This is best-possible in general (for example, Pr[|Z2
1 | ≤ ε] scales like

√
ε as ε→ 0). However, we are able

to prove (in Section 5) an optimal bound of the form O(ε/σ(f)) in the case where the degree-2 part of f
robustly has rank at least 3, in the sense of low-rank approximation (i.e. in the case where the degree-2
part of f is not close, in Frobenius3 norm, to a quadratic form of rank at most 2).

Theorem 1.6. Let Z⃗ = (Z1, . . . , Zn) ∼ N (0, 1)⊗n be a vector of independent standard Gaussian random
variables. Consider a real quadratic polynomial f(Z⃗) of Z⃗, which we may write as

f(Z⃗) = Z⃗⊺FZ⃗ + f⃗ · Z⃗ + f0

for some nonzero symmetric matrix F ∈ Rn×n, some vector f⃗ ∈ Rn, and some f0 ∈ R. Suppose that for
some η > 0 we have

min
F̃∈Rn×n

rank(F̃ )≤2

∥F − F̃∥2F
∥F∥2F

≥ η.

Then for any ε > 0 we have

sup
x∈R

Pr[|f(Z⃗)− x| ≤ ε] ≤ Cη ·
ε

σ(f(Z⃗))

for some Cη depending on η.

We remark that our robust-rank-3 assumption is best possible, in the sense that this stronger bound
may fail for quadratic forms with robust rank 2; for example Z2

1 −Z2
2 has standard deviation 2, and one

can compute that Pr[|Z2
1 − Z2

2 | ≤ ε] scales like ε log(1/ε) as ε→ 0.
We also remark that Theorem 1.6 can be interpreted as a kind of inverse theorem or structure theorem:

the only way for f(Z⃗) to exhibit atypical small-ball behavior is for f to be close to a low-rank quadratic
form (c.f. inverse theorems for the Littlewood–Offord problem [65, 77–79, 87, 91, 92]). It is also worth
mentioning a different structure theorem due to Kane [61], showing that all bounded-degree polynomials
of Gaussian random variables can be, in a certain sense, “decomposed” into a small number of parts with
typical small-ball behavior.

Finally, we remark that it would be interesting to investigate extensions of Theorem 1.6 to higher-
degree polynomials. Our proof uses diagonalization of quadratic forms in a crucial way, and new ideas
would therefore be required (the ideas in the aforementioned paper of Kane [61] may be relevant).

3The Frobenius (or Hilbert-Schmidt) norm ∥M∥F of a matrix M is the square root of the sum of the squares of its
entries.
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1.2.3. Rank of Ramsey graphs. In order to actually apply Theorem 1.6, we need to use the fact that
Ramsey graphs have adjacency matrices which robustly have high rank. A version of this fact was first
observed by the first and third authors [65], but we will need a much stronger version involving a partition
into submatrices (Lemma 10.1). We believe that the connection between rank and homogeneous sets is
of very general interest: for example, the celebrated log-rank conjecture in communication complexity
has an equivalent formulation (due to Nisan and Wigderson [80]) stating that a zero-one matrix with no
large “homogeneous rectangle” must have high rank. As part of our study of the rank of Ramsey graphs,
we prove (Proposition 10.2) that binary matrices which are close to a low-rank real matrix are also close
to a low-rank binary matrix. This may be of independent interest.

1.2.4. Switchings via moments. It turns out that in the setting of Theorem 1.2, Fourier-analytic estimates
(in combination with the previously mentioned ideas) can only take us so far: for a C-Ramsey graph we
can roughly estimate the probability that e(G[U ]) falls in a given short interval (whose length depends
only on C), but not the probability that e(G[U ]) is equal to a particular value. To obtain such precise
control, we make use of the switching method, studying small perturbations to our random set U .

Roughly speaking, the switching method works as follows. To estimate the relative probabilities of
events A and B, one designs an appropriate “switching” operation that takes outcomes satisfying A
to outcomes satisfying B. One then obtains the desired estimate via upper and lower bounds on the
number of ways to switch from an outcome satisfying A, and the number of ways to switch to an outcome
satisfying B. This deceptively simple-sounding method has been enormously influential in combinatorial
enumeration and the study of discrete random structures, and a variety of more sophisticated variations
(considering more than two events) have been considered; see [40,58] and the references therein.

In our particular situation (where we are switching between different possibilities of the set U), it does
not seem to be possible to define a simple switching operation which has a controllable effect on e(G[U ])
and for which we can obtain uniform upper and lower bounds on the number of ways to perform a switch.
Instead, we introduce an averaged version of the switching method. Roughly speaking, we define random
variables that measure the number of ways to switch between two classes, and study certain moments of
these random variables. We believe this idea may have other applications.

1.3. Notation. We use standard asymptotic notation throughout, as follows. For functions f = f(n)
and g = g(n), we write f = O(g) or f ≲ g to mean that there is a constant C such that |f(n)| ≤ C|g(n)|
for sufficiently large n. Similarly, we write f = Ω(g) or f ≳ g to mean that there is a constant c > 0
such that f(n) ≥ c|g(n)| for sufficiently large n. Finally, we write f ≍ g or f = Θ(g) to mean that f ≲ g
and g ≲ f , and we write f = o(g) or g = ω(f) to mean that f(n)/g(n) → 0 as n → ∞. Subscripts on
asymptotic notation indicate quantities that should be treated as constants.

We also use standard graph-theoretic notation. In particular, V (G) and E(G) denote the vertex set
of a graph G, and e(G) = |E(G)| denotes the numbers of vertices and edges. We write G[U ] to denote
the subgraph induced by a set of vertices U ⊆ V (G). For a vertex v ∈ V (G), its neighborhood (i.e.,
the set of vertices adjacent to v) is denoted by NG(v), and its degree is denoted degG(v) = |NG(v)|
(the subscript G will be omitted when it is clear from context). We also write NU (v) = U ∩ N(v) and
degU (v) = |NU (v)| to denote the degree of v into a vertex set U .

Regarding probabilistic notation, we write N (µ, σ2) for the Gaussian distribution with mean µ and
variance σ2. As usual, we call a random variable with distribution N (0, 1) a standard Gaussian and we
write N (0, 1)⊗n for the distribution of a sequence of n independent standard Gaussian variables. For
a real random variable X, we write φX : t 7→ EeitX for the characteristic function of X. Though less
standard, it is also convenient to write σ(X) =

√
VarX for the standard deviation of X.

We also collect some miscellaneous bits of notation. We use notation like x⃗ to denote (column) vectors,
and write x⃗I for the restriction of a vector x⃗ to the set I. We also write M [I×J ] to denote the I × J
submatrix of a matrix M . For r ∈ R, we write ∥r∥R/Z to denote the distance of r to the closest integer,
and for an integer n ∈ N, we write [n] = {1, . . . , n}. All logarithms in this paper without an explicit base
are to base e, and the set of natural numbers N includes zero.

1.4. Acknowledgments. We thank Jacob Fox for comments motivating the inclusion of Remark 1.3,
and Zach Hunter for pointing out several minor corrections to the manuscript. We also thank the two
anonymous referees for carefully reading the manuscript and many helpful comments.

2. Short deductions

We now present the short deductions of Theorems 1.1 and 1.5 from Theorem 1.2.
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Proof of Theorem 1.1 assuming Theorem 1.2. As mentioned in the introduction, Alon, Krivelevich, and
Sudakov [8, Theorem 1.1] proved that there is some α = α(C) > 0 such that the conclusion of Theorem 1.1
holds for all 0 ≤ x ≤ nα.

Fix 0 < λ < 1/2 with (1−λ)2 ≥ 1−η and let p = 1−λ. It now suffices to prove the desired statement
for nα ≤ x ≤ p2e(G), so consider such an integer x. Let us identify the vertex set of G with {1, . . . , n}.
We can find some m ∈ {1, . . . , n} such that e(G[{1, . . . ,m}]) ≥ x/p2 ≥ e(G[{1, . . . ,m − 1}]). Let G′

denote the induced subgraph of G on the vertex set {1, . . . ,m} and note that

e(G′) ≥ x/p2 ≥ e(G[{1, . . . ,m− 1}]) ≥ e(G′)−m.

Hence |x− p2e(G′)| ≤ p2m ≤ m3/2. As m2 ≥ e(G′) ≥ x/p2 ≥ nα, we have m ≥ nα/2 and therefore G′ is
a (2C/α)-Ramsey graph. Thus, for a random subset U of V (G′) = {1, . . . ,m} that includes each vertex
of G′ with probability p, by Theorem 1.2 (with A = 1) we have e(G[U ]) = e(G′[U ]) = x with probability
ΩC,λ(m

−3/2). In particular, if n and therefore m is sufficiently large with respect to C, λ, then there
exists a subset U ⊆ V (G′) ⊆ V (G) with e(G[U ]) = e(G′[U ]) = x. □

Proof of Theorem 1.5 assuming Theorem 1.2. We may assume that n is sufficiently large with respect
to C and λ (noting that the statement is trivially true for n ≤ K). Let U be a random subset of
V (G) obtained by including each vertex with probability k/n independently (recalling that Theorem 1.5
concerns a random set W of exactly k vertices). A direct computation using Stirling’s formula shows
that Pr[|U | = k] ≳λ 1/

√
n, so for each x ∈ Z, Theorem 1.2 yields

Pr[e(G[W ]) = x] = Pr
[
e(G[U ]) = x

∣∣∣|U | = k
]
≤ Pr[e(G[U ]) = x]

Pr[|U | = k]
≲C,λ

1

n
. □

It turns out that in order to prove Theorem 1.2, it essentially suffices to consider the case p = 1/2,
as long as we permit some “linear terms”. Specifically, instead of considering random variable e(G[U ])
we need to consider a random variable of the form X = e(G[U ]) +

∑
v∈U ev + e0, as in the following

theorem4.

Theorem 2.1. Fix C,H > 0. Let G be a C-Ramsey graph with n vertices, and consider e0 ∈ Z and a
vector e⃗ ∈ ZV (G) with 0 ≤ ev ≤ Hn for all v ∈ V (G). Let U ⊆ V (G) be a random vertex subset obtained
by including each vertex with probability 1/2 independently, and let X = e(G[U ]) +

∑
v∈U ev + e0. Then

sup
x∈Z

Pr[X = x] ≲C,H n−3/2

and for every fixed A > 0,
inf
x∈Z

|x−EX|≤An3/2

Pr[X = x] ≳C,H,A n−3/2.

This theorem implies Theorem 1.2 (which also allows for a sampling probability p ̸= 1/2), as we show
next. The rest of the paper will be devoted to proving Theorem 2.1.

Proof of Theorem 1.2 assuming Theorem 2.1. We may assume that n is sufficiently large with respect
to C and λ. We proceed slightly differently depending on whether p ≤ 1/2 or p > 1/2.

Case 1: p ≤ 1/2. In this case, we can realize the distribution of U by first taking a random subset U0

in which every vertex is present with probability 2p, and then considering a random subset U ⊆ U0 in
which every vertex in U0 is present with probability 1/2. By a Chernoff bound, we have |U0| ≥ pn ≥ λn
with probability 1 − oλ(n

−3/2), in which case G[U0] is a (2C)-Ramsey graph. We may thus condition
on such an outcome of U0. By Theorem 2.1, the conditional probability of the event X = x is at most
OC(|U0|−3/2) ≲C,λ n

−3/2, proving the desired upper bound.
For the lower bound, first note that e(G[U0]) has expectation (2p)2e(G) and variance σ(e(G[U0]))

2 =∑
uv,wz∈E(G) E[(1u,v∈U0

− (2p)2)(1w,z∈U0
− (2p)2)] ≤ n3 (note that there are at most n3 non-zero sum-

mands, since the summands for distinct u, v, w, z are zero). Hence by Chebyshev’s inequality and a
Chernoff bound, with probability at least 1/2 the outcome of U0 satisfies |e(G[U0])− (2p)2e(G)| ≤ 2n3/2

and |U0| ≥ λn. Conditioning on such an outcome of U0, the lower bound in Theorem 1.2 follows from
the lower bound in Theorem 2.1 applied to G[U0] (noting that x ∈ Z with |x− p2e(G)| ≤ An3/2 differs
from E[e(G[U ])|U0] = e(G[U0])/4 by at most (A+ 1)n3/2 ≤ (A+ 1)/λ3 · |U0|3/2).

4As suggested by one of the anonymous referees, it could also be of interest to consider the case where ev is allowed to
be negative (say |ev | ≤ Hn). In this generality, we can no longer hope for upper bounds of order n−3/2, but it should be
possible to adjust the methods in this paper to prove a variation of Theorem 2.1.
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Case 2: p > 1/2. In this case, we can realize the distribution of U by first taking a random subset U0

in which every vertex is present with probability 2p− 1 and then considering a random superset U ⊇ U0

in which every vertex outside U0 is present with probability 1/2.
By a Chernoff bound, we have |V (G) \ U0| ≥ (1− p)n ≥ λn with probability 1− oλ(n

−3/2), in which
case G[V (G) \ U0] is a (2C)-Ramsey graph. Conditioning on such an outcome of U0, the upper bound
in Theorem 1.2 follows from the upper bound in Theorem 2.1 applied to G[V (G) \ U0] (where now we
take e0 = e(G[U0]) and ev = degU0

(v) for each v ∈ V (G) \ U0 and H = 1/λ).
For the lower bound, observe that E[e(G[U ])|U0] = e(G[U0])+e(V (G)\U0, U0)/2+e(G[V (G)\U0])/4

has expectation Ee(G[U ]) = p2e(G) and variance at most n3 (by a similar calculation as in Case 1).
Thus, by Chebyshev’s inequality and a Chernoff bound with probability at least 1/2 the outcome of U0

satisfies |E[e(G[U ])|U0]−p2e(G)| ≤ 2n3/2 and |V (G)\U0| ≥ λn. Conditioning on such an outcome of U0,
the lower bound in Theorem 1.2 follows from the lower bound in Theorem 2.1 applied to G[V (G) \ U0]
(again taking e0 = e(G[U0]) and ev = degU0

(v) for each v ∈ V (G) \U0 and H = 1/λ and observing that
|x− E[e(G[U ])|U0]| ≤ (A+ 2)/λ3 · |V (G) \ U0|3/2). □

3. Proof discussion and outline

In the previous section, we saw how all of our results stated in the introduction follow from Theo-
rem 2.1. Here we discuss the high-level ideas of the proof of Theorem 2.1, and the obstacles that must
be overcome. Afterwards, we will outline the organization of the rest of the paper.

3.1. Central limit theorems at multiple scales. As mentioned in the introduction, our starting
point is the possibility that a local central limit theorem might hold for the random variable X =
e(G[U ]) +

∑
v∈U ev + e0 in Theorem 2.1. However, some further thought reveals that such a theorem

cannot hold in general. To appreciate this, it is illuminating to rewrite X in the so-called Fourier–Walsh
basis: define x⃗ ∈ {−1, 1}V (G) by taking xv = 1 if v ∈ U , and xv = −1 if v /∈ U . Then, we have

X = EX +
1

2

∑
v∈V (G)

(
ev +

1

2
degG(v)

)
xv +

1

4

∑
uv∈E(G)

xuxv. (3.1)

Writing L = 1
2

∑
v∈V (G)

(
ev +

1
2 degG(v)

)
xv and Q = 1

4

∑
uv∈E(G) xuxv, we have X = EX + L + Q.

Essentially, we have isolated the “linear part” L and the “quadratic part” Q of the random variable X,
in such a way that the covariance between L and Q is zero. It turns out that L typically dominates
the large-scale behavior of X: the variance of L is always of order n3, whereas the variance of Q is only
of order n2. It is easy to show that L satisfies a central limit theorem (being a sum of independent
random variables). However, this central limit theorem may break down at small scales: for example, it
is possible that in G, every vertex has degree exactly n/2, in which case (for e⃗ = 0⃗) the linear part L
only takes values in the lattice (n/8)Z.

In this (n/2)-regular case (with e⃗ = 0⃗), we might hope to prove Theorem 2.1 in two stages: having
shown that L satisfies a central limit theorem, we might hope to show that Q satisfies a local central
limit theorem after conditioning on an outcome of L (in this case, revealing L only reveals the number
of vertices in our random set U , so there is still plenty of randomness remaining for Q).

If this strategy were to succeed, it would reveal that in this case the true distribution of X is Gaussian
on two different scales: when “zoomed out”, we see a bell curve with standard deviation about n3/2, but
“zooming in” reveals a superposition of many smaller bell curves each with standard deviation about n
(see Figure 1). This kind of behavior can be described in terms of a so-called Jacobi theta function, and
has been observed in combinatorial settings before (by the second and fourth authors [88]).

3.2. An additive structure dichotomy. There are a few problems with the above plan. When G
is regular, we have the very special property that revealing L only reveals the number of vertices in U
(after which U is a uniformly random vertex set of this revealed size). There are many available tools
to study random sets of fixed size (this setting is often called the “Boolean slice”). However, in general,
revealing L may result in a very complicated conditional distribution.

We handle this issue via an additive structure dichotomy, using the notion of regularized least common
denominator (RLCD) introduced by Vershynin [95] in the context of random matrix theory (a “robust
version” of the notion of essential LCD previously introduced by Rudelson and Vershynin [87]). Roughly
speaking, we consider the RLCD of the degree sequence of G. If this RLCD is small, then the degree
sequence is “additively structured” (as in our (n/2)-regular example), which (as we prove in Lemma 4.12)
has the consequence that the vertices of G can be divided into a small number of “buckets” of vertices
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Figure 2. On the left, we obtain G as a disjoint union of two independent Erdős–Rényi random graphs
G(800, 0.96), and we consider 500000 independent samples of a uniformly random vertex subsets U with
exactly 800 vertices. The resulting histogram for e(G[U ]) may look approximately Gaussian, but closer
inspection reveals asymmetry in the tails. This is not just an artifact of small numbers: the limiting
distribution comes from a nontrivial quadratic polynomial of Gaussian random variables. Actually, it is
possible for the skew to be much more exaggerated (the curve on the right shows one possibility for the
limiting probability mass function of e(G[U ])), but this is difficult to observe computationally, as this
shape only really becomes visible for enormous graphs G.

which have roughly the same coefficient in L (i.e. the values of ev+degG(v)/2 are roughly the same). This
means that conditioning on the number of vertices of U inside each bucket is tantamount to conditioning
on the approximate value of L (crucially, this conditioning dramatically reduces the variance), while the
resulting conditional distribution is tractable to analyze.

On the other hand, if the RLCD is large, then the degree sequence is “additively unstructured”, and
the linear part L is well-mixing (satisfying a central limit theorem at scales polynomially smaller than
n). In this case, it essentially is possible5 to prove a local central limit theorem for X (this is the easier
of the two cases of the additive structure dichotomy). Concretely, an example of this case is when G is
a typical outcome of an inhomogeneous random graph on the vertex set {m/4, . . . , 3m/4}, where each
edge ij is present with probability i · j/m2 independently.

3.3. Breakdown of Gaussian behavior. Recall from the previous subsection that in the “additively
structured” case, we study the distribution of e(G[U ]) after conditioning on the sizes of the intersections
of U with our “buckets” of vertices (which, morally speaking, corresponds to “conditioning on the ap-
proximate value of L”). It turns out that even after this conditioning, a local central limit theorem may
still fail to hold, in quite a dramatic way: it can happen that, conditionally, no central limit theorem
holds at all (meaning that when we “zoom in” we do not see bell curves but some completely different
shapes). For example, if G is a typical outcome of two independent disjoint copies of the Erdős–Rényi
random graph G(n/2, 1/2), then one may think of all vertices being in the same bucket, and one can
show that the limiting distribution of e(G[U ]) conditioned on the event |U | = n/2 (up to translation and
scaling) is6 that of Z2

1 +2
√
3Z2, where Z1, Z2 are independent standard Gaussian random variables (see

Figure 2).
In general, one can use a Gaussian invariance principle [42, 43, 74] to show that the asymptotic

conditional distribution of e(G[U ]) always corresponds to some quadratic polynomial of Gaussian random
variables (see also [14,15]); instead of proving a local central limit theorem, we need to prove some type
of local limit theorem for convergence to that distribution.

In order to prove a local limit theorem of this type, it is necessary to ensure that the limiting distri-
bution (some quadratic polynomial of Gaussian random variables) is “well-behaved”. This is where the
tools discussed in Sections 1.2.2 and 1.2.3 come in: we prove that adjacency matrices of Ramsey graphs
robustly have high rank, then apply certain variations of Theorem 1.6.

3.4. Controlling the characteristic function. We are now left with the task of actually proving the
necessary local limit theorems. For this, we work in Fourier space, studying the characteristic functions
φY : τ 7→ EeiτY of certain random variables Y (namely, we need to consider both the random variable

5Strictly speaking, we do not quite obtain an estimate for point probabilities, but only for probabilities that X falls
in very short intervals (the length of the interval we can control depends on the distance from the mean and the desired
multiplicative error). Throughout this outline, we use the term “local limit theorem” in a rather imprecise way.

6Heuristically, the Z2
1 term can be explained as follows. Conditioning on |U | = n/2, the number s of vertices of U on

the left side (i.e. in the left copy of G(n/2, 1/2)) is hypergeometrically distributed, and approaches a limiting distribution of
n/4+(

√
n/4)Z1. The number of pairs of vertices in U on the same side of G is roughly (s2+(n/2−s)2)/2 = n2/4+(s−n/4)2,

and so it is distributed like n2/4 + (n/16)Z2
1 . The linear term involving Z2 comes from the random distribution of the

edges in the two copies of G(n/2, 1/2).
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X = e(G[U ])+
∑

v∈U ev+e0 and certain conditional random variables arising in the additively structured
case). Our aim is to compare Y to an approximating random variable Z (where Z is either a Gaussian
random variable or some quadratic polynomial of Gaussian random variables). This amounts to proving
a suitable upper bound on |φY (τ)−φZ(τ)|, for as broad a range of τ as possible (if one wants to precisely
estimate point probabilities Pr[Y = x], it turns out that one needs to handle all τ in the range [−π, π]).
We use different techniques for different ranges of τ ∈ R.

In the regime where τ is very small (e.g., when |τ | ≤ n0.01/σ(Y )), φY (τ) controls the large-scale
distribution of Y , so depending on the setting we either employ standard techniques for proving central
limit theorems, or a Gaussian invariance principle.

For larger τ , it will be easy to show that our approximating characteristic function φZ(τ) is expo-
nentially small in absolute value, so estimating |φY (τ)− φZ(τ)| amounts to proving an upper bound on
|φY (τ)|, exploiting cancellation in EeiτY as eiτY varies around the unit circle. Depending on the value
of τ , we are able to exploit cancellation from either the “linear” or the “quadratic” part of Y .

To exploit cancellation from the linear part, we adapt a decorrelation technique first introduced by
Berkowitz [12] to study clique counts in random graphs (see also [88]), involving a subsampling argument
and a Taylor expansion. While all previous applications of this technique exploited the particular sym-
metries and combinatorial structure of a specific polynomial of interest, here we instead take advantage
of the robustness inherent in the definition of RLCD. We hope that these types of ideas will be applicable
to the study of even more general types of polynomials.

To exploit cancellation from the quadratic part, we use the method of decoupling, building on ar-
guments of the first and third authors [65]. Our improvements involve taking advantage of Fourier
cancellation “on multiple scales”, which requires a sharpening of arguments of the first author and Su-
dakov [67] (building on work of Bukh and Sudakov [16]) concerning “richness” of Ramsey graphs.

The relevant ideas for all the Fourier-analytic estimates discussed in this subsection will be discussed
in more detail in the appropriate sections of the paper (Sections 7 and 8).

3.5. Pointwise control via switching. Unfortunately, it seems to be extremely difficult to study the
cancellations in φX(τ) for very large τ , and we are only able to control the range where |τ | ≤ ν for some
small constant ν = ν(C) (recalling that G is C-Ramsey). As a consequence, the above ideas only prove
the following weakening of Theorem 2.1 (where we control the probability of X lying in a constant-length
interval instead of being equal to a particular value).

Theorem 3.1. Fix C > 0. There is B = B(C) > 0 so the following holds for any fixed H > 0. Let G be
an C-Ramsey graph with n vertices, and consider e0 ∈ R and a vector e⃗ ∈ RV (G) with 0 ≤ ev ≤ Hn for
all v ∈ V (G). Let U ⊆ V (G) be a random vertex subset obtained by including each vertex with probability
1/2 independently, and let X = e(G[U ]) +

∑
v∈U ev + e0. Then

sup
x∈Z

Pr[|X − x| ≤ B] ≲C,H n−3/2,

and for every fixed A > 0,

inf
x∈Z

|x−EX|≤An3/2

Pr[|X − x| ≤ B] ≳C,H,A n−3/2.

Theorem 3.1 already implies the upper bound in Theorem 2.1, but not the lower bound. In Section 13,
we deduce the desired lower bound on point probabilities from Theorem 3.1 (interestingly, this deduction
requires both the lower and the upper bound in Theorem 3.1). As mentioned in the introduction, for
this deduction, we introduce an “averaged” version of the so-called switching method. In particular, for
ℓ ∈ {−B, . . . , B}, we consider the pairs of vertices (y, z) with y ∈ U and z /∈ U such that modifying U
by removing y and adding z (a “switch”) increases e(G[U ]) by exactly ℓ. We define random variables
that measure the number of ways to perform such switches, and deduce Theorem 2.1 by studying certain
moments of these random variables. Here we again need to use some arguments involving “richness” of
Ramsey graphs, and we also make use of the technique of dependent random choice.

3.6. Technical issues. The above subsections describe the high-level ideas of the proof, but there are
various technical issues that arise, some of which have a substantial impact on the complexity of the
proof. Most importantly, in the additively structured case, we outlined how to prove a conditional local
limit theorem for the quadratic part Q, but we completely swept under the rug how to then “integrate”
this over outcomes of the conditioning. Explicitly, if we encode the bucket intersection sizes in a vector
∆⃗, we have outlined how to use Fourier-analytic techniques to prove certain estimates on conditional
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probabilities of the form Pr[|X − x| ≤ B|∆⃗], but we then need to average over the randomness of ∆⃗ to
obtain Pr[|X − x| ≤ B] = E[Pr[|X − x| ≤ B|∆⃗]] (taking into account that certain outcomes of ∆⃗ give a
much larger contribution than others).

There are certain relatively simple arguments with which we can accomplish this averaging while
losing logarithmic factors in the final probability bound (namely, using a concentration inequality for
Q conditioned on ∆⃗, we can restrict to only a certain range of outcomes ∆⃗ which give a significant
contribution to the overall probability Pr[|X − x| ≤ B]). To avoid logarithmic losses, we need to make
sure that our conditional probability bounds “decay away from the mean”, which requires a non-uniform
version of Theorem 1.6 (with a decay term), and some specialized tools for converting control of |φY (τ)−
φZ(τ)| into bounds on small-ball probabilities for Y . Also, we need some delicate moment estimates
comparing dependent random variables of “linear” and “quadratic” types, to quantify the dependence
between certain fluctuations in the conditional mean and variance as we vary ∆⃗.

Furthermore, for the switching argument described in the previous subsection, it is important (for
technical reasons discussed in Remark 13.2) that in the setting of Theorem 3.1, B does not depend on
A and H. To achieve this, we develop Fourier-analytic tools that take into account “local smoothness”
properties of the approximating random variable Z.

3.7. Organization of the paper. In Section 4 we collect a variety of (mostly known) tools which
will be used throughout the paper. Then, in Section 5 we prove Theorem 1.6 (our sharp small-ball
probability estimate for quadratic polynomials of Gaussians), and in Section 6 we prove some general
“relative” Esseen-type inequalities deducing bounds on small-ball probabilities from Fourier control.

In Sections 7 and 8 we obtain bounds on the characteristic function φX(τ) for various ranges of τ
(specifically, bounds due to “cancellation of the linear part” appear in Section 7, and bounds due to
“cancellation of the quadratic part” appear in Section 8). This is already enough to handle the additively
unstructured case of Theorem 3.1, which we do in Section 9.

Most of the rest of the paper is then devoted to the additively structured case of Theorem 3.1. In
Section 10 we study the “robust rank” of Ramsey graphs, and in Section 11 we prove some lemmas about
quadratic polynomials on products of Boolean slices. All the ingredients collected so far come together
in Section 12, where the additively structured case of Theorem 3.1 is proved.

Finally, in Section 13 we use a switching argument to deduce Theorem 2.1 from Theorem 3.1.

4. Preliminaries

In this section we collect some basic definitions and tools that will be used throughout the paper.

4.1. Basic facts about Ramsey graphs. First, as mentioned in the introduction, the following clas-
sical result about Ramsey graphs is due to Erdős and Szemerédi [39].

Theorem 4.1. For any C, there exists ε = ε(C) > 0 such that for every sufficiently large n, every
C-Ramsey graph G on n vertices satisfies ε

(
n
2

)
≤ e(G) ≤ (1− ε)

(
n
2

)
.

Remark 4.2. In the setting of Remark 1.3, where G has near-optimal spectral expansion, the expander
mixing lemma (see for example [10, Corollary 9.2.5]) implies that (for sufficiently large n) all subsets of
G with at least n1/2+0.02 vertices have density very close to the overall density of G. It is possible to use
this fact in lieu of Theorem 4.1 in our proof of Theorem 2.1.

More recently, building on work of Bukh and Sudakov [16], the first author and Sudakov [67] proved
that every Ramsey graph contains an induced subgraph in which the collection of vertex-neighborhoods
is “rich”. Intuitively speaking, the richness condition here means that for all linear-size vertex subsets W ,
there are only very few vertex-neighborhoods that have an unusually large or unusually small intersection
with W .

Definition 4.3. Consider δ, ρ, α > 0. We say that an m-vertex graph G is (δ, ρ, α)-rich if for every
subset W ⊆ V (G) of size |W | ≥ δm, there are at most mα vertices v ∈ V (G) with the property that
|N(v) ∩W | ≤ ρ|W | or |W \N(v)| ≤ ρ|W |.

When the parameter α is omitted, it is assumed to take the value 1/5. That is to say, we write
“(δ, ρ)-rich” to mean “(δ, ρ, 1/5)-rich”.

The following lemma is a slight generalization of [67, Lemma 4] (and is proved in the same way).
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Lemma 4.4. For any fixed C,α > 0, there exists ρ = ρ(C,α) with 0 < ρ < 1 such that the following
holds. For n sufficiently large in terms of C and α, for any m ∈ R with

√
n ≤ m ≤ ρn, and any

C-Ramsey graph G on n vertices, there is an induced subgraph of G on at least m vertices which is
((m/n)ρ, ρ, α)-rich.

For two disjoint vertex sets U,W in a graph G, we write e(U,W ) for the number of edges between
U,W and write d(U,W ) = e(U,W )/(|U ||W |) for the density between U,W . We furthermore write
d(U) = e(U)/

(|U |
2

)
for the density inside the set U .

Proof. We introduce an additional parameter K, which will be chosen to be large in terms of C and α.
We will then choose ρ = ρ(C,α) with 0 < ρ < 1 to be small in terms of K, C, and α. We do not specify
the values of K and ρ ahead of time, but rather assume they are sufficiently large or small to satisfy
certain inequalities that arise in the proof.

Let δ = (m/n)ρ and suppose for the purpose of contradiction that every set of at least m vertices
fails to induce a (δ, ρ, α)-rich subgraph. We will inductively construct a sequence of induced subgraphs
G = G[U0] ⊇ G[U1] ⊇ · · · ⊇ G[UK ] and disjoint vertex sets S1, . . . , SK of size |S1| = · · · = |SK | = ⌈mα/2⌉
such that for each i = 1, . . . ,K, we have |Ui| ≥ (δ/4)|Ui−1| and Si ⊆ Ui−1 \ Ui, as well as[

e(Si, {u}) ≤ 4ρ · |Si| for all u ∈ Ui

]
or
[
e(Si, {u}) ≥ (1− 4ρ) · |Si| for all u ∈ Ui

]
.

This will suffice, as follows. First note that for each i = 1, . . . ,K, we have[
d(Si, Sj) ≤ 4ρ for all j ∈ {i+ 1, . . . ,K}

]
or
[
d(Si, Sj) ≥ 1− 4ρ for all j ∈ {i+ 1, . . . ,K}

]
.

Without loss of generality suppose that the first case holds for at least half of the indices i = 1, . . . ,K,
and let S be the union of the corresponding sets Si. Then one can compute d(S) ≤ 4ρ + 1/K. On the
other hand |S| ≥ (K/2) ·mα/2 ≥ mα ≥ nα/2 and therefore G[S] is a (2C/α)-Ramsey graph. However,
now the density bound d(S) ≤ 4ρ + 1/K contradicts Theorem 4.1 if ρ is sufficiently small and K is
sufficiently large (in terms of C and α).

Let U0 = V (G). For i = 1, . . . ,K we will construct the vertex sets Ui and Si, assuming that
U0, . . . , Ui−1 and S1, . . . , Si−1 have already been constructed. Note that we have |Ui−1| ≥ (δ/4)i−1n ≥
(δ/4)Kn = (m/n)ρK4−Kn ≥ m, using that ρK ≤ 1/3 and m/n ≤ ρ ≤ 8−K for ρ being sufficiently small
with respect to K. Therefore, by our assumption, Ui−1 must contain a set W of at least δ|Ui−1| vertices
and a set Y of more than |Ui−1|α ≥ mα vertices contradicting (δ, ρ, α)-richness. Suppose without loss of
generality that |N(v) ∩W | ≤ ρ|W | for at least half of the vertices v ∈ Y , and let Si ⊆ Y ⊆ Ui−1 be a
set of precisely ⌈mα/2⌉ such vertices v ∈ Y . Then, let U = W \ Si ⊆ Ui−1 \ Si and note that we have
|U | ≥ |W |/2 since |W | ≥ δ|Ui−1| ≥ 4 · (δ/4)Kn ≥ 4m ≥ 2|Si|. Furthermore, let Ui ⊆ U be the set of
vertices u ∈ U with e(Si, {u}) ≤ 4ρ · |Si|. Now, we just need to show |Ui| ≥ (δ/4)|Ui−1|. To this end,
note that for all v ∈ Si we have e({v}, U) = |N(v) ∩ U | ≤ |N(v) ∩W | ≤ ρ|W | ≤ 2ρ|U |. Hence,

|U \ Ui| · 4ρ · |Si| ≤
∑

w∈U\Ui

e(Si, {w}) = e(Si, U \ Ui) ≤ e(Si, U) =
∑
v∈Si

e({v}, U) ≤ |Si| · 2ρ|U |,

implying that |U \ Ui| ≤ |U |/2 and hence |Ui| ≥ |U |/2 ≥ |W |/4 ≥ (δ/4)|Ui−1|, as desired. □

Remark 4.5. In the setting of Remark 1.3, where G is dense and has near-optimal spectral expansion (and
n is sufficiently large), the expander mixing lemma can be used to prove that every induced subgraph
of G on at least n0.9 vertices is (n−0.05, 0.005, α)-rich (and therefore Lemma 4.4 holds) for α ≥ 0.2. It is
possible to use this in lieu of Lemma 4.4 in our proof of Theorem 2.1.

4.2. Characteristic functions and anticoncentration. For a real random variable X, recall that the
characteristic function φX : R → C is defined by φX(t) = E[eitX ]. Note that we have |φX(t)| ≤ 1 for all
t ∈ R. If φX(t) is absolutely integrable, then X has a continuous density pX , which can be obtained by
the inversion formula

pX(u) =
1

2π

∫ ∞

−∞
e−ituφX(t) dt. (4.1)

Next, recall the Lévy concentration function, which measures the maximum small-ball probability.

Definition 4.6. For a real random variable X and ε ≥ 0, we define L(X, ε) = supx∈R Pr[|X − x| ≤ ε].

If X has a density pX , then we trivially have L(X, ε) ≤ εmaxx∈R pX(x). We can also control small-ball
probabilities using only a certain range of values of the characteristic function, via Esseen’s inequality
(see for example [86, Lemma 6.4]):
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Theorem 4.7. There is C4.7 > 0 so that for any real random variable X and any ε > 0, we have

L(X, ε) ≤ C4.7 · ε
∫ 2/ε

−2/ε

|φX(t)| dt.

In Section 6 we will prove some more sophisticated “relative” variants of Theorem 4.7.

4.3. Distance-to-integer estimates, and regularized least common denominator. For r ∈ R,
let ∥r∥R/Z denote the (Euclidean) distance of r to the nearest integer. Recall that the Rademacher
distribution is the uniform distribution on the set {−1, 1}. If x is Rademacher-distributed, then for any
r ∈ R we have the well-known estimate

|E[exp(irx)]| = |cos(r)| ≤ 1− ∥r/π∥2R/Z ≤ exp(−∥r/π∥2R/Z). (4.2)

If ξ⃗ ∈ {0, 1}n is a uniformly random length-n binary vector, then for any a⃗ ∈ Rn and any b ∈ R, we can
rewrite a⃗ · ξ⃗ + b as a weighted sum of independent Rademacher random variables. Specifically, we have
a⃗ · ξ⃗ + b = r⃗ · x⃗ + E[⃗a · ξ⃗ + b], where r⃗ = a⃗/2 ∈ Rn and x⃗ ∈ {−1, 1}n is obtained from ξ⃗ ∈ {0, 1}n by
replacing all zeroes by −1’s. Then x⃗ is uniformly random in {−1, 1}n, so (4.2) yields

|E[exp(i(⃗a · ξ⃗ + b))]| = |E[exp(i(r⃗ · x⃗))]| =
n∏

j=1

|E[exp(irjxj)]| ≤ exp

(
−

n∑
j=1

∥aj/(2π)∥2R/Z

)
. (4.3)

In the case where we want to study a⃗ · x⃗ where x⃗ ∈ {0, 1}n is a uniformly random binary vector with a
given number of ones (i.e., a random vector on a Boolean slice), one has the following estimate.

Lemma 4.8. Fix c > 0. Let a⃗ ∈ Rn, and suppose that for some 0 < δ ≤ 1/2 there are disjoint pairs
{i1, j1}, . . . , {iM , jM} ⊆ [n] such that ∥(aik − ajk)/(2π)∥R/Z ≥ δ for each k = 1, . . . ,M . Let s be an
integer with cn ≤ s ≤ (1 − c)n. Then for a random zero-one vector ξ⃗ ∈ {0, 1}n with exactly s ones, we
have

|E[exp(i(⃗a · ξ⃗))]| ≲ exp
(
−Ωc(Mδ2)

)
.

Lemma 4.8 can be deduced from [85, Theorem 1.1]. For the reader’s convenience we include an
alternative proof, reducing it to (4.3).

Proof. We may assume that M ≤ cn/4 (indeed, noting that M ≤ n/2 we can otherwise just replace M
by ⌊cn/4⌋). The random vector ξ⃗ corresponds to a uniformly random subset U ⊆ [n] of size s. Let us
first expose the intersection sizes |U ∩{i1, j1}|, . . . , |U ∩{iM , jM}|, one at a time. For each k = 1, . . . ,M
we have |U ∩ {ik, jk}| = 1 with probability at least c(1− c)/4 even when conditioning on any outcomes
for the previously exposed intersection sizes |U ∩ {i1, j1}|, . . . , |U ∩ {ik−1, jk−1}|. Hence the number
of indices k ∈ [M ] with |U ∩ {ik, jk}| = 1 stochastically dominates a binomial random variable with
distribution Bin(M, c(1 − c)/4). Thus, by a Chernoff bound (see e.g. Lemma 4.16), with probability at
least 1− exp(−Ωc(M)) there is a set K ⊆ [M ] of at least c(1− c)M/8 indices k with |U ∩ {ik, jk}| = 1.
Let us expose and condition on all coordinates of ξ⃗ ∈ {0, 1}n except those in

⋃
k∈K{ik, jk}. The only

remaining randomness of the vector ξ⃗ ∈ {0, 1}n is that for each k ∈ K we have either ξik = 1 or ξjk = 1
(each with probability 1/2, independently for all k ∈ K). Thus, after all of this conditioning, we have
a⃗ · ξ⃗ =

∑
k∈K(aik − ajk)ξik + b for some b ∈ R, where (ξik)k∈K ∈ {0, 1}K is uniformly random. Thus,

(4.3) implies |E[exp(i(⃗a · ξ⃗))]| ≤ exp(−
∑

k∈K ∥(aik − ajk)/(2π)∥2R/Z) ≤ exp(−Ωc(Mδ2)), as desired. □

The above estimates motivate the notion of the essential least common denominator (LCD) of a vector
v⃗ ∈ Sn−1 ⊆ Rn (where Sn−1 is the unit sphere in Rn). The following formulation of this notion was
proposed by Rudelson (see [95, (1.17)] and the remarks preceding), in the context of random matrix
theory.

Definition 4.9 (LCD). For t > 0, let log+ t = max{0, log t}. For L ≥ 1 and v⃗ ∈ Sn−1 ⊆ Rn, the
(essential) least common denominator7 DL(v⃗) is defined as

DL(v⃗) = inf
{
θ > 0 : dist(θv⃗,Zn) < L

√
log+(θ/L)

}
.

(Here dist(θv⃗,Zn) =
√∑n

i=1 ∥θvi∥2R/Z denotes the Euclidean distance from θv⃗ to the nearest point in the
integer lattice Zn.)

7To briefly explain the name “LCD”, recall that the ordinary least common denominator of the entries of a rational
vector v⃗ ∈ Sn−1 ∩ Qn is inf{θ > 0: dist(θv⃗,Zn) = 0}.
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The following lemma gives a lower bound on the LCD of a unit vector v⃗ in terms of ∥v⃗∥∞.

Lemma 4.10 ([95, Lemma 6.2]). If v⃗ ∈ Sn−1 and L ≥ 1, then

DL(v⃗) ≥ 1/(2∥v⃗∥∞).

Proof. Note that for θ ≤ 1/(2∥v⃗∥∞) we have that ∥θv⃗∥∞ ≤ 1/2. Thus we have that

dist(θv⃗,Zn) = dist(θv⃗, 0⃗) = θ > L
√
log+(θ/L)

where we have used that x >
√
log+(x) for x > 0. The result follows by the definition of LCD. □

If DL(v⃗) is large, then we can obtain strong control over the characteristic function of random variables
of the form v⃗ · x⃗, for an i.i.d. Rademacher vector x⃗ (specifically, we are able to compare such characteristic
functions to the characteristic function φZ(t) = e−t2/2 of a standard Gaussian Z ∼ N (0, 1)). However,
if DL(v⃗) is small, then in a certain sense v⃗ is “additively structured”, and we can deduce certain com-
binatorial consequences. Actually, to obtain the consequences we need, we will use the following more
robust notion known as regularized LCD, introduced by Vershynin [95].

Definition 4.11 (regularized LCD). Fix L ≥ 1 and 0 < γ < 1. For a vector v⃗ ∈ Rn with fewer than
n1−γ zero coordinates, the regularized least common denominator (RLCD) D̂L,γ(v⃗), is defined as

D̂L,γ(v⃗) = max{DL(v⃗I/∥v⃗I∥2) : |I| = ⌈n1−γ⌉},
where v⃗I ∈ RI denotes the restriction of v⃗ to the indices in I.

If a vector d⃗ is “additively structured” in the sense of having small RLCD, we can partition its index
set into a small number of “buckets” such that the values of di are similar inside each bucket. This is
closely related to ε-net arguments using LCD assumptions that have previously appeared in the random
matrix theory literature (see for example [86, Lemma 7.2]).

Lemma 4.12. Fix H > 0 and 0 < γ < 1/4 and L ≥ 1. Let d⃗ ∈ Rn
≥0 be a vector such that ∥d⃗∥∞ ≤ Hn

and ∥d⃗S∥2 ≥ n3/2−2γ for every subset S ⊆ [n] of size |S| = ⌈n1−γ⌉, and assume that n is sufficiently
large with respect to H, γ and L.

If D̂L,γ(d⃗) ≤ n1/2, then there exists a partition [n] = R∪(I1∪· · ·∪Im) and real numbers κ1, . . . , κm ≥ 0
with |R| ≤ n1−γ and |I1| = · · · = |Im| = ⌈n1−2γ⌉ such that for all j = 1, . . . ,m and i ∈ Ij we have
|di − κj | ≤ n1/2+4γ .

Proof. Choose a partition [n] = R ∪ (I1 ∪ · · · ∪ Im) and κj ≥ 0 for j = 1, . . . ,m with |I1| = · · · = |Im| =
⌈n1−2γ⌉ such that |di − κj | ≤ n1/2+4γ for all 1 ≤ j ≤ m and i ∈ Ij , such that m is as large as possible.
It then suffices to prove that |R| ≤ n1−γ .

So let us assume for contradiction that |R| > n1−γ , and fix a subset S ⊆ R of size |S| = ⌈n1−γ⌉.
Note that DL(d⃗S/∥d⃗S∥2) ≤ D̂L,γ(d⃗) ≤ n1/2 by Definition 4.11. Furthermore, since ∥d⃗S/∥d⃗S∥2∥∞ ≤
Hn/n3/2−2γ = Hn−1/2+2γ , Lemma 4.10 implies DL(d⃗S/∥d⃗S∥2) ≥ (H−1/2)n1/2−2γ . Thus, by Defini-
tion 4.9, there is some θ ∈ [(H−1/2)n1/2−2γ , 2n1/2] such that

∥(θ/∥d⃗S∥2)d⃗S − w⃗∥2 ≤ L
√
log+(θ/L) ≤ L

√
log n (4.4)

for some w⃗ ∈ ZS . By choosing w⃗ to minimize the left-hand side, we may assume that w⃗ has nonnegative
entries (recall that d⃗ has nonnegative entries).

Now, the number of indices i ∈ S with |(θ/∥d⃗S∥2)di − wi| > n−1/2+2γ is at most

∥(θ/∥d⃗S∥2)d⃗S − w⃗∥22
n−1+4γ

≤ L2 log n

n−1+4γ
≤ n1−3γ .

Furthermore, note that θ ≤ 2n1/2 and (4.4) imply ∥w⃗∥2 ≤ 3n1/2, and hence the number of indices i ∈ S
with wi ≥ n2γ/3 is at most 9n1−4γ/3. Thus, as |S| = ⌈n1−γ⌉, there must be at least |S|/2 ≥ n1−γ/2

indices i ∈ S with |(θ/∥d⃗S∥2)di − wi| ≤ n−1/2+2γ and wi ∈ [0, n2γ/3] ∩ Z. Hence by the pigeonhole
principle there is some κ ≥ 0 and a subset Im+1 ⊆ S ⊆ R of size |Im+1| = ⌈n1−2γ⌉ such that for all
i ∈ Im+1 we have wi = κ and

|(θ/∥d⃗S∥2)di − κ| = |(θ/∥d⃗S∥2)di − wi| ≤ n−1/2+2γ =
n1/2−2γ

n(1−γ)/2n
· n1/2+(7/2)γ ≲H

θ

∥d⃗S∥2
· n1/2+(7/2)γ .

Defining κm+1 = (∥d⃗S∥2/θ)κ ≥ 0, this implies |di − κm+1| ≤ n1/2+4γ for all i ∈ Im+1. But now the
partition V (G) = (R \ Im+1) ∪ (I1 ∪ · · · ∪ Im+1) contradicts the maximality of m. □
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4.4. Low-rank approximation. Recall the definition of the Frobenius norm (also called the Hilbert–
Schmidt norm): for a matrix M ∈ Rn×n, we have

∥M∥F =
( n∑

i,j=1

M2
ij

)1/2
=
√
trace(M⊺M).

If M is symmetric, then ∥M∥2F is the sum of squares of the eigenvalues of M (with multiplicity).
Famously, Eckart and Young [31] proved that for any real matrix M , the degree to which M can be

approximated by a low-rank matrix M̃ can be described in terms of the spectrum of M . The following
statement is specialized to the setting of real symmetric matrices.

Theorem 4.13. Consider a symmetric matrix M ∈ Rn×n, and let λ1, . . . , λn be its eigenvalues. Then
for any r = 0, . . . , n we have

min
M̃∈Rn×n

rank(M̃)≤r

∥M − M̃∥2F = min
I⊆[n]

|I|=n−r

∑
i∈I

λ2i ,

where the minimum is over all (not necessarily symmetric8) matrices M̃ ∈ Rn×n with rank at most r.

4.5. Analysis of Boolean functions. In this subsection we collect some tools from the theory of
Boolean functions. A thorough introduction to the subject can be found in [81].

Consider a multilinear polynomial f(x1, . . . , xn) =
∑

S⊆[n] aS
∏

i∈S xi. An easy computation shows
that if x⃗ is a sequence of independent Rademacher or independent standard Gaussian random variables,
then E[f(x⃗)] = a∅ and

Var[f(x⃗)] =
∑

∅̸=S⊆[n]

a2S . (4.5)

Thus, in the case deg f = 2, we can consider the contributions to the variance Var[f(x⃗)] coming from
the “linear” part and the “quadratic” part. This will be important in our proof of Theorem 2.1.

We will need the following bound on moments of low-degree polynomials of Rademacher or standard
Gaussian random variables (which is a special case of a phenomenon called hypercontractivity).

Theorem 4.14 ([81, Theorem 9.21]). Let f be a polynomial in n variables of degree at most d. Let x⃗ =
(x1, . . . , xn) either be a vector of independent Rademacher random variables or a vector of independent
standard Gaussian random variables. Then for any real number q ≥ 2, we have

E
[
|f(x⃗)|q

]1/q ≤
(√

q − 1
)dE[f(x⃗)2]1/2.

We emphasize that we do not require f(x⃗) to have mean zero, so in the general setting of Theorem 4.14
one does not necessarily have E[f(x⃗)2]1/2 = σ(f(x⃗)) (though in our proof of Theorem 2.1 we will only
apply Theorem 4.14 in the case where E[f(x⃗)] = 0).

Note that [81, Theorem 9.21] is stated only for Rademacher random variables; the Gaussian case of
Theorem 4.14 follows by approximating Gaussian random variables with sums of Rademacher random
variables, using the central limit theorem.

Next, one can use Theorem 4.14 to obtain the following concentration inequality. The Rademacher
case is stated as [81, Theorem 9.23], and the Gaussian case may be proved in the same way.

Theorem 4.15. Let f be a polynomial in n variables of degree at most d. Let x⃗ = (x1, . . . , xn) either
be a vector of independent Rademacher random variables or a vector of independent standard Gaussian
random variables. Then for any t ≥ (2e)d/2,

Pr
[
|f(x⃗)| ≥ t(E[f(x)2])1/2

]
≤ exp

(
− d

2e
t2/d

)
.

4.6. Basic concentration inequalities. We will frequently need the Chernoff bound for binomial and
hypergeometric distributions (see for example [59, Theorems 2.1 and 2.10]). Recall that the hypergeo-
metric distribution Hyp(N,K, n) is the distribution of |Z ∩ U |, for fixed sets U ⊆ S with |S| = N and
|U | = K and a uniformly random size-n subset Z ⊆ S.

Lemma 4.16 (Chernoff bound). Let X be either:
• a sum of independent random variables, each of which take values in {0, 1}, or

8It is easy to show that there is always a symmetric matrix M̃ which attains this minimum, though this will not be
necessary for us.
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• hypergeometrically distributed (with any parameters).
Then for any δ > 0 we have

Pr[X ≤ (1− δ)EX] ≤ exp(−δ2EX/2), Pr[X ≥ (1 + δ)EX] ≤ exp(−δ2EX/(2 + δ)).

We will also need the following concentration inequality, which is a simple consequence of the Azuma–
Hoeffding martingale concentration inequality (a special case appears in [53, Corollary 2.2], and the
general case follows from the same proof).

Lemma 4.17. Consider a partition [n] = I1 ∪ · · · ∪ Im, and sequences (ℓ1, . . . , ℓm), (ℓ′1, . . . , ℓ
′
m) ∈ Nm

with ℓk + ℓ′k ≤ |Ik| for k = 1, . . . ,m (and ℓ1 + · · · + ℓm + ℓ′1 + · · · + ℓ′m > 0). Let S ⊆ {−1, 0, 1}n
be the set of vectors x⃗ ∈ {−1, 0, 1}n such that x⃗Ik has exactly ℓk entries being 1 and exactly ℓ′k entries
being −1 for each k = 1, . . . ,m. Let a > 0 and suppose that f : S → R is a function such that we have
|f(x⃗)− f(x⃗′)| ≤ a for any two vectors x⃗, x⃗′ ∈ S which differ in precisely two coordinates (i.e., which are
obtained from each other by switching two entries inside some set Ik). Then for a uniformly random
vector x⃗ ∈ S and any t ≥ 0 we have

Pr[|f(x⃗)− Ef(x⃗)| ≥ t] ≤ 2 exp

(
− t2

2 · (ℓ1 + · · ·+ ℓm + ℓ′1 + · · ·+ ℓ′m) · a2

)
.

Proof. We sample a uniformly random vector x⃗ ∈ S in ℓ := ℓ1+ · · ·+ ℓm+ ℓ′1+ · · ·+ ℓ′m steps, as follows.
In the first ℓ1 steps, we pick the ℓ1 indices i ∈ I1 such that xi = 1 (at each step, pick an index i ∈ I1
uniformly at random among the indices where xi is not yet defined, and define xi = 1). In the next ℓ2
steps we pick the ℓ2 indices i ∈ I2 such that xi = 1, and so on. After ℓ1 + · · ·+ ℓm steps we have defined
all the 1-entries of x⃗. Now, we repeat the procedure (for ℓ′1 + · · ·+ ℓ′m steps) for the −1-entries.

For t = 0, . . . , ℓ, define Xt to be the expectation of f(x⃗) conditioned on the coordinates of x⃗ defined
up to step t. Then X0, . . . , Xt is the Doob martingale associated to our process of sampling x⃗. Note
that X0 = Ef(x⃗) and Xℓ = f(x⃗).

We claim that we always have |Xt − Xt−1| ≤ a for t = 1, . . . , ℓ. Indeed, let us condition on any
outcomes of the first t − 1 steps of our process of sampling x⃗. Now, for any two possible indices i and
i′ chosen the t-th step, we can couple the possible outcomes of x⃗ if i is chosen in the t-th step with
the possible outcomes of x⃗ if i′ is chosen in the t-th step, simply by switching the i-th and the i′-th
coordinate. Using our assumption on f , this shows that for any two possible outcomes in the t-th step
the corresponding conditional expectations differ by at most a. This implies |Xt−Xt−1| ≤ a, as claimed.

Now the inequality in the lemma follows from the Azuma–Hoeffding inequality for martingales (see
for example [59, Theorem 2.25]). □

5. Small-ball probability for quadratic polynomials of Gaussians

In this section we prove Theorem 1.6, which we reproduce for the reader’s convenience. For the sake
of convenience in the proofs and statements, in this section the notation a ≲ b simply means that a ≤ Cb
for some constant C (i.e., there is no stipulation that n, the number of variables, be large).

Theorem 1.6. Let Z⃗ = (Z1, . . . , Zn) ∼ N (0, 1)⊗n be a vector of independent standard Gaussian random
variables. Consider a real quadratic polynomial f(Z⃗) of Z⃗, which we may write as

f(Z⃗) = Z⃗⊺FZ⃗ + f⃗ · Z⃗ + f0

for some nonzero symmetric matrix F ∈ Rn×n, some vector f⃗ ∈ Rn, and some f0 ∈ R. Suppose that for
some η > 0 we have

min
F̃∈Rn×n

rank(F̃ )≤2

∥F − F̃∥2F
∥F∥2F

≥ η.

Then for any ε > 0 we have

L(f(Z⃗), ε) ≲η
ε

σ(f(Z⃗))
.

Remark 5.1. By Theorem 4.13, the robust rank assumption in Theorem 1.6 is equivalent to the assump-
tion that every subset I ⊆ [n] of size |I| = n− 2 satisfies

∑
i∈I λ

2
i ≥ η(λ21 + · · · + λ2n), where λ1, . . . , λn

denote the eigenvalues of F .
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We remark that for any real random variable X, one can use Chebyshev’s inequality to show that
L(X, ε) = Ω(ε/σ(X)), so the bound in Theorem 1.6 is best-possible.

In the proof of Theorem 2.1, we will actually need a slightly more technical non-uniform version of
Theorem 1.6 that decays away from the mean (at a high level, this is proved by combining Theorem 1.6
with the hypercontractive tail bound in Theorem 4.15, via a “splitting” technique; for this splitting
technique we need our rank assumption to be slightly stronger than in Theorem 1.6). We will also need
a lower bound on the probability that f(Z⃗) falls in a given interval of length ε, as long as this interval
is relatively close to Ef(Z⃗), and lies on “the correct side” of Ef(Z⃗) (this lower bound requires no rank
assumption).

Theorem 5.2. Let Z⃗ = (Z1, . . . , Zn) ∼ N (0, 1)⊗n be a vector of independent standard Gaussian random
variables. Consider a non-constant real quadratic polynomial f(Z⃗) of Z⃗, which we may write as

f(Z⃗) = Z⃗⊺FZ⃗ + f⃗ · Z⃗ + f0

for some symmetric matrix F ∈ Rn×n, some vector f⃗ ∈ Rn and some f0 ∈ R.
(1) Suppose that F is nonzero and

min
F̃∈Rn×n

rank(F̃ )≤3

∥F − F̃∥2F
∥F∥2F

≥ η.

Then for any x ∈ R and any 0 ≤ ε ≤ σ(f), we have

Pr[f − Ef ∈ [x, x+ ε]] ≲η
ε

σ(f)
exp

(
−Ω

(
|x|
σ(f)

))
.

(2) Let λ1, . . . , λn be the eigenvalues of F . Suppose that |λi| ≤ λ1 for i = 1, . . . , n. Then for any
A > 0 and 0 ≤ ε ≤ σ(f), we have

inf
0≤x≤Aσ(f)

Pr[f − Ef ∈ [x, x+ ε]] ≳A
ε

σ(f)
.

Remark 5.3. Note that the infimum in (2) is only over nonnegative x (this nonnegativity assumption
corresponds to our implicit assumption that λ1 ≥ 0). A two-sided bound is not possible in general, as
the polynomial f(Z⃗) = Z2

1 shows. Also, while the rank assumption in Theorem 1.6 (robustly having rank
at least 3) was best-possible, we believe that the rank assumption in Theorem 5.2(1) (robustly having
rank at least 4) can be improved; it would be interesting to investigate this further (e.g., one might try
to prove Theorem 5.2(1) directly rather than deducing it from Theorem 1.6 via our splitting technique).

In addition, in Theorem 5.2(2), the quantitative bound for implicit constant hidden by “≳A” is rather
poor; our proof provides a dependence of the form exp(− exp(O(A2))). We believe that the correct
dependence is exp(−O(A2)), and it may be interesting to prove this.

By orthogonal diagonalization of F and the invariance of the distribution of Z⃗ under orthonormal
transformations, in the proofs of Theorems 1.6 and 5.2 we can reduce to the case where f(Z⃗) = a0 +∑n

i=1(aiZi + λiZ
2
i ) for some a0, . . . , an ∈ R. This is a sum of independent random variables, so we can

proceed using Fourier-analytic techniques.
The rest of this section proceeds as follows. First, in Section 5.1, we prove Lemma 5.5, which en-

capsulates certain Fourier-analytic estimates that are effective when no individual term aiZi + λiZ
2
i

contributes too much to the variance of f(Z⃗) (essentially, these are the estimates one needs for a central
limit theorem).

Second, in Section 5.2 we prove the uniform upper bound in Theorem 1.6. In the case where no
individual term contributes too much to the variance of f(Z⃗) we use Lemma 5.5, and otherwise we need
some more specialized Fourier-analytic computations.

Third, in Section 5.3 we prove the lower bound in Theorem 5.2(2). Again, we use Lemma 5.5 in the
case where no individual term contributes too much to the variance of f(Z⃗), while in the case where one
of the terms is especially influential we perform an explicit (non-Fourier-analytic) computation.

Then, in Section 5.4 we deduce the non-uniform upper bound in Theorem 5.2(1) from Theorem 1.6,
using a “splitting” technique.

Finally, in Section 5.5 we prove an auxiliary technical estimate on characteristic functions of quadratic
polynomials of Gaussian random variables, in terms of the “rank robustness” of the quadratic polynomial
(which we will need in the proof of Theorem 3.1).
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5.1. Gaussian Fourier-analytic estimates. In this subsection we prove several Fourier-analytic es-
timates. First, we state a formula for the absolute value of the characteristic function of a univariate
quadratic polynomial of a Gaussian random variable. One can prove this by direct computation, but
we instead give a quick deduction from the formula for the characteristic function of a non-central
chi-squared distribution (i.e., of a random variable Z2 where Z ∼ N (µ, σ2); see for example [82]).

Lemma 5.4. Let W ∼ N (0, 1) and let X = aW + λW 2 for some a, λ ∈ R. We have

|φX(t)| = exp(−a2t2/(2 + 8λ2t2))

(1 + 4λ2t2)1/4
.

Proof. If λ = 0, then φX(t) = φaW (t) = φW (at) = exp(−a2t2/2), as desired. So let us assume λ ̸= 0.
Note that X = aW + λW 2 = λ(W + a/(2λ))2 − a2/(4λ) and thus

|φX(t)| = |φλ(W+a/(2λ))2(t)| = |φ(W+a/(2λ))2(λt)|.

Using the formula for the characteristic function of a non-central chi-squared distribution with 1 degree
of freedom and non-centrality parameter (a/(2λ))2, we obtain

|φ(W+a/(2λ))2(λt)| =

∣∣∣exp( i·a2/(4λ2)·λt
1−2iλt

)∣∣∣
|1− 2iλt|1/2

=

∣∣∣exp( i·a2/(4λ2)·λt·(1+2iλt)
1+4λ2t2

)∣∣∣
(1 + 4λ2t2)1/4

=
exp
(

−a2t2

2(1+4λ2t2)

)
(1 + 4λ2t2)1/4

. □

The crucial estimates in this subsection are encapuslated in the following lemma.

Lemma 5.5. There are constants C5.5, C
′
5.5 > 0 such that the following holds. Let W1, . . . ,Wn ∼ N (0, 1)

be independent standard Gaussian random variables, and fix sequences a⃗, λ⃗ ∈ Rn not both zero. Define
random variables X1, . . . , Xn and X as well as nonnegative σ1, . . . , σn, σ,Γ ∈ R by

Xi = aiWi + λi(W
2
i − 1), X =

n∑
i=1

Xi, σ2
i = σ(Xi)

2 = a2i + 2λ2i , σ2 =

n∑
i=1

σ2
i , Γ =

σ3∑n
i=1 σ

3
i

.

(a) If
∫∞
−∞

∏n
i=1 |φXi

(t)| dt <∞, then X has a continuous density function pX : R → R≥0 satisfying

sup
u∈R

∣∣∣∣pX(u)− e−u2/(2σ2)

σ
√
2π

∣∣∣∣ ≤ C5.5

(
1

Γσ
+

∫
|t|≥Γ/(32σ)

n∏
i=1

|φXi
(t)| dt

)
.

(b) If σ2
i ≤ σ2/4 for all i = 1, . . . , n, then for any K > 0, we have∫

|t|≥K/σ

n∏
i=1

|φXi
(t)| dt ≤ C ′

5.5

Kσ
.

Remark 5.6. Note that σ3 =
∑n

i=1 σ
2
i · σ ≥

∑n
i=1 σ

3
i and therefore Γ ≥ 1.

The first part follows essentially immediately from the classical proof of the central limit theorem (see
for example [83]).

Proof of Lemma 5.5(a). First, note that we may assume that there are no indices i with σi = 0 (indeed,
if σi = 0, then λi = ai = 0 and we can just omit all such indices). By rescaling, we may assume that
σ2 = 1. Note that φX(t) =

∏n
i=1 φXi

(t), and hence
∫∞
−∞ |φX(t)| dt < ∞. Also recall that the standard

Gaussian distribution has density u 7→ e−u2/2/
√
2π and characteristic function t 7→ e−t2/2. Thus, by the

inversion formula (4.1), it suffices to show that

1

2π

∫ ∞

−∞

∣∣∣∣ n∏
i=1

φXi
(t)− e−t2/2

∣∣∣∣ dt ≲ 1

Γ
+

∫
|t|≥Γ/32

n∏
i=1

|φXi
(t)| dt. (5.1)

Note that E[Xi] = 0 for i = 1, . . . , n, and let us write L = (
∑n

i=1 E[|Xi|3])/(
∑n

i=1 σ
2
i )

3/2 =
∑n

i=1 E[|Xi|3].
Then for |t| ≤ 1/(4L), by [83, Chapter V, Lemma 1] (which is a standard estimate in proofs of central
limit theorems) we have∣∣∣∣ n∏

i=1

φXi
(t)− e−t2/2

∣∣∣∣ = ∣∣∣φX(t)− e−t2/2
∣∣∣ ≤ 16L · |t|3e−t2/3.
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By Hölder’s inequality and Theorem 4.14 (hypercontractivity) we have σ3
i ≤ E[|Xi|3] ≤ 8σ3

i for i =

1, . . . , n, so we obtain 1/Γ ≤ L ≤ 8/Γ. Thus, the interval |t| ≤ Γ/32 contributes at most
∫ Γ/32

−Γ/32
16L ·

|t|3e−t2/3 dt ≲ L
∫∞
−∞ |t|3e−t2/3 dt ≲ L ≲ 1/Γ to the integral in (5.1). Therefore we obtain∫

|t|≥Γ/32

∣∣∣∣ n∏
i=1

φXi(t)− e−t2/2

∣∣∣∣ dt ≤ ∫
|t|≥Γ/32

e−t2/2 +

∣∣∣∣ n∏
i=1

φXi(t)

∣∣∣∣ dt ≲ 1

Γ
+

∫
|t|≥Γ/32

∣∣∣∣ n∏
i=1

φXi(t)

∣∣∣∣ dt. □

To prove Lemma 5.5(b), we use Hölder’s inequality and Lemma 5.4.

Proof of Lemma 5.5(b). As before we may assume that there are no indices i with σi = 0, and by
rescaling we may assume that σ2 = 1. Via Lemma 5.4, we estimate∫
|t|≥K

∣∣∣∣ n∏
i=1

φXi
(t)

∣∣∣∣ dt ≤ n∏
i=1

(∫
|t|≥K

|φXi
(t)|1/σ

2
i dt

)σ2
i

=

n∏
i=1

(∫
|t|≥K

exp
(
− a2i t

2/
(
(2 + 8λ2i t

2)σ2
i

))
(1 + 4λ2i t

2)1/(4σ
2
i )

dt

)σ2
i

≤
n∏

i=1

(∫
|t|≥K

exp
(
− a2i t

2/
(
(2 + 8λ2i t

2)σ2
i

))
1 + λ2i t

2/σ2
i

dt

)σ2
i

.

In the first step we have used Hölder’s inequality with weights σ2
1 , . . . , σ

2
n (which sum to 1) and in the

final step we have used Bernoulli’s inequality (which says that (1 + x)r ≥ 1 + rx for x ≥ 0 and r ≥ 1;
recall that we are assuming that 4(a2i + 2λ2i ) = 4σ2

i ≤ 1 for each i).
Since

∑n
i=1 σ

2
i = 1, it now suffices to prove that for each i = 1, . . . , n we have∫

|t|≥K

exp
(
− a2i t

2/
(
(2 + 8λ2i t

2)σ2
i

))
1 + λ2i t

2/σ2
i

dt ≲
1

K
.

Fix some i. If |λi| ≥ |ai|, then λ2i ≥ σ2
i /3 and∫

|t|≥K

exp
(
− a2i t

2/
(
(2 + 8λ2i t

2)σ2
i

))
1 + λ2i t

2/σ2
i

dt ≤
∫
|t|≥K

1

1 + t2/3
dt ≲

1

K
.

Otherwise, if |ai| ≥ |λi|, we have a2i ≥ σ2
i /3, σ2

i ≤ 1, and therefore

exp
(
− a2i t

2/
(
(2 + 8λ2i t

2)σ2
i

))
1 + λ2i t

2/σ2
i

≤

(
1 + a2i t

2/
(
(2 + 8λ2i t

2)σ2
i

))−1

1 + λ2i t
2/σ2

i

≲

(
1 + t2/(1 + λ2i t

2)
)−1

1 + λ2i t
2/σ2

i

≤
(
1 + t2/(1 + λ2i t

2)
)−1

1 + λ2i t
2

=
1

1 + (1 + λ2i )t
2
.

It follows that ∫
|t|≥K

exp
(
− a2i t

2/
(
(2 + 8λ2i t

2)σ2
i

))
1 + λ2i t

2/σ2
i

dt ≲
∫
|t|≥K

1

1 + (1 + λ2i )t
2
dt ≲

1

K
. □

5.2. Uniform anticoncentration. In this subsection, we prove Theorem 1.6. The crucial ingredient is
the following Fourier-analytic estimate.

Lemma 5.7. Recall the definitions and notation in the statement of Lemma 5.5, and fix a parameter
η > 0. Suppose that n ≥ 2 and

∑
i∈I λ

2
i ≥ ηλ2j for all I ⊆ [n] with |I| = n− 2 and all j ∈ [n]. Then∫

|t|≥1/(32σ)

n∏
i=1

|φXi
(t)| dt ≲η

1

σ
.

Proof. We may assume without loss of generality that |λ1| ≥ · · · ≥ |λn|. By adding at most two terms
with ai = λi = 0, we may assume n is divisible by 3. Note that if σ2

i ≤ σ2/4 for all i ∈ [n], the result
follows immediately from Lemma 5.5(b). Therefore it suffices to consider the case when there is an index
j such that σ2

j ≥ σ2/4.
Note that the given condition implies

∑n/3
k=1 λ

2
3k ≥ 1

3

∑n
k=3 λ

2
k ≥ ηλ2j/3. Now, Lemma 5.4 yields

n∏
i=1

|φXi
(t)| ≤ exp

( −a2j t2

2 + 8λ2j t
2

) n∏
i=1

1

(1 + 4λ2i t
2)1/4

≤ exp

( −a2j t2

2 + 8λ2j t
2

) n/3∏
i=1

1

(1 + 4λ23it
2)3/4
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≤ exp

( −a2j t2

2 + 8λ2j t
2

)(
1 + 4

n/3∑
i=1

λ23it
2

)−3/4

≤ exp

( −a2j t2

2 + 8λ2j t
2

)
(1 + ηλ2j t

2)−3/4

≤
(
1 +

a2j t
2

2 + 8λ2j t
2

)−3/4

(1 + ηλ2j t
2)−3/4 ≲η (λ2j t

2 + a2j t
2)−3/4 ≲ (σj |t|)−3/2 ≲ (σ|t|)−3/2.

Thus we have ∫
|t|≥1/(32σ)

n∏
i=1

|φXi(t)| dt ≲η

∫
|t|≥1/(32σ)

(σ|t|)−3/2 dt ≲ 1/σ. □

The proof of Theorem 1.6 is now immediate.

Proof of Theorem 1.6. By rescaling we may assume σ(f) = 1. It suffices to show that the probability
density function pf−Ef of f − Ef satisfies pf−Ef (u) ≲η 1 for all u.

Since F is a real symmetric matrix, we can write F = QDQ⊺ where D is a diagonal matrix with
entries λ1, . . . , λn and Q is an orthogonal matrix. Let W⃗ = Q⊺Z⃗, and note that W⃗ is also distributed as
N (0, 1)⊗n (since the distribution N (0, 1)⊗n is invariant under orthogonal transformations). We have

f(Z⃗) = f0 + f⃗ · Z⃗ + Z⃗⊺FZ⃗ = f0 + f⃗ · (QW⃗ ) + W⃗ ⊺Q⊺FQW⃗ = f0 + (Q⊺f⃗) · W⃗ + W⃗ ⊺DW⃗.

Let a⃗ = (a1, . . . , an) = Q⊺f⃗ . We have

f − Ef =

n∑
i=1

(aiWi + λi(W
2
i − 1)).

Let σ1, . . . , σn ≥ 0 be such that σ2
i = a2i + 2λ2i , so 1 = σ(f)2 = σ2

1 + · · ·+ σ2
n. Note that the assumption

in the theorem statement implies n ≥ 3, and combining the assumption with Theorem 4.13 yields

η ≤ min
F̃∈Rn×n

rank(F̃ )≤2

∥F − F̃∥2F
∥F∥2F

= min
I⊆[n]

|I|=n−2

∑
i∈I λ

2
i

λ21 + · · ·+ λ2n
.

Hence for any subset I ⊆ [n] with |I| = n−2 and any j ∈ [n] we obtain
∑

i∈I λ
2
i ≥ η(λ21+ · · ·+λ2n) ≥ ηλ2j .

Let Γ be as in Lemma 5.5 and recall that Γ ≥ 1.
Now, by combining Lemma 5.5(a) and Lemma 5.7, we have that

sup
u∈R

pf (u) = sup
u∈R

pf−Ef (u) ≲
1√
2π

+
1

Γ
+

∫
|t|≥Γ/32

n∏
i=1

|φXi(t)| dt ≲η 1.

By integrating over the desired interval, we obtain the bound in Theorem 1.6. □

5.3. Lower bounds on small-ball probabilities. Let us now prove the lower bound in Theorem 5.2(2).
Note that Lemma 5.5(b) does not apply when some σi is especially influential; in that case we will use
the following bare-hands estimate.

Lemma 5.8. Fix A′ ≥ 1 and let W ∼ N (0, 1) and for some a, λ ∈ R (not both zero) let X = aW +
λ(W 2 − 1), so σ(X)2 = a2 + 2λ2. Suppose that

(1) λ ≥ 0, or
(2) σ(X) ≥ 10A′ · |λ|.

Then for any 0 ≤ u ≤ A′σ(X), we have pX(u) ≳A′ 1/σ(X).

Proof. We may assume a ≥ 0 (changing a to −a does not change the distribution of X). First note that
the case λ = 0 is easy, since then we have σ(X) = a and pX(u) = e−(u/a)2/2/(

√
2πa) ≳A′ 1/σ(X). So

let us assume λ ̸= 0 and define g : R → R by

g(t) = at+ λ(t2 − 1) = λ ·
(
t+

a

2λ

)2
− λ− a2

4λ
.

Then for all t ∈ R we have

(g′(t))2 = 4λ2 ·
(
t+

a

2λ

)2
= 4λ · g(t) + 4λ2 + a2 ≤ 4σ(X) · |g(t)|+ 4σ(X)2.

Hence, for any t ∈ R with g(t) = u, recalling 0 ≤ u ≤ A′σ(X), we obtain |g′(t)| ≤
√
4(A′ + 1)σ(X)2 ≲A′

σ(X).
We claim that we can find t ∈ [−3A′, 3A′] with g(t) = u. Indeed, in case (1), we have g(0) = −λ ≤ u

and g(2A′ + 1) ≥ 2A′a+ 2A′λ ≥ A′σ(X) ≥ u, and hence by the intermediate value theorem there exists
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t ∈ [0, 2A′ + 1] ⊆ [−3A′, 3A′] with g(t) = u. In case (2), observe that a2 = σ(X)2 − 2λ2 ≥ 100A′2 · λ2 −
2λ2 ≥ 81A′2 · λ2, so a ≥ 9A′ · |λ| and therefore |λ(9A′2 − 1)| ≤ A′a and σ(X)2 = a2 + 2λ2 ≤ 4a2. Hence
g(−3A′) = −3A′a+λ(9A′2−1) ≤ −2A′a ≤ 0 ≤ u and g(3A′) = 3A′a+λ(9A′2−1) ≥ 2A′a ≥ A′σ(X) ≥ u
and we can again conclude that there exists t ∈ [−3A′, 3A′] with g(t) = u.

Now, we have

pX(u) = pg(W )(g(t)) ≥
pW (t)

|g′(t)|
≳A′

e−(3A′)2/2

σ(X)
≳A′

1

σ(X)
. □

We need one more ingredient for the proof of Theorem 5.2(2): a variant of the Paley-Zygmund
inequality which tells us that under a fourth-moment condition, random variables are reasonably likely
to have small fluctuations in a given direction. We include a short proof; the result can also easily be
deduced from [5, Lemma 3.2(i)].

Lemma 5.9. Fix B ≥ 1. If X is a real random variable with E[X] = 0 and σ(X) > 0 satisfying
E[X4] ≤ Bσ(X)4, then

Pr[−2
√
Bσ(X) ≤ X ≤ 0] ≥ 1/(5B).

Proof. By rescaling we may assume that σ(X) = 1. Note that then

9B2 · Pr[−2
√
B ≤ X ≤ 0] = E[9B2

1−2
√
B≤X≤0]

≥ E[−X(X + 2
√
B)(X −

√
B)2]

= −E[X4] + 3B · E[X2]− 2B3/2E[X] = −E[X4] + 3B ≥ 2B

where we have used that −x(x+ 2
√
B)(x−

√
B)2 = (B − (x+

√
B)2)(x−

√
B)2 ≤ 9B2

1−2
√
B≤x≤0 for

all x ∈ R. The result follows. □

Now we prove Theorem 5.2(2).

Proof of Theorem 5.2(2). We may assume σ(f) = 1. Borrowing the notation from the proof of Theo-
rem 1.6, we write

f − Ef =

n∑
i=1

(aiWi + λi(W
2
i − 1)),

with (W1, . . . ,Wn) ∼ N (0, 1)⊗n, and σ2
i = a2i + 2λ2i (then we have 1 = σ2 = σ2

1 + · · · + σ2
n). It now

suffices to prove that for all u ∈ [0, A + 1] we have pf−Ef (u) ≳A 1. Let L be a large integer depending
only on A (such that L ≥ 2 and L ≥ C5.5(1 + 32C ′

5.5) · 2
√
2π · e(A+1)2/2 for the constants C5.5 and C ′

5.5

in Lemma 5.5). We break into cases.
First, suppose maxi σi ≤ 1/L. In this case, we define Γ = σ(f)3/

∑n
i=1 σ

3
i = 1/

∑n
i=1 σ

3
i and note

that
∑n

i=1 σ
3
i ≤ (maxi σi)(

∑n
i=1 σ

2
i ) ≤ 1/L, so Γ ≥ L. We also have σ2

i ≤ 1/L2 ≤ 1/4, so Lemma 5.5(b)
applies. So by combining parts (a) and (b) of Lemma 5.5, for all u ∈ [0, A+ 1] we obtain, as desired,

pf−Ef (u) ≥
e−u2/2

√
2π

− C5.5(1 + 32C ′
5.5)

Γ
≥ e−(A+1)2/2

√
2π

− C5.5(1 + 32C ′
5.5)

L
≥ 1

2
· e

−(A+1)2/2

√
2π

≳A 1.

Otherwise, there is i∗ ∈ [n] such that σi∗ ≥ 1/L. We claim that then there is an index j ∈ [n]
satisfying at least one of the following two conditions:

(1) σj ≥ 1/(10(A+ 19)L2) and λj ≥ 0, or
(2) σj ≥ 1/L and 10(A+ 19)L · |λj | ≤ σj .

Indeed, if 10(A + 19)L · |λi∗ | ≤ σi∗ we can simply take j = i∗ and (2) is satisfied. Otherwise we
have |λi∗ | > σi∗/(10(A + 19)L) ≥ 1/(10(A + 19)L2) and the assumption in Theorem 5.2(2) yields
λ1 ≥ |λi∗ | ≥ 1/(10(A + 19)L2). So in particular λ1 ≥ 0 and σ1 ≥ λ1 ≥ 1/(10(A + 19)L2) and we can
take j = 1 and (1) is satisfied.

Now, let Xj = ajWj + λj(W
2
j − 1) and let X ′ = f −Ef −Xj =

∑
i ̸=j(aiWi + λi(W

2
i − 1)) contain all

terms of f−Ef except the term Xj . By Theorem 4.14 (hypercontractivity) we have E[(X ′)4] ≤ 81σ(X ′)4

and therefore Lemma 5.9 shows that −18 ≤ −18σ(X ′) ≤ X ′ ≤ 0 with probability at least 1/405.
We claim that we can apply Lemma 5.8 to Xj and u ∈ [0, A+19], showing that pXj

(u) ≳A 1/σj ≥ 1.
Indeed, in case (1) we have 0 ≤ u ≤ 10(A + 19)2L2σj and can apply case (1) of Lemma 5.8 with
A′ = 10(A+19)2L2, while in case (2) we have 0 ≤ u ≤ (A+19)Lσj and can apply case (2) of Lemma 5.8
with A′ = (A+ 19)L.
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Therefore, for any u ∈ [0, A+ 1] we obtain

pf−Ef (u) = pX′+Xj
(u) ≥

∫ 0

−18

pX′(y)pXj
(u− y) dy ≳A

∫ 0

−18

pX′(y) dy = Pr[−18 ≤ X ′ ≤ 0] ≳ 1. □

5.4. Non-uniform anticoncentration. In this subsection we prove Theorem 5.2(1), which is essentially
a non-uniform version of Theorem 1.6. We begin with a lemma giving non-uniform anticoncentration
bounds for a quadratic polynomial of a single Gaussian variable, i.e., for one of the terms in our sum.

Lemma 5.10. Let W ∼ N (0, 1) and for some a, λ ∈ R (not both zero) let X = aW + λ(W 2 − 1), so
σ2 := σ(X)2 = a2 + 2λ2. Suppose we are given some x ≥ 103σ satisfying |λ| · x ≤ a2/10. Then for each
u ∈ R with x/10 ≤ |u| ≤ 2x, we have

pX(u) ≲
1

|a|
exp
(
−x
σ

)
.

Proof. Define the function g : R → R by g(t) = at + λ(t2 − 1). As in the proof of Lemma 5.8, we can
calculate (g′(t))2 = 4λ · g(t) + 4λ2 + a2 for all t ∈ R. Now, consider some u ∈ R with x/10 ≤ |u| ≤ 2x.
There are at most two different t ∈ R with g(t) = u. For any such t, we have (using the assumption that
|λ| · x ≤ a2/10)

(g′(t))2 ≥ 4λ2 + a2 − 4|λ| · 2x ≥ a2/5 ≥ a2/9.

We furthermore claim that any such t must satisfy |t| ≥ x/(20|a|). Indeed, if |t| < x/(20|a|), then (using
that x ≥ 103σ ≥ 103a and the assumption |λ| · x ≤ a2/10)

|g(t)| = |at+ λ(t2 − 1)| ≤ |a| · x

20|a|
+ |λ| ·max

{
x2

400a2
, 1

}
≤ x

20
+ |λ| · x2

400a2
≤ x

20
+

x

4000
<

x

10
.

As |u| ≥ x/10, this contradicts g(t) = u. Thus any t ∈ R with g(t) = u must indeed also satisfy
|t| ≥ x/(20|a|). Now, we obtain (using again that x ≥ 103σ ≥ 103a)

pX(u) =
∑
t∈R

g(t)=u

pW (t)

|g′(t)|
≤ 2 · 1

|a|/3
· exp

(
− x2

800a2

)
≲

1

|a|
exp
(
−x
σ

)
. □

Now, we prove Theorem 5.2(1). The main idea is to divide our random variable f−Ef into independent
parts, to take advantage of exponential tail bounds (by Theorem 4.15 or Lemma 5.10) for one of the
parts, and anticoncentration bounds (by Theorem 1.6) for the rest of the parts.

Proof of Theorem 5.2(1). By rescaling, we may assume σ := σ(f) = 1. If |x| ≤ 103 = 103σ(f), the
desired bound follows from Theorem 1.6. So we may assume that |x| ≥ 103σ(f). Also note that the
assumption in Theorem 5.2(1) implies that η ≤ 1. Borrowing the notation from the proof of Theorem 1.6,
we write

f − Ef =

n∑
i=1

(aiWi + λi(W
2
i − 1)),

with (W1, . . . ,Wn) ∼ N (0, 1)⊗n and σ2
i = a2i + 2λ2i (then we have 1 = σ2 = σ2

1 + · · · + σ2
n). We may

assume that |λ1| ≥ · · · ≥ |λn|. Note that using Theorem 4.13 the assumption in Theorem 5.2(1) implies
that for every subset I ⊆ [n] of size |I| = n − 3 we have

∑
i∈I λ

2
i ≥ η(λ21 + · · · + λ2n). In particular,∑n

i=4 λ
2
i ≥ η(λ21 + · · ·+ λ2n).

By adding at most three terms with ai = λi = 0, we may assume that n ≡ 1 (mod 4). For a subset
J ⊆ [n], let XJ =

∑
i∈J(aiWi + λi(W

2
i − 1)) and σ2

J =
∑

i∈J σ
2
i = σ(XJ)

2.
Let i∗ ∈ [n] be chosen such that σ2

i∗ is maximal, and define J0 = {i∗}. We claim that we can find a
partition of [n] \ J0 = [n] \ {i∗} into four subsets J1, J2, J3, J4 satisfying the following conditions.

(a) For h = 1, 2, 3, 4, we have σ2
[n]\Jh

≥ η/2.
(b) For any h = 0, . . . , 4 and any subset I ⊆ [n] \ Jh of size |I| = n − |Jh| − 2, we have

∑
i∈I λ

2
i ≥

(η/4) · (λ21 + · · ·+ λ2n).
Indeed, we can build such a partition iteratively: let us divide [n] \ {i∗} into n/4 quadruplets (starting
with the four smallest indices, then the next four, and so on). Iteratively, for each quadruplet, distribute
one element to each of J1, J2, J3, J4 in the following way. We assign the index i in the quadruplet with
the largest σ2

i to the set Jh which had the smallest value of σ2
Jh

at the end of the last step, we assign
the index i with the second-largest σ2

i to the set Jh which had the second-smallest value of σ2
Jh

, and so
on. One can check that this assignment process maintains the property that at the end of any step, the

22



values σ2
Jh

for h = 1, 2, 3, 4 differ by at most maxi σ
2
i = σ2

i∗ . Hence σ2
[n]\J1

≥ σ2
J2
+σ2

i∗ ≥ σ2
J1

= 1−σ2
[n]\J1

,
so σ2

[n]\J1
≥ 1/2 ≥ η/2. Analogously, one can show σ2

[n]\Jh
≥ η/2 for h = 2, 3, 4, so (a) is satisfied. To

check (b), note that for each h = 0, . . . , 4 the set [n] \ Jh is missing either one element from each of
the quadruplets considered during the construction (if 1 ≤ h ≤ 4) or is missing one element in total (if
h = 0). For a subset I ⊆ [n] \ Jh of size |I| = n − |Jh| − 2, two additional elements are missing. Thus,
for every k = 1, . . . , n/4 the set I ⊆ [n] is missing at most k + 2 of the elements in [4k]. Thus, recalling
that |λ1| ≥ · · · ≥ |λn|, we obtain∑
i∈I

λ2i ≥ λ24+(λ26+λ
2
7+λ

2
8)+(λ210+λ

2
11+λ

2
12)+· · · ≥ λ24+λ

2
8+λ

2
12+· · · ≥ 1

4

n∑
i=4

λ2i ≥ (η/4)·(λ21+· · ·+λ2n).

This establishes (b). Thus, the sets J1, . . . , J4 indeed satisfy the desired conditions.
By our assumption |x| ≥ 103σ(f) and by 0 ≤ ε ≤ σ(f), we have |y| ≥ 0.999|x| ≥ (5/6) · |x| for all

y ∈ [x, x + ε]. Thus, whenever f − Ef =
∑n

i=1(aiWi + λi(W
2
i − 1)) = XJ0 + · · · +XJ4 is contained in

the interval [x, x+ ε], we must have |XJh
| ≥ |x|/6 for at least one h ∈ {0, . . . , 4}. So, we have

Pr[f − Ef ∈ [x, x+ ε]] ≤
4∑

h=0

Pr
[
|XJh

| ≥ |x|/6 and X[n]\Jh
∈ [x−XJh

, x−XJh
+ ε]

]
. (5.2)

For h = 1, . . . , 4, note that

Pr
[
|XJh

| ≥ |x|/6 and X[n]\Jh
∈ [x−XJh

, x−XJh
+ ε]

]
≤ Pr[|XJh

| ≥ |x|/6] · L(X[n]\Jh
, ε) ≲η exp

(
− 2

2e
· |x|
6σJh

)
· ε

σ[n]\Jh

≲η
ε

σ
exp

(
−Ω

(
|x|
σ

))
, (5.3)

where in the second step we applied Theorem 4.15 toXJh
with t = |x|/(6σJh

) ≥ |x|/(6σ) and Theorem 1.6
to X[n]\Jh

(noting that the assumption of Theorem 1.6 is satisfied by condition (b), see also Remark 5.1),
and in the last step we used that σ2

[n]\Jh
≥ η/2 by condition (a).

We now distinguish two cases. First, let us assume that σ[n]\J0
≥ η2/(100|x|). In this case, similarly

to (5.3), we can bound (recalling that σ = 1)

Pr
[
|XJ0 | ≥ |x|/6 and X[n]\J0

∈ [x−XJ0 , x−XJ0 + ε]
]

≲η exp

(
− 2

2e
· |x|
6σJ0

)
· ε

σ[n]\J0

≲η
ε

σ
· |x|
40σ

· exp
(
− |x|
20σ

)
≤ ε

σ
exp

(
− |x|
40σ

)
,

where in the last step we used that te−t ≤ 1/e ≤ 1 for all t ∈ R (specifically, we used this for t =
|x|/(40σ)). Together with (5.3), this enables us to bound all five summands on the right-hand side of
(5.2), implying the desired bound for Pr[f − Ef ∈ [x, x+ ε]].

It remains to consider the case that σ[n]\J0
< η2/(100|x|). Then we in particular have σ2

i∗ =

1 − σ2
[n]\J0

≥ 1 − η4/(104|x|2) ≥ 1 − η/2. Furthermore, the assumption in Theorem 5.2(1) implies∑
i∈[n]\{i∗} λ

2
i ≥ η(λ21 + · · ·+ λ2n), and therefore λ2i∗ ≤ (1− η)(λ21 + · · ·+ λ2n) ≤ (1− η)/2 (recalling that

1 = σ2 =
∑n

i=1(a
2
i +2λ2i )). Thus, we obtain a2i∗ = σ2

i∗ −2λ2i∗ ≥ (1−η/2)−(1−η) = η/2. Our assumption
also implies η4/(104|x|2) > σ2

[n]\J0
≥
∑

i∈[n]\{i∗} λ
2
i ≥ ηλ2i∗, meaning that |λi∗ | · |x| ≤ η/100 ≤ a2i∗/10.

Now, we observe

Pr[f − Ef ∈ [x, x+ ε]] ≤
4∑

h=1

Pr
[
|XJh

| ≥ |x|/6 and X[n]\Jh
∈ [x−XJh

, x−XJh
+ ε]

]
+ Pr

[
|X[n]\J0

| ≤ (4/6)|x| and XJ0 ∈ [x−X[n]\J0
, x−X[n]\J0

+ ε]
]
.

Again, (5.3) gives an upper bound for the summands for h = 1, . . . , 4. To bound the last summand,
let us fix any outcome of X[n]\J0

with |X[n]\J0
| ≤ (4/6)|x|. Then the probability that XJ0

= ai∗Wi∗ +

λi∗(W
2
i∗−1) lies in the interval [x−X[n]\J0

, x−X[n]\J0
+ε] (which has length ε and is somewhere between

x/10 and 2x) is by Lemma 5.10 bounded by

Pr[XJ0
∈ [x−X[n]\J0

, x−X[n]\J0
+ ε]] ≲

ε

|ai∗ |
exp

(
− |x|
σJ0

)
≲η

ε

σ
exp

(
−|x|
σ

)
,

where in the last step we used that a2i∗ ≥ η/2 (see above). Thus, we again obtain the desired bound for
Pr[f − Ef ∈ [x, x+ ε]]. □
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5.5. Control of Gaussian characteristic functions. For later, we also record the fact that under
a robust rank assumption, characteristic functions of certain “quadratic” functions of Gaussian random
variables decay rapidly.

Lemma 5.11. Fix a positive integer r. Let Z⃗ = (Z1, . . . , Zn) ∼ N (0, 1)⊗n be a vector of independent
standard Gaussian random variables. Consider a real quadratic polynomial f(Z⃗) of Z⃗, written as

f(Z⃗) = Z⃗⊺FZ⃗ + f⃗ · Z⃗ + f0

for some symmetric matrix F ∈ Rn×n, some vector f⃗ ∈ Rn and some f0 ∈ R. Let

s = min
F̃∈Rn×n

rank F̃≤r

∥F − F̃∥2F.

Then for any τ ∈ R, we have

|φf(Z⃗)(τ)| = |E[exp(iτf(Z⃗))]| ≲r
1

(1 + τ2s)r/4
.

Proof. Let λ1, . . . , λn be the eigenvalues of F , ordered such that |λ1| ≥ · · · ≥ |λn|. By Theorem 4.13, we
have s =

∑n
j=r+1 λ

2
j .

As in the proof of Theorem 1.6, we write f(Z⃗) − E[f(Z⃗)] =
∑n

j=1(ajWj + λi(W
2
j − 1)), where

(W1, . . . ,Wn) ∼ N (0, 1)⊗n are independent standard Gaussians. From Lemma 5.4, recall that

|E exp(iτ(ajWj + λj(W
2
j − 1)))| = |E exp(iτ(ajWj + λjW

2
j ))| ≤

1

(1 + 4λ2jτ
2)1/4

.

for j = 1, . . . , n. We then deduce

|E[exp(iτf(Z⃗))]| =
n∏

j=1

|E[exp(iτ(ajW + λj(W
2
j − 1)))]| ≤

n∏
j=1

1

(1 + 4λ2jτ
2)1/4

≤
r∏

j=1

1 + 4τ2
⌊(n−j)/r⌋∑

t=0

λ2j+rt

−1/4

≤

1 + 4τ2
⌊(n−r)/r⌋∑

t=0

λ2r+rt

−r/4

≤

1 +
4τ2

r

n∑
j=r+1

λ2j

−r/4

≲r
1

(1 + τ2s)r/4
. □

6. Small-ball probability via characteristic functions

Recall that Esseen’s inequality (Theorem 4.7) states that L(X, ε) ≲ ε
∫ 2/ε

−2/ε
|φX(t)| dt for any real

random variable X. We will need a “relative” version of Esseen’s inequality, as follows.

Lemma 6.1. Let X,Y be real random variables. For any ε > 0 we have

L(X, ε) ≲ L(Y, ε) + ε

∫ 2/ε

−2/ε

|φX(t)− φY (t)| dt.

In the proof of Lemma 6.1 we use the Fourier transform: for a function f ∈ L1(R) we write

f̂(ξ) =

∫ ∞

−∞
e−itξf(t) dt.

Proof of Lemma 6.1. By rescaling it suffices to prove the claim when ε = 1. Let us abbreviate the second
summand on the right-hand side of the desired inequality by I :=

∫ 2

−2
|φX(t)− φY (t)| dt. Furthermore,

let ψ = 1[−1,1] ∗ 1[−1,1] (where ∗ denotes convolution); note that 0 ≤ ψ(t) ≤ 2 for all t, and the support
of ψ is inside the interval [−2, 2]. Let f(t) = ψ̂(t) = (1̂[−1,1](t))

2; we compute

f(t) =

(∫ 1

−1

e−itx dx

)2

=

(
2 sin t

t

)2

.
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for t ̸= 0 and f(0) = 22. Note that for |t| ≤ 1 we have f(t) ≥ 1, and for all t ∈ R we have f(t) ≤
min{4, 4/t2} ≤ 8/(t2 + 1). By the formula for the Fourier transform and the triangle inequality, for any
x ∈ R we have

|E[f(X − x)− f(Y − x)]| =
∣∣∣∣E∫ ∞

−∞
ψ(θ)(e−iθ(X−x) − e−iθ(Y−x)) dθ

∣∣∣∣
≤
∫ ∞

−∞
ψ(θ)

∣∣E[e−iθ(X−x) − e−iθ(Y−x)
]∣∣ dθ

=

∫ ∞

−∞
ψ(−t)|φX(t)− φY (t)| dt ≤ 2

∫ 2

−2

|φX(t)− φY (t)| dt = 2I.

Now, note that for any s ∈ R we have

Pr[|X−s| ≤ 1] = E[1|X−s|≤1] ≤ E[f(X−s)] ≤ E[f(Y −s)]+ |E[f(X−s)−f(Y −s)]| ≤ E[f(Y −s)]+2I,

and therefore

Pr[|X − s| ≤ 1] ≤ E[f(Y − s)] + 2I ≤
∑
j∈Z

8

j2 + 1
Pr[|Y − s− j| ≤ 1] + 2I (6.1)

≤ L(Y, 1)
∑
j∈Z

8

j2 + 1
+ 2I ≤ 40 · L(Y, 1) + 2I.

Thus, L(X, 1) ≤ 40 · L(Y, 1) + 2I ≲ L(Y, 1) + I, as desired. □

Next, we will need a slightly more sophisticated exponentially decaying non-uniform version of
Lemma 6.1.

Lemma 6.2. Let X,Y be real random variables. Suppose that for some 0 < η < 1 and 0 < ε ≤ σ we
have

Pr[|Y − x| ≤ ε] ≤ ε

ησ
exp(−η|x|/σ)

for all x ∈ R. Then for all x ∈ R,

Pr[|X − x| ≤ ε] ≲
ε2

x2 + σ2
+

ε

ησ
exp(−η|x|/(2σ)) + ε

∫ 2/ε

−2/ε

|φX(t)− φY (t)| dt.

Proof. As in Lemma 6.1, we may assume that ε = 1, and let us again write I :=
∫ 2

−2
|φX(t)− φY (t)| dt.

Note that the assumption in the lemma statement implies L(Y, 1) ≤ 1/(ησ) ≤ e · 1/(ησ) · exp(−η/2). So
if |x| ≤ σ, the desired bound follows from Lemma 6.1. Otherwise, if |x| ≥ σ, then (6.1) implies

Pr[|X − x| ≤ 1] ≲
∑
j∈Z

Pr[|Y − x− j| ≤ 1]

j2 + 1
+ I

=
∑
j∈Z

|j+x|≥|x|/2

Pr[|Y − x− j| ≤ 1]

j2 + 1
+

∑
j∈Z

|j+x|<|x|/2

Pr[|Y − x− j| ≤ 1]

j2 + 1
+ I

≤ sup
y∈R

|y|≥|x|/2

Pr[|Y − y| ≤ 1] ·
∑
j∈Z

1

j2 + 1
+

∑
j∈Z

|j−(−x)|<|x|/2

Pr[|Y − x− j| ≤ 1]

(x/2)2 + 1
+ I,

≲
ε

ησ
exp(−η|x|/(2σ)) + 1

x2 + 1
+ I

from which the desired result follows (using that x2 + 1 ≥ x2 ≳ x2 + σ2 since we assumed |x| ≥ σ). □

It turns out that these ideas are not only useful for anticoncentration; we can also derive lower bounds
on the probability that X is close to some point x, given local control over the behavior of Y near x.

Lemma 6.3. There is an absolute constant C6.3 such that the following holds. Let X,Y be real random
variables, and suppose Y is continuous with a density function pY . Let ε > 0 and x ∈ R and suppose
that K ≥ 1 and R ≥ 4 are such that pY (y1)/pY (y2) ≤ K for all y1, y2 ∈ [x−Rε, x+Rε]. Then

Pr[|X − x| ≤ 104Kε] ≥ 1

8
Pr[|Y − x| ≤ ε]− C6.3

(
R−1L(Y, ε) + ε

∫ 2/ε

−2/ε

|φY (t)− φX(t)| dt
)
.
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The reader may think of K as a constant (in our applications of this lemma, we will take K = 2).
We remark that it would be possible to state a cruder version of this lemma with no assumption on the
density pY . This would be sufficient to prove a version of Theorem 3.1 where B also depends on A and
H (in addition to depending on C), but this would not be enough for the proof of Theorem 2.1 (for
technical reasons discussed in Remark 13.2).

Proof. It again suffices to prove the claim when ε = 1. Let the function f and I :=
∫ 2

−2
|φX(t)−φY (t)| dt

be as in the proof of Lemma 6.1, and recall that 1[−1,1](t) ≤ f(t) ≤ min{4, 4/t2} ≤ 8/(t2 + 1) for all
t ∈ R and furthermore |E[f(X − x)]− E[f(Y − x)]| ≤ 2I. We have

Pr[|X − x| ≤ 104K] ≥ 1

4
E[f(X − x)1|X−x|≤104K ] =

1

4
E[f(X − x)]− 1

4
E[f(X − x)1|X−x|>104K ]

≥ 1

4
E[f(Y − x)]− I

2
− 1

4
E[f(X − x)1|X−x|>104K ]

≥ 1

4
Pr[|Y − x| ≤ 1]− I

2
−

∑
j∈Z

|j|≥9999K

2

j2 + 1
Pr[|X − x− j| ≤ 1]. (6.2)

As in (6.1), we have

Pr[|X − x− j| ≤ 1] ≤
∑
k∈Z

8

k2 + 1
Pr[|Y − x− j − k| ≤ 1] + 2I,

so

∑
j∈Z

|j|≥9999K

2

j2 + 1
Pr[|X − x− j| ≤ 1] ≤ 16

∑
j,k∈Z

|j|≥9999K

Pr[|Y − x− j − k| ≤ 1]

(j2 + 1)(k2 + 1)
+ 2

∑
j∈Z

2

j2 + 1

I
≤ 16

∑
j,k∈Z

9999K≤|j|≤(R−1)/2
|k|≤(R−1)/2

K Pr[|Y − x| ≤ 1]

(j2 + 1)(k2 + 1)
+ 16

∑
j,k∈Z

max{|j|,|k|}>(R−1)/2

L(Y, 1)
(j2 + 1)(k2 + 1)

+ 20I

≤ 16K · Pr[|Y − x| ≤ 1] · 5 · 2

9999K − 1
+ 16 · 2 · 5 · 2

(R− 3)/2
· L(Y, 1) + 20I

≤ 1

8
Pr[|Y − x| ≤ 1] +O(R−1) · L(Y, 1) +O(I),

where we used that
∑

j∈Z 1/(j
2+1) ≤ 5 and

∑
j∈Z,|j|≥T 1/(j2+1) ≤ 2

∑
j∈Z,j≥T 1/(j(j−1)) ≤ 2/(T −1)

for T > 1. Plugging this into (6.2) gives the desired result. □

7. Characteristic function estimates based on linear cancellation

Consider X as in Theorem 3.1, and let X∗ = (X − EX)/σ(X). When t is not too large, we can
prove estimates on φX∗(t) purely using the linear behavior of X (treating the quadratic part as an “error
term”). In this section we prove two different results of this type.

First, when t is very small, there is essentially no cancellation in φX∗(t), and we have the following
crude estimate. Roughly speaking, we use the simple observation (from Section 3.1) that X can be
interpreted as a sum of independent random variables (a “linear part”), plus a “quadratic part” with neg-
ligible variance. We can then use standard estimates for characteristic functions of sums of independent
random variables.

Lemma 7.1. Fix ε,H > 0. Let G be an n-vertex graph with density at least ε, and consider e0 ∈ R and a
vector e⃗ ∈ RV (G) with 0 ≤ ev ≤ Hn for all v ∈ V (G). Let U ⊆ V (G) be a random vertex subset obtained
by including each vertex with probability 1/2 independently, and let X = e(G[U ]) +

∑
v∈U ev + e0. Let

X∗ = (X −EX)/σ(X), and let Z ∼ N (0, 1) be a standard normal random variable. Then, for all t ∈ R,
we have

|φX∗(t)− φZ(t)| ≲ε,H |t|n−1/2.

We remark that on its own Lemma 7.1 implies a central limit theorem (stating thatX is asymptotically
Gaussian) by Lévy’s continuity theorem (see for example [30, Theorem 3.3.17]).
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Proof. Define the random vector x⃗ ∈ {−1, 1}V (G) by taking xv = 1 if v ∈ U , and xv = −1 if v /∈ U (so
xv for v ∈ V (G) are independent Rademacher random variables). Then, we compute

X = e0 +
e(G)

4
+

1

2

∑
v∈V (G)

ev +
1

2

∑
v∈V (G)

(
ev +

1

2
degG(v)

)
xv +

1

4

∑
uv∈E(G)

xuxv

= EX +
1

2

∑
v∈V (G)

(
ev +

1

2
degG(v)

)
xv +

1

4

∑
uv∈E(G)

xuxv,

as in (3.1). Defining dv = ev + degG(v)/2 for v ∈ V (G), we deduce that

X − EX =
1

2
d⃗ · x⃗+

1

4

∑
uv∈E(G)

xuxv.

That is to say, X−EX has a “linear part” 1
2 d⃗ ·x⃗ and a “quadratic part” 1

4

∑
uv∈E(G) xuxv. Recalling (4.5),

we have σ(X)2 = 1
4∥d⃗∥

2
2 +

1
16e(G) ≥

1
4∥d⃗∥

2
2 ≥ 1

4∥d⃗∥
2
1/n ≳ε n

3 (here we are using our density assumption
as well as the assumption that ev ≥ 0 for all v ∈ V (G)).

First, we compare X∗ = (X − EX)/σ(X) to its linear part (d⃗ · x⃗)/(2σ(X)). For all t ∈ R, we have
| exp(it)− 1| ≤ |t| and therefore∣∣∣φX∗(t)− E[eit(d⃗·x⃗)/(2σ(X))]

∣∣∣ ≤ E
∣∣∣ exp( it

4σ(X)

∑
uv∈E(G)

xuxv

)
− 1
∣∣∣ ≤ |t|

4σ(X)
E
∣∣∣ ∑
uv∈E(G)

xuxv

∣∣∣
≤ |t|

4σ(X)

E
[( ∑

uv∈E(G)

xuxv

)2]1/2

=
|t|

4σ(X)
· e(G)1/2 ≤ |t|

Ωε(n3/2)
· n ≲ε |t|n−1/2. (7.1)

Next, the linear part can be handled as in a standard proof of a quantitative central limit theorem
(c.f. Lemma 5.5). Let σ1 = σ(d⃗·x⃗) = ∥d⃗∥2 and Γ = (

∑
v∈V (G) d

2
v)

3/2/
∑

v∈V (G) d
3
v ≳H ∥d⃗∥32/n4 ≳ε,H n1/2

(recalling that ∥d⃗∥22 ≳ε n
3), and note that φZ(u) = e−u2/2. For |u| ≤ Γ/4, we have∣∣∣E[eiu(d⃗·x⃗)/σ1 ]− φZ(u)

∣∣∣ ≤ 16Γ−1|u|3e−u2/3

by [83, Chapter V, Lemma 1]. This yields∣∣∣E[eiu(d⃗·x⃗)/σ1 ]− φZ(u)
∣∣∣ ≲ε,H |u|n−1/2

for all u ∈ R (this is trivial for |u| ≥ Γ/4 ≳ε,H n1/2). Taking u = tσ1/(2σ(X)) and using σ1/(2σ(X)) =

∥d⃗∥2/(∥d⃗∥22 + 1
4e(G))

1/2 = 1−Oε(n
−1), we have∣∣∣E[eit(d⃗·x⃗)/(2σ(X))]− φZ(t)

∣∣∣ ≤ ∣∣∣E[eiu(d⃗·x⃗)/σ1 ]− φZ(u)
∣∣∣+ |φZ(u)− φZ(t)| ≲ε,H |t|n−1/2. (7.2)

Here, we used that the function φZ(u) = e−u2/2 has bounded derivative, and therefore |φZ(u)−φZ(t)| ≲
|u− t| = |σ1/(2σ(X))− 1| · |t| = Oε(n

−1|t|). The desired inequality now follows from (7.1) and (7.2). □

As mentioned above, Lemma 7.1 will be used for very small t. When t is somewhat larger we will need
a stronger bound which takes into account the interaction between the linear and quadratic parts of our
random variable. Specifically, writing Z1 and Z2 for the linear and quadratic parts of our normalized
random variable X∗, we show that eitZ2 does not “correlate adversarially” with eitZ1 , using an argument
due to Berkowitz [12]. Roughly speaking, the idea is as follows. Considering x⃗ ∈ {−1, 1}V (G) as in the
proof of Lemma 7.1, we can apply Taylor’s theorem to the exponential function to approximate eitZ2 by
a polynomial in Z2, thereby approximating φX∗(t) by a sum of terms of the form E[

∏
i∈S xSe

itZ1 ] (where
the sets S are rather small). Then, we observe that it is impossible for terms of the form

∏
i∈S xS to

correlate in a pathological way with eitZ1 , because all but |S| of the terms in the “linear” random variable
Z1 are independent from

∏
i∈S xS . We can use this observation to prove very strong upper bounds on

the magnitude of each of our terms E[
∏

i∈S xSe
itZ1 ] (we do not attempt to understand any potential

cancellation between these terms, but the resulting loss is not severe as there are not many choices of S).
In some range of t, the above idea can be used to prove a much stronger bound than in Lemma 7.1

(where we obtained a bound of |t|n−1/2). However, naïvely, this idea is only suitable in the regime
|t| ≲

√
n, for two reasons. The first reason is that (one can compute that) the typical order of magnitude

of Z2 is about 1/
√
n, so a Taylor series approximation for eitZ2 becomes increasingly ineffective as |t|

increases past
√
n. The second reason is that depending on the structure of our graph G it is possible
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that |φZ1
(Θ(

√
n))| ≳ 1, meaning that consideration of the linear part of X∗ simply does not suffice to

prove our desired bound on φX∗(t) (for example, this occurs when e⃗ = 0⃗ and G is regular).
In order to overcome the first of these issues, we restrict our attention to a small vertex subset I,

taking advantage of the different way that the linear and quadratic parts scale (related ideas appeared
previously in [13]) . Specifically, we condition on an outcome of the vertices sampled outside I, leaving
only the randomness within I (corresponding to the sequence x⃗I ∈ {−1, 1}I). We then redefine Z1 and
Z2 to be the linear and quadratic parts of the conditional random variable X∗ (as a quadratic polynomial
in x⃗I). Dropping to a subset in this way significantly reduces the variance of Z2, but may have a much
milder effect on Z1, in which case the above Taylor expansion techniques described above are effective.

The second issue is more fundamental, and is essentially the reason for the case distinction in our proof
of Theorem 3.1 (recall Section 3.2). Specifically, the range of t which we are able to consider depends on
a certain RLCD (recall the definitions in Section 4.3).

Lemma 7.2. Fix C,H > 0 and 0 < γ < 1/4, and let L = ⌈100/γ⌉. Then there is α = α(C,H, γ) > 0
such that the following holds. Let G be a C-Ramsey graph with n vertices, where n is sufficiently large
with respect to C,H, and γ, and consider e0 ∈ R and a vector e⃗ ∈ RV (G) with 0 ≤ ev ≤ Hn for all
v ∈ V (G). Let d⃗ ∈ RV (G) be given by dv = ev + degG(v)/2 for all v ∈ V (G). Next, let U ⊆ V (G) be
a random vertex subset obtained by including each vertex with probability 1/2 independently, and define
X = e(G[U ]) +

∑
v∈U ev + e0. Let X∗ = (X − EX)/σ(X). Then for any t ∈ R with

n2γ ≤ |t| ≤ α ·min{nγ/2D̂L,γ(d⃗), n
1/2+γ/8}.

we have
|φX∗(t)| ≲C,H,γ n

−5.

Before proving Lemma 7.2, we record a simple fact about the vector d⃗ in the lemma statement.

Lemma 7.3. Fix C > 0 and let G be a C-Ramsey graph with n vertices, where n is sufficiently large
with respect to C. Consider a vector e⃗ ∈ RV (G)

≥0 and define d⃗ ∈ RV (G) by dv = ev + degG(v)/2 for all
v ∈ V (G). Then for any subset I ⊆ V (G) of size |I| ≥

√
n, we have ∥d⃗I∥2 ≳C |I|3/2.

Proof. Note that G[I] is a (2C)-Ramsey graph, so by Theorem 4.1 we have e(G[I]) ≳C |I|2. Thus,

∥d⃗I∥22 =
∑
v∈I

(
ev +

1

2
degG(v)

)2

≥
∑
v∈V

(degG[I](v)/2)
2 ≥ |I| ·

(
e(G[I])

|I|

)2

≳C |I|3. □

Note that this lemma in particular implies that in the setting of Lemma 7.2 the vector d⃗ has fewer
than n1−γ zero coordinates, meaning that D̂L,γ(d⃗) is well-defined (recall Definition 4.11).

In the proof of Lemma 7.2, we will also use the following Taylor series approximation for the expo-
nential function.

Lemma 7.4. For all z ∈ C and K ∈ N, we have∣∣∣∣ez − K∑
j=0

zj

j!

∣∣∣∣ ≤ emax{0,Re(z)} |z|K+1

K!
.

Proof. This follows from Taylor’s theorem with the integral form for the remainder: note that∣∣∣∣ ∫ z

0

et(z − t)K dt

∣∣∣∣ = |z|K+1

∣∣∣∣ ∫ 1

0

esz(1− s)K ds

∣∣∣∣ ≤ emax{0,Re(z)}|z|K+1. □

Now we prove Lemma 7.2.

Proof of Lemma 7.2. Let us define x⃗ ∈ {−1, 1}V (G) by taking xv = 1 if v ∈ U , and xv = −1 if v /∈ U
(and note that then x⃗ is a vector of independent Rademacher random variables). As in the proof of
Lemma 7.1, we obtain X − EX = 1

2 d⃗ · x⃗ + 1
4

∑
uv∈E(G) xuxv and σ(X) ≳C n3/2 (here, we used that

by Theorem 4.1 the graph G has density at least ε for some ε = ε(C) > 0 only depending on C). We
furthermore have σ(X) = ( 14∥d⃗∥

2
2 +

1
16e(G))

1/2 ≲H n3/2.
By the definition of RLCD (Definition 4.11), there is a subset I ⊆ V (G) of size |I| = ⌈n1−γ⌉ such that

D̂L,γ(d⃗) = DL(d⃗I/∥d⃗I∥2).
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Step 1: Reducing to the randomness of x⃗I . The first step is to condition on a typical outcome of
x⃗V (G)\I ∈ {−1, 1}V (G)\I , so that we can work purely with the randomness of x⃗I ∈ {−1, 1}I . Define the
vector y⃗ ∈ RI by taking

yv =
1

4

∑
u∈V (G)\I
uv∈E(G)

xu

for each v ∈ I. Also, let

Z1 =
(1
2
d⃗I + y⃗

)
· x⃗I , Z2 =

1

4

∑
u,v∈I

uv∈E(G)

xuxv.

Note that X −E[X|x⃗V (G)\I ] = Z1 +Z2. Using the fact that |E[eit(Y+c)]| = |E[eitY ]| for any real random
variable Y and non-random c ∈ R, we have

|φX∗(t)| = |E[eitX/σ(X)]| ≤ E|E[eitX/σ(X)|x⃗V (G)\I ]| = E
∣∣∣∣E[exp( it(Z1 + Z2)

σ(X)

)∣∣∣∣x⃗V (G)\I

]∣∣∣∣.
The inner expectation on the right-hand side always has magnitude at most 1. Since degG(v) ≤ n

for v ∈ I, with a Chernoff bound we see that with probability at least 1 − exp(−Ω(nγ/4)) we have
|yv| ≤ n1/2+γ/8 for all v ∈ I. Conditioning on a fixed outcome of x⃗V (G)\I such that this is the case, it
now suffices to show that ∣∣∣∣E[exp( it(Z1 + Z2)

σ(X)

)]∣∣∣∣ ≲C,H,γ n
−5 (7.3)

for all t ∈ R with n2γ ≤ |t| ≤ α · min{nγ/2D̂L,γ(d⃗), n
1/2+γ/8}, where α = α(C,H, γ) > 0 is chosen

sufficiently small (in particular, we may assume α < 1).

Step 2: Taylor expansion. Let K = ⌈10/γ⌉. By Lemma 7.4 we have∣∣∣∣E[ exp( it(Z1 + Z2)

σ(X)

)]∣∣∣∣ = ∣∣∣∣E[ exp( itZ1

σ(X)

)
exp

(
itZ2

σ(X)

)]∣∣∣∣
≤
∣∣∣∣E[ exp( itZ1

σ(X)

) K∑
j=0

1

j!

(
itZ2

σ(X)

)j]∣∣∣∣+ E
[
1

K!

(
|tZ2|
σ(X)

)K+1]
(7.4)

Recalling that |I| = ⌈n1−γ⌉ and our assumption that |t| ≤ n1/2+γ/8, we have

E[(tZ2/σ(X))2] =
t2

σ(X)2
· E[Z2

2 ] ≤
t2

σ(X)2
· |I|2 ≲C

n1+γ/4

n3
· n2−2γ = n−7γ/4.

By Theorem 4.14 (hypercontractivity), we deduce E[(|tZ2|/σ(X))K+1] ≲C,γ n
−7γ(K+1)/8. Thus, using

that (K + 1)γ ≥ 10, we obtain

E
[
1

K!

(
|tZ2|
σ(X)

)K+1]
≲C,γ n

−5. (7.5)

Also, note that
∑K

j=0
1
j! (itZ2/σ(X))j is a polynomial of degree 2K in x⃗I . Noting that x2v = 1 for all v,

one can represent this polynomial as a linear combination of at most |I|2K < n2K multilinear monomials∏
v∈S xv with |S| ≤ 2K. The coefficient of each such monomial has absolute value OC,γ(1), recalling

that |t| ≤ n1/2+γ/8 and σ(X) = ΩC(n
3/2) and |I| = ⌈n1−γ⌉ (and K = ⌈10/γ⌉). For the rest of the proof,

our goal is now to show that for any set S ⊆ I with |S| ≤ 2K we have∣∣∣∣E[ exp( itZ1

σ(X)

)∏
v∈S

xv

]∣∣∣∣ ≲C,H,γ n
−5−2K . (7.6)

The desired bound (7.3) will then follow from (7.4), bounding the first summand by summing (7.6) over
all choices of S and bounding the second summand via (7.5).

Step 3: Relating to the LCD. So let us fix some subset S ⊆ I with |S| ≤ 2K. Let f⃗ = 1
2 d⃗I + y⃗ ∈ RI , so

Z1 = f⃗ · x⃗I . Noting that |xv| ≤ 1 for all v ∈ I, and using (4.2), we have∣∣∣∣E[ exp( itZ1

σ(X)

)∏
v∈S

xv

]∣∣∣∣ = ∣∣∣∣E[ ∏
v∈I\S

exp

(
itfvxv
2σ(X)

)
·
∏
v∈S

exp

(
itfvxv
2σ(X)

)
xv

]∣∣∣∣ ≤ ∏
v∈I\S

∣∣∣∣E[ exp( itfvxv2σ(X)

)]∣∣∣∣
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≤ exp

−
∑

v∈I\S

∥∥∥∥ tfv
2πσ(X)

∥∥∥∥2
R/Z

 ≤ exp

(
|S| − dist

(
|t|f⃗

2πσ(X)
,ZI

)2
)
. (7.7)

(Here we used that for any a⃗ ∈ RI we have
∑

v∈I\S ∥av∥2R\Z = dist(⃗aI\S ,ZI\S)2 ≥ dist(⃗aI ,ZI)2 − |S|.)
Since |t| ≤ n1/2+γ/8 and σ(X) = ΩC(n

3/2) and we are conditioning on x⃗V (G)\I such that |yv| ≤
n1/2+γ/8 for all v ∈ I, we have (using that |I| = ⌈n1−γ⌉)

|t|∥y⃗∥2
2πσ(X)

≲C
n1/2+γ/8 · (|I|1/2) · n1/2+γ/8

n3/2
≲ n−γ/4,

and therefore |t|∥y⃗∥2/(2πσ(X)) ≤ 1 for sufficiently large n. By our assumption |t| ≤ αnγ/2D̂L,γ(d⃗) =

αnγ/2DL(d⃗I/∥d⃗I∥2), we have

|t|∥d⃗I∥2
4πσ(X)

≲C,H
αnγ/2DL(d⃗I/∥d⃗I∥2) · |I|1/2 · n

n3/2
≲ αDL(d⃗I/∥d⃗I∥2).

Hence, by choosing α = α(C,H, γ) > 0 to be sufficiently small in terms of C, H, and γ, for sufficiently
large n we obtain |t|∥d⃗I∥2/(4πσ(X)) < DL(d⃗I/∥d⃗I∥2) and therefore

dist

(
|t|f⃗

2πσ(X)
,ZI

)
≥ dist

(
|t|(d⃗I/2)
2πσ(X)

,ZI

)
− |t|∥y⃗∥2

2πσ(X)
≥ dist

(
|t|∥d⃗I∥2
4πσ(X)

· d⃗I

∥d⃗I∥ 2

,ZI

)
− 1

≥ L

√
log+

(
|t|∥d⃗I∥2
4πLσ(X)

)
− 1 (7.8)

where we applied the definition of LCD (see Definition 4.9). Now, |t|∥d⃗I∥2/(4πLσ(X)) ≳C,H,γ n
γ/2, since

|t| ≥ n2γ and σ(X) ≲H n3/2 and ∥d⃗I∥2 ≳C |I|3/2 ≳ n(3/2)−3γ/2 by Lemma 7.3. Thus, for sufficiently

large n, we have |t|∥d⃗I∥2/(4πLσ(X)) ≥ nγ/4, and therefore the term (7.8) is at least L
√
log+(n

γ/4)−1 ≥

(L/2)
√
log+(n

γ/4). Then, recalling that L = ⌈100/γ⌉ and K = ⌈10/γ⌉ and |S| ≤ 2K, it follows that

dist

(
|t|f⃗

2πσ(X)
,ZI

)2

≥
(
L

2

√
log+(n

γ/4)

)2

≥ 104

4γ2
· γ
4
log n ≥ (4K + 5) log n ≥ |S|+ (2K + 5) log n.

Combining this with (7.7), we obtain the desired inequality (7.6). □

8. Characteristic function estimates based on quadratic cancellation

In Section 7, we proved some bounds on the characteristic function of a random variable X of the
form X = e(G[U ]) +

∑
v∈U ev + e0 purely using the linear part of X. In this section we prove a bound

which purely uses the quadratic part of X (this will be useful for larger t).
In the setting and notation of Section 7, the regime where this result is effective corresponds to a

range where |t| is roughly between n1/2+Ω(1) and n3/2. However, the bounds in this section will need
to be applied in two slightly different settings (recalling from Section 3.2 that the proof of Theorem 3.1
bifurcates into two cases). To facilitate this, we consider random variables X of a slightly different type
than in Section 7: instead of studying the number of edges in a uniformly random vertex subset, we
study the number of edges in a uniformly random vertex subset of a particular size. We can interpret
this as studying a conditional distribution, where we condition on an outcome of the number of vertices
of our random subset (if desired, we can deduce bounds in the unconditioned setting simply by averaging
over all possible outcomes).

We remark that in this setting where our random subset has a fixed size, it is no longer true that the
standard deviation σ(X) must have order of magnitude n3/2. Indeed, the order of magnitude of σ(X)
depends on e⃗ and the degree sequence of G. Therefore, it is more convenient to study the characteristic
function of X directly, instead of its normalized version X∗ = (X − EX)/σ(X). To avoid confusion,
we will use the variable name “τ ” instead of “t” when working with characteristic functions of random
variables that have not been normalized (so, informally speaking, the translation is that τ = t/σ(X)).

Lemma 8.1. Fix C > 0 and 0 < η < 1/2. There is ν = ν(C, η) > 0 such that the following holds. Let G
be a C-Ramsey graph with n vertices, where n is sufficiently large with respect to C and η, and consider
a vector e⃗ ∈ RV (G) and e0 ∈ R. Consider ℓ ∈ N with ηn ≤ ℓ ≤ (1−η)n, and let U be a uniformly random
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subset of ℓ vertices in G, and let X = e(G[U ])+
∑

v∈U ev+e0. Then for any τ ∈ R with n−1+η ≤ |τ | ≤ ν
we have

|φX(τ)| ≤ n−5.

The proof of Lemma 8.1 depends crucially on decoupling techniques. Generally speaking, such tech-
niques allow one to reduce from dependent situations to independent ones (see [28] for a book-length
treatment). In our context, decoupling allows us to reduce the study of “quadratic” random variables
to the study of “linear” ones. Famously, a similar approach was taken by Costello, Tao, and Vu [27] to
study singularity of random symmetric matrices.

To illustrate the basic idea of decoupling, consider an n-variable quadratic polynomial f and a sequence
of random variables ξ⃗ ∈ Rn. If [n] = I ∪ J is a partition of the index set into two subsets, then we can
break ξ⃗ = (ξ1, . . . , ξn) into two subsequences ξ⃗I ∈ RI and ξ⃗J ∈ RJ (and write f(ξ⃗) = f(ξ⃗I , ξ⃗J)). Let us
assume that the random vectors ξ⃗I and ξ⃗J are independent. Now, if ξ⃗′J is an independent copy of ξ⃗J ,
then Y := f(ξ⃗I , ξ⃗J)− f(ξ⃗I , ξ⃗′J), is a linear polynomial in ξ⃗I , after conditioning on any outcomes of ξ⃗J , ξ⃗′J
(roughly speaking, this is because “the quadratic part in ξ⃗I gets cancelled out”). Then, for any τ ∈ R,
we can use the inequality

|φf(ξ⃗)(τ)|
2 =

∣∣∣Eeiτf(ξ⃗I ,ξ⃗J )∣∣∣2 ≤ E
[∣∣∣E[eiτf(ξ⃗I ,ξ⃗J ) | ξ⃗I ]∣∣∣2] = E

[
E[eiτ(f(ξ⃗I ,ξ⃗J )−f(ξ⃗I ,ξ⃗

′
J )) | ξ⃗I ]

]
= E

[
E[eiτ(f(ξ⃗I ,ξ⃗J )−f(ξ⃗I ,ξ⃗

′
J )) | ξ⃗J , ξ⃗′J ]

]
≤ E

[∣∣∣E[eiτ(f(ξ⃗I ,ξ⃗J )−f(ξ⃗I ,ξ⃗
′
J )) | ξ⃗J , ξ⃗′J ]

∣∣∣]. (8.1)

(This inequality appears as [65, Lemma 3.3]; similar inequalities appear in [12, 77].) Crucially, the
expression E[eiτ(f(ξ⃗I ,ξ⃗J )−f(ξ⃗I ,ξ⃗

′
J )) | ξ⃗J , ξ⃗′J ] can be interpreted as an evaluation of the characteristic function

of a linear polynomial in ξ⃗I , which is easy to understand.
In general, (8.1) incurs some loss (one generally obtains bounds which are about the square root of

the truth). However, under certain assumptions about the degree-2 part of f , this square-root loss “in
Fourier space” does not seriously affect the final bounds one gets “in physical space”. Specifically, the
first and third authors [65] observed that it suffices to assume that the degree-2 part of f “robustly has
high rank”, and observed that quadratic forms associated with Ramsey graphs always satisfy this robust
high rank assumption (we will prove a similar statement in Lemma 10.1).

Our proof of Lemma 8.1 will be closely related to the proof of the main result in [65], although our
approach is slightly different, as we need to take more care with quantitative aspects. In particular,
instead of working with a qualitative robust-high-rank assumption we will directly make use of the fact
that in any Ramsey graph, there are many disjoint tuples of vertices with very different neighborhoods
(this can be interpreted as a particular sense in which the adjacency matrix of G robustly has high rank).

Lemma 8.2. For any C, β > 0, there is ζ = ζ(C, β) > 0 such that the following holds for all sufficiently
large n. Let G be a C-Ramsey graph with n vertices, and let q = ⌊ζ log n⌋. Then there is a partition
V (G) = I ∪ J and a collection V ⊆ Iq of at least n1−β disjoint q-tuples of vertices in I, such that for all
(v1, . . . , vq) ∈ V we have

|J \ (N(v1) ∪ · · · ∪N(vr))| ≥ n1−β and |(J ∩N(vr)) \ (N(v1) ∪ · · · ∪N(vr−1))| ≥ n1−β (8.2)

for all r = 1, . . . , q.

Proof. By Lemma 4.4 (applied with m = n1−β/2 and α = 1/5), for some ρ = ρ(C) with 0 < ρ < 1
we can find a vertex subset R ⊆ V (G) with |R| ≥ n1−β/2, such that the induced subgraph G[R] is
(n−ρβ/2, ρ)-rich. Let us now define ζ = βρ/(2 log(1/ρ)) > 0, and let q = ⌊ζ log n⌋.

We claim that for any subset U ⊆ R of at size at least |U | > n1/5, we can iteratively construct a
q-tuple (v1, . . . , vq) ∈ Uq with

|R \ (N(v1) ∪ · · · ∪N(vr))| ≥ ρr|R| and |(R ∩N(vr)) \ (N(v1) ∪ · · · ∪N(vr−1))| ≥ ρr|R| (8.3)

for r = 1, . . . , q. Indeed, for any 0 ≤ k < q, consider a k-tuple (v1, . . . , vk) ∈ Uk satisfying (8.3) for
r = 1, . . . , k. Since ρk ≥ ρq ≥ ρζ logn = n−ρβ/2, we can apply the definition of G[R] being (n−ρβ/2, ρ)-
rich (see Definition 4.3) to the set W := R \ (N(v1) ∪ · · · ∪ N(vk)) of size |W | ≥ ρk|R|, and conclude
that there are at most |R|1/5 ≤ n1/5 vertices v ∈ U satisfying |(R ∩ N(v)) \ (N(v1) ∪ · · · ∪ N(vk))| =
|N(v) ∩W | ≤ ρ|W | or |R \ (N(v1) ∪ · · · ∪N(vk) ∪N(v))| = |W \N(v)| ≤ ρ|W |. Hence, as |U | > n1/5,
there exists a vertex vk+1 ∈ U with |(R ∩ N(vk+1)) \ (N(v1) ∪ · · · ∪ N(vk))| > ρ|W | ≥ ρk+1|R| and
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|R \ (N(v1) ∪ · · · ∪N(vk+1))| > ρ|W | ≥ ρk+1|R|. So we can indeed construct a q-tuple (v1, . . . , vq) ∈ Uq

satisfying (8.3) for r = 1, . . . , q.
By repeatedly applying the above claim, we can now greedily construct a collection V ⊆ Rq of ⌈n1−β⌉

disjoint q-tuples of vertices in R such that each such q-tuple (v1, . . . , vq) ∈ V satisfies (8.3) for r = 1, . . . , q
(indeed, as long as our collection V has size |V| < n1−β , the number of vertices appearing in some q-tuple
in V is at most q · n1−β < (ζ log n) · n1−β < n1−β/2/2 ≤ |R|/2, and hence there are at least |R|/2 > n1/5

vertices in R remaining). Now, define I to be the set of the q · ⌈n1−β⌉ ≤ (ζ log n) ·2n1−β ≤ n1−β(1+ρ)/2/2
vertices appearing in the q-tuples in V, and let J = V (G)\I. We claim that now for every (v1, . . . , vq) ∈ V
and every r = 1, . . . , q the desired conditions in (8.2) follows from (8.3). Indeed, by (8.3) the sets
appearing in (8.2) have size at least ρr|R|−|R∩I| ≥ ρq ·n1−β/2−|I| ≥ n−βρ/2 ·n1−β/2−n1−β(1+ρ)/2/2 =
n1−β(1+ρ)/2/2 ≥ n1−β (using that ρ < 1 and n is sufficiently large). □

Roughly speaking, the condition in (8.2) states that (v1, . . . , vq) have very different neighborhoods.
This allows us to obtain strong joint probability bounds on degree statistics, as follows.

Lemma 8.3. Fix η > 0. In an n-vertex graph G, let (v1, . . . , vq) be a tuple of vertices satisfying (8.2)
(for all r = 1, . . . , q) for some vertex subset J ⊆ V (G) and some 0 < β < 1. For some ℓ ∈ N with
ηn ≤ ℓ ≤ (1 − η)n, let U be a random subset of ℓ vertices of G. Consider any τ ∈ R \ {0}, any
0 < δ ≤ 1/2, and x⃗ ∈ Rq. Then

Pr
[
∥τ degU∩J(vr)− τ degU∩J(v1) + xr∥R/Z < δ for r = 2, . . . , q

]
≤
(
Oη

(
(|τ |+ δ)(|τ |+ n−(1−β)/2)

|τ |

))q−1

.

To prove Lemma 8.3 we will need the following estimate for hypergeometric distributions.

Lemma 8.4. Fix η > 0. For some even positive integer k, let Z ∼ Hyp(k, k/2, ℓ) with ηk ≤ ℓ ≤ (1−η)k.
Then for any τ ∈ R \ {0}, any 0 < δ ≤ 1/2 and x ∈ R, we have

Pr
[
∥τZ + x∥R/Z ≤ δ

]
≲η

(|τ |+ δ)(|τ |+ 1/
√
k)

|τ |
.

Proof. We may assume that x ∈ [−τEZ,−τEZ + 1], which implies that x/τ differs from −EZ by at
most 1/|τ |. Note that the standard deviation of Z is Θη(

√
k); by direct computation or a non-uniform

quantitative central limit theorem for the hypergeometric distribution (for example [69, Theorem 2.3]),
for any y ∈ R we have

Pr[Z − EZ = y] ≲η

exp
(
−Ωη(y

2/k)
)

√
k

.

It follows that

Pr
[
∥τZ + x∥R/Z ≤ δ

]
≤
∑
i∈Z

Pr

[∣∣∣∣Z +
x

τ
− i

τ

∣∣∣∣ ≤ δ

|τ |

]
≲η

∑
i∈Z

∑
j∈Z

|j+x/τ−i/τ |≤δ/|τ |

exp
(
−Ωη((j − EZ)2/k)

)
√
k

≲η

∑
i∈Z

(
1 + 2

δ

|τ |

)
exp
(
−Ωη

(
(max{0, |i/τ | − (1 + δ)/|τ |})2/k

))
√
k

≤
(
1 + 2

δ

|τ |

)∑
i∈Z
|i|>4

exp
(
−Ωη

(
i2/(4τ2k)

))
√
k

+
∑
i∈Z
|i|≤4

1√
k


≲η

|τ |+ δ

|τ |
·

(
|τ |

√
k√
k

+
1√
k

)
=

(|τ |+ δ)(|τ |+ 1/
√
k)

|τ |
,

where in the third step we used that for any i ∈ Z there are at most 1 + 2δ/|τ | integers j ∈ Z satisfying
|j + x/τ − i/τ | ≤ δ/|τ |, and for every such integer we have |j − EZ| ≥ |i|/τ − 1/|τ | − δ/|τ | (since x/τ
differs from −EZ by at most 1/|τ |). □

From this we deduce Lemma 8.3.

Proof of Lemma 8.3. For r = 2, . . . , q, let Er be the event that ∥τ degU∩J(vi)−τ degU∩J(v1)+xi∥R/Z < δ.
We claim that

Pr[Er | E2 ∩ · · · ∩ Er−1] ≲η
(|τ |+ δ)(|τ |+ n−(1−β)/2)

|τ |
.
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for every r = 2, . . . , q. This will suffice, since the desired probability in the statement of Lemma 8.3 is

Pr[E2 ∩ · · · ∩ Eq] =
q∏

r=2

Pr[Er | E2 ∩ · · · ∩ Er−1].

Now fix r ∈ {2, . . . , q}. By assumption both of the sets appearing in condition (8.2) have size at
least ⌈n1−β⌉. Inside each of these two sets, we choose some subset of size exactly ⌈n1−β⌉ and we
define S ⊆ J \ (N(v1) ∪ · · · ∪ N(vr−1)) to be the union of these two subsets. Then |S| = 2⌈n1−β⌉ and
|S∩N(vr)| = ⌈n1−β⌉. For the random set U ⊆ V (G) of size ℓ, let us now condition on an outcome of |U∩S|
such that (η/2)|S| ≤ |U∩S| ≤ (1−η/2)|S| (by a Chernoff bound for hypergeometric random variables, as
in Lemma 4.16, this happens with probability 1−n−ωη(1) ≥ 1−((|τ |+δ)/|τ |)·n−(1−β)/2), and condition on
any outcome of U \S (as S is disjoint from N(v1)∪· · ·∪N(vr−1), this determines the value of degU∩J(vj)
for j = 1, . . . , r − 1 and in particular determines whether the events Ej hold for j = 2, . . . , r − 1). Now,
conditionally, degU∩S(vr) = |U ∩ S ∩N(vr)| has a hypergeometric distribution Hyp(|S|, |S|/2, |U ∩ S|),
so the claim follows from Lemma 8.4 (taking x = τ deg(U∩J)\S(v1) − τ degU∩J(v1) + xr), recalling that
|S| = 2⌈n1−β⌉. □

We are now ready to prove Lemma 8.1.

Proof of Lemma 8.1. We apply Lemma 8.2 with β = η/3, obtaining a partition V (G) = I ∪ J and a
collection V ⊆ Iq of at least n1−η/3 disjoint q-tuples of vertices in I, where q = ⌊ζ log n⌋ with ζ =
ζ(C, η/3) > 0, such that each q-tuple (v1, . . . , vq) ∈ V satisfies (8.2) for r = 1, . . . , q. Let A denote the
adjacency matrix of G and let ξ⃗ ∈ {0, 1}n be the characteristic vector of the random set U (meaning
ξ⃗v = 1 if v ∈ U , and ξ⃗v = 0 if v /∈ U), so ξ⃗ ∈ {0, 1}n is a uniformly random vector with precisely ℓ ones.
We define

f(ξ⃗) := X = e(G[U ]) +
∑
v∈U

ev + e0 =
1

2
ξ⃗⊺Aξ⃗ + e⃗ · ξ⃗ + e0.

For the rest of the proof we condition on an outcome of |U ∩I| satisfying (η/2)|I| ≤ |U ∩I| ≤ (1−η/2)|I|.
By a Chernoff bound for hypergeometric random variables, as in Lemma 4.16, this occurs with probability
1−n−ωη(1) (as ηn ≤ ℓ ≤ (1−η)n and |I| ≥ n1−η/3), so the characteristic function for the random variable
X under this conditioning differs from the original characteristic function φX by at most n−ωη(1). Hence
it suffices to prove that |φX(τ)| ≤ n−6 (for n−1+η ≤ |τ | ≤ ν) for our conditional random variable X.

Let ξ⃗I and ξ⃗J be the restrictions of ξ⃗ to the index sets I and J . Having conditioned on |U ∩ I|, these
vectors ξ⃗I and ξ⃗J are independent from each other. Let ξ⃗′J be an independent copy of ξ⃗J ; by (8.1) we
have

|φX(τ)|2 = |φf(ξ⃗)(τ)|
2 =

∣∣∣Eeiτf(ξ⃗I ,ξ⃗J )∣∣∣2 ≤ E
[∣∣∣E[eiτ(f(ξ⃗I ,ξ⃗J )−f(ξ⃗I ,ξ⃗

′
J )) | ξ⃗J , ξ⃗′J ]

∣∣∣]. (8.4)

Now, we can write f(ξ⃗I , ξ⃗J)− f(ξ⃗I , ξ⃗
′
J) =

∑
i∈I aiξi + b, where ai =

∑
j∈J Ai,j(ξj − ξ′j) for each i ∈ I

and b only depends on ξ⃗J and ξ⃗′J (but not on ξ⃗I). Let δ = n−1/2+η/3.

Claim 8.5. With probability at least 1− n−12/2 the outcome of (ξ⃗J , ξ⃗′J) is such that

∥τai/(2π)− τai′/(2π)∥R/Z ≥ δ

for at least |V|/2 ≥ n1−η/3/2 disjoint pairs (i, i′) ∈ I2.

Assuming Claim 8.5, it follows from Lemma 4.8 that with probability at least 1−n−12/2, the outcome
of ξ⃗J and ξ⃗′J is such that∣∣∣E[eiτ(f(ξ⃗I ,ξ⃗J )−f(ξ⃗I ,ξ⃗

′
J )) | ξ⃗J , ξ⃗′J ]

∣∣∣ = ∣∣∣E[eiτ(∑i∈I aiξi+b) | ξ⃗J , ξ⃗′J ]
∣∣∣ = ∣∣∣E[ei∑i∈I τaiξi | ξ⃗J , ξ⃗′J ]

∣∣∣ ≲ e−Ωη(n
η/3).

For sufficiently large n, the right-hand side is bounded by n−12/2. Noting that the expectation on the
left-hand side is bounded by 1 for all outcomes of ξ⃗J and ξ⃗′J , we can conclude that the right-hand side
of (8.4) is bounded by n−12 and therefore |φX(τ)| ≤ n−6 for sufficiently large n, as desired. It remains
to prove Claim 8.5.

Proof of Claim 8.5. Let us also condition on any outcome of ξ⃗′J . Say that a q-tuple (v1, . . . , vq) ∈ V is
bad if no pair (vr, v1) ∈ I2 with r ∈ {2, . . . , q} has the property in the claim. In other words, (v1, . . . , vq)
is bad if for all r = 2, . . . , q we have ∥τavr/(2π)− τav1/(2π)∥R/Z < δ.
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For any q-tuple (v1, . . . , vq) ∈ V we can bound the probability that (v1, . . . , vq) is bad by applying
Lemma 8.3 with xr = −(τ/(2π))

∑
j∈J(Avr,j −Av1,j)ξ

′
j for r = 2, . . . , q (recall that (v1, . . . , vq) satisfies

(8.2)), obtaining

Pr[(v1, . . . , vq) is bad] = Pr
[
∥τavr/(2π)− τav1/(2π)∥R/Z < δ for r = 2, . . . , q

]
= Pr

[
∥(τ/(2π)) degU∩J(vr)− (τ/(2π)) degU∩J(v1) + xr∥R/Z < δ for r = 2, . . . , q

]
≤
(
Oη

(
(|τ/(2π)|+ δ)(|τ/(2π)|+ n−(1−β)/2)

|τ/(2π)|

))q−1

≤
(
Oη

(
(|τ |+ n−1/2+η/3)(|τ |+ n−1/2+η/6)

|τ |

))q−1

≤
(
Oη(ν + n−η/2)

)⌊ζ logn⌋−1

,

using that n−1+η ≤ |τ | ≤ ν. Now, if ν is sufficiently small with respect to C and η (and consequently
also sufficiently small with respect to ζ), we deduce that Pr[(v1, . . . , vq) is bad] ≤ 1/(4n12). Hence the
expected number of bad tuples (v1, . . . , vq) ∈ V is at most |V|/(4n12). Thus, by Markov’s inequality,
with probability at least 1 − n−12/2 there are at most |V|/2 bad q-tuples in V. When this is the case,
among each of the at least |V|/2 different q-tuples (v1, . . . , vq) ∈ V that are not bad we can find a pair
(vr, v1) ∈ I2 with the desired property that ∥τavr

/(2π)− τav1/(2π)∥R/Z ≥ δ. Since the q-tuples in V are
all disjoint, this gives at least |V|/2 disjoint pairs in I2 with this property, thus proving the claim. □

As we saw earlier, this finishes the proof of Lemma 8.1. □

9. Short interval control in the additively unstructured case

Now we can combine the characteristic function estimates in Sections 7 and 8 to prove Theorem 3.1 in
the “additively unstructured” case (recall the outline in Section 3.2), defined as follows. This definition
is chosen so that the term D̂L,γ(d⃗) appearing in Lemma 7.2 is large, meaning that Lemma 7.2 can be
applied to a wide range of |t|.

Definition 9.1. Fix 0 < γ < 1/4, consider a graph G with n vertices and a vector e⃗ ∈ RV (G)
≥0 , and

let dv = ev + degG(v)/2 for all v ∈ V (G). Say that (G, e⃗) is γ-unstructured if D̂L,γ(d⃗) ≥ n1/2, for
L = ⌈100/γ⌉. Otherwise, (G, e⃗) is γ-structured.

From now on we fix γ = 10−4. For our proof of Theorem 3.1, we split into two cases, depending
on whether (G, e⃗) is γ-structured. In this section we will prove Theorem 3.1 in the case where (G, e⃗)
is γ-unstructured. Eventually (in Section 12) we will handle the case where (G, e⃗) is γ-structured, i.e.,
where D̂L,γ(d⃗) < n1/2. While the arguments in this section work for any constant 0 < γ < 1/4, the proof
of the γ-structured case in Section 12 requires γ to be sufficiently small (this is why we define γ = 10−4).

Proof of Theorem 3.1 in the γ-unstructured case. Fix C,H > 0, let G and e⃗ ∈ RV (G) and e0 ∈ R be as
in Theorem 3.1, and assume that (G, e⃗) is γ-unstructured and that n is sufficiently large with respect to
C and H. Recall that U is a uniformly random subset of V (G) and X = e(G[U ]) +

∑
v∈U ev + e0, and

also recall (e.g. from the proof of Lemma 7.2) that σ(X) = ΘC,H(n3/2). Let Z ∼ N (EX,σ(X)) be a
Gaussian random variable with the same mean and variance as X.

First note that for any τ ∈ R, Lemma 7.1 implies

|φX(τ)− φZ(τ)| =
∣∣φ(X−EX)/σ(X)(τσ(X))− φ(Z−EX)/σ(X)(τσ(X))

∣∣ ≲C,H |τ |σ(X)n−1/2 ≲C,H |τ |n

(noting that the graph G has density at least ΩC(1) by Theorem 4.1). Then, note that since |φZ(τ)| =
exp(−σ(X)2τ2/2), for |τ | ≥ n2γ/σ(X) we have |φZ(τ)| ≤ exp(−n4γ/2). Furthermore, in Lemma 7.2 we
have D̂L,γ(d⃗) ≥ n1/2 by our assumption that (G, e⃗) is γ-unstructured. Hence for α = α(C,H, γ) > 0
as in Lemma 7.2, we obtain that |φX(τ)| = |φ(X−EX)/σ(X)(τσ(X))| ≲C,H,γ n

−5 for n2γ/σ(X) ≤ |τ | ≤
αn1/2+γ/8/σ(X).

Let ν = ν(C, γ/9) > 0 be as in Lemma 8.1. Note that by a Chernoff bound we have n/4 ≤ |U | ≤ 3n/4
with probability 1 − e−Ω(n). If we condition on such an outcome of |U |, then for n−1+γ/9 ≤ |τ | ≤ ν,
Lemma 8.1 shows that the conditional characteristic function of X is bounded in absolute value by
n−5 (assuming that n is sufficiently large). It follows that for this range of |τ | we have |φX(τ)| ≲C,H

n−5 + e−Ω(n) ≲ n−5.
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Recalling that σ(X) = ΘC,H(n3/2) (and therefore n−1+γ/9 ≤ αn1/2+γ/8/σ(X) for sufficiently large
n), we can conclude that for n2γ/σ(X) ≤ |τ | ≤ ν we have |φX(τ)| ≲C,H n−5 and |φX(τ)− φZ(τ)| ≲C,H

n−5 + exp(−n4γ/2) ≲ n−5. Hence, defining ε = 2/ν > 0 (which only depends on C), we obtain∫ 2/ε

−2/ε

|φX(τ)− φZ(τ)| dτ ≲C,H

∫ n2γ/σ(X)

−n2γ/σ(X)

|τ |ndτ + 2ν · n−5 ≲C,H n4γ−2.

Let B = B(C) = 104 · 2ε. For the upper bound in Theorem 3.1, note that by Lemma 6.1 for all x ∈ R
we have (using that L(Z, ε) ≤ 2ε/σ(X) ≲C,H n−3/2 as pZ(u) ≤ 1/σ(X) for all u ∈ R)

Pr[|X − x| ≤ B] ≤ 2 · 104 · L(X, ε) ≲ L(Z, ε) + ε

∫ 2/ε

−2/ε

|φX(τ)− φZ(τ)| dτ ≲C,H n−3/2.

For the lower bound in Theorem 3.1, fix some A > 0. We can apply Lemma 6.3 with K = 2 and any
fixed R ≥ 4 (which we will chose sufficiently large in terms of C,H, γ, and A). Indeed, note that for any
fixed A > 0 and R ≥ 4, for x ∈ Z with |x − EX| ≤ An3/2 and y1, y2 ∈ [x − Rε, x + Rε], we have that
pZ(y1)/pZ(y2) ≤ exp(−((y1 −EX)2 − (y2 −EX)2)/(2σ(X)2)) ≤ exp(2Rε · 4An3/2/ΘC,H(n3)) ≤ 2 if n is
sufficiently large with respect to C,H,A, and R. Hence Lemma 6.3 yields

Pr[|X − x| ≤ B] ≥ 1

8
Pr[|Z − x| ≤ ε]− C6.3

(
R−1L(Z, ε) + ε

∫ 2/ε

−2/ε

|φY (τ)− φZ(τ)| dτ
)

≥ ε · exp(−A
2n3/(2σ(X)2))

8
√
2πσ(X)

− C6.3

R
· 2ε

σ(X)
− C6.3 ·OC,H(n4γ−2) ≳C,H,A n−3/2,

if R is chosen to be large enough with respect to C,H, and A (recall again that σ(X) = ΘC,H(n3/2)). □

10. Robust rank of Ramsey graphs

In [65], the first and third authors observed that the adjacency matrix of a Ramsey graph is far from
any matrix with rank O(1). We will need a much stronger version of this fact: the adjacency matrix of
a Ramsey graph is far from all matrices built out of a small number of rank-O(1) “blocks” (in the proof
of Theorem 3.1, these blocks will correspond to the buckets of vertices with similar values of dv). Recall
that ∥M∥2F is the sum of the squares of the entries of M .

Lemma 10.1. Fix 0 < δ < 1, C > 0, r ∈ N and consider a C-Ramsey graph G on n vertices with
adjacency matrix A. Suppose we are given a partition V (G) = I1 ∪ · · · ∪ Im, with |I1| = · · · = |Im|
and nδ/2 ≤ m ≤ 2nδ. Then, for any B ∈ Rn×n with rank(B[Ij×Ik]) ≤ r for all j, k ∈ [m], we have
∥A−B∥2F ≳C,r,δ n

2.

The proof of Lemma 10.1 has several ingredients, including the fact that if a binary matrix is close to
a low-rank matrix, then it is actually close to a binary low-rank matrix. Note that for binary matrices
A,Q, the squared Frobenius norm ∥A −Q∥2F can be interpreted as the edit distance between A and B:
the minimum number of entries that must be changed to obtain B from A.

Proposition 10.2. Fix r ∈ N. Consider a binary matrix A ∈ {0, 1}n×n and a real matrix B ∈ Rn×n

such that rankB ≤ r and ∥A−B∥2F ≤ εn2 for some ε > 0. Then there is a binary matrix Q ∈ {0, 1}n×n

with rankQ ≤ r and ∥A−Q∥2F ≤ Cr
√
εn2, for some Cr depending only on r.

We remark that it is possible to give a more direct proof of a version of Proposition 10.2 with dramati-
cally worse quantitative aspects (i.e., replacing

√
ε by a function that decays extremely slowly as ε→ 0),

using a bipartite version of the induced graph removal lemma (see for example [25, Theorem 3.2]). For
the application in this paper, quantitative aspects are not important, but we still believe our elementary
proof and the strong bounds in Proposition 10.2 are of independent interest (induced removal lemmas
typically require the so-called strong regularity lemma, which is notorious for its terrible quantitative
aspects). Our proof of Proposition 10.2 relies on the following lemma.

Lemma 10.3. Fix r ∈ N. Let η > 0, and let A ∈ {0, 1}n×n be a binary matrix where every entry is
colored either red or green, in such a way that fewer than η2/(10 · 2r)2 · n2 entries are red. Suppose that
every (r + 1) × (r + 1) submatrix of A consisting only of green entries is singular. Then there exists a
binary matrix Q ∈ {0, 1}n×n with rankQ ≤ r which differs from A in at most η · n2 entries.
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Proof. For ℓ ∈ N, let us call an ℓ× ℓ submatrix of some matrix green if all its ℓ2 entries are green.
First, consider all rows and columns of A that contain at least η/(10 · 22r) · n red entries. There

can be at most (η/10) · n such rows and at most (η/10) · n such columns. Let us define a new matrix
A1 ∈ {0, 1}n×n where we replace each of these rows by an all-zero row and each of these columns by
an all-zero column, and where we re-color all elements in these replaced rows and columns green. Note
that then A1 and A differ in at most (2η/10) · n2 entries, and A1 still has the property that each green
(r + 1) × (r + 1) submatrix is singular. Furthermore, each row and column in A1 contains at most
η/(10 · 22r) · n red entries.

Now choose ℓ maximal such that A1 contains a non-singular green ℓ × ℓ submatrix. Clearly, ℓ ≤ r,
and without loss of generality we assume that the ℓ× ℓ submatrix A1[ [ℓ]×[ℓ] ] in the top-left corner of A1

is non-singular and green. By the choice of ℓ, every green (ℓ+ 1)× (ℓ+ 1) submatrix in A1 is singular.
Now, in the first ℓ rows of A1 there are at most ℓ · η/(10 · 22r) · n ≤ (η/10)n red entries. For each of

these red entries in the first ℓ rows of A1, let us replace its entire column by green zeroes (i.e., an all-zero
column with all entries colored green). Similarly, in the first ℓ columns of A1 there are at most (η/10)n
red entries, and for each of these red entries let us replace its entire row by green zeroes. We obtain a
new matrix A2 ∈ {0, 1}n×n differing from A1 in at most (2η/10) · n2 entries. In this matrix A2 it is still
true that each green (ℓ+ 1)× (ℓ+ 1) submatrix in A1 is singular, but that A2[ [ℓ]×[ℓ] ] is non-singular.
Furthermore, A2 has no red entries anywhere in the first ℓ rows or first ℓ columns.

Next, consider the set of columns of A2 ∈ {0, 1}n×n with indices in {ℓ+1, . . . , n}. There is a partition
{ℓ+ 1, . . . , n} = I1 ∪ · · · ∪ I2r such that for each k = 1, . . . , 2r, the columns of A2 with indices in Ik all
agree in their first ℓ rows. For each k = 1, . . . , 2r with |Ik| ≤ η/(10 ·2r) ·n, let us replace all columns with
indices in Ik by green all-zero columns. Similarly, there is a partition {ℓ+1, . . . , n} = J1 ∪ · · · ∪ J2r such
that the rows with indices in the same set Jk all agree in their first ℓ columns. For each k = 1, . . . , 2r

with |Jk| ≤ η/(10 · 2r) · n, replace all rows with indices in Jk with green all-zero rows. In this way, we
obtain a new matrix A3 ∈ {0, 1}n×n differing from A2 in at most (2η/10) · n2 entries. Still, all green
(ℓ+ 1)× (ℓ+ 1) submatrices in A3 are singular, A3[ [ℓ]×[ℓ] ] is non-singular, and all entries in the first ℓ
rows and in the first ℓ columns of A3 are green.

Finally, define the matrix Q ∈ {0, 1}n×n by replacing the red entries in A3 as follows. For each red
entry (j, i) in A3 we have j ∈ Jk and i ∈ Ik′ for some k and k′ such that |Jk|, |Ik′ | > η/(10 · 2r) · n.
So, the submatrix A3[Jk×Ik′ ] of A3 must contain at least one green entry (since A3 has fewer than
η2/(10 · 2r)2 · n2 red entries). Let us now replace the red (j, i)-entry in A3 by some green entry in
A3[Jk×Ik′ ]. Replacing all red entries in this way, we obtain a matrix Q ∈ {0, 1}n×n differing from A3 in
at most η2/(10 · 2r)2 · n2 ≤ (η/10) · n2 entries.

All in all, Q differs from A in at most (7η/10) ·n2 ≤ η ·n2 entries. The ℓ×ℓ submatrix Q[ [ℓ]×[ℓ] ] is still
non-singular. We claim that whenever we extend this ℓ×ℓ submatrix in Q to an (ℓ+1)×(ℓ+1) submatrix
by taking an additional row j ∈ {ℓ+1, . . . , n} and an additional column i ∈ {ℓ+1, . . . , n}, the resulting
(ℓ+ 1)× (ℓ+ 1) submatrix of Q is singular. If the (j, i)-entry in A3 is green, then this (ℓ+ 1)× (ℓ+ 1)
submatrix of Q agrees with the corresponding submatrix in A3, which is green and therefore singular. If
the (j, i)-entry in A3 is red, then the (j, i)-entry in Q agrees with some green (j′, i′)-entry in A3 where
j, j′ ∈ Jk and i, i′ ∈ Ik′ for some k, k′. Hence the desired (ℓ + 1) × (ℓ + 1) submatrix of Q agrees with
the (ℓ+ 1)× (ℓ+ 1) submatrix A3[ ([ℓ] ∪ {i′})×([ℓ] ∪ {j′}) ] of A3, which is green and therefore singular.
Hence we have shown that all (ℓ + 1) × (ℓ + 1) submatrices of Q that contain Q[ [ℓ]× [ℓ] ] are singular.
Since Q[ [ℓ]×[ℓ] ] is non-singular, this implies that rankQ = ℓ ≤ r. □

Now we are ready to prove Proposition 10.2.

Proof of Proposition 10.2. Choose some 0 < cr < 1 depending only on r such that9

cr < inf{∥S − T∥2∞ : S ∈ {0, 1}(r+1)×(r+1) non-singular, T ∈ R(r+1)×(r+1) singular},
where ∥S − T∥∞ denotes the maximum absolute value |(S − T )i,j | among the entries of S − T .

Let A and B be matrices as in the lemma statement. Let us color each entry Ai,j of A red if
|Ai,j − Bi,j |2 > cr, and green otherwise. Then, as ∥A − B∥2F ≤ εn2, there are fewer than εn2/cr red
entries in A. Furthermore, as rankB ≤ r, by the choice of cr, every (r + 1) × (r + 1) submatrix of A

9For the sake of giving explicit bounds, note that we can take any cr < (2−r/(r! · r2))2. Indeed, note that any matrix
S ∈ {0, 1}(r+1)×(r+1) which is non-singular has |det(S)| ≥ 1. Suppose there is a matrix T such that det(T ) = 0 and
∥S − T∥∞ < c

1/2
r . This implies that ∥T∥∞ ≤ 2 and therefore switching entries of S and T one by one changes the

determinant by at most r! · 2r · c1/2r < r−2. As we switch r2 entries and det(S) ≥ 1 while det(T ) = 0, we obtain a
contradiction.
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consisting only of green entries must be singular. Thus, taking Cr = 10 · 2r/√cr the desired statement
follows from Lemma 10.3 with η = (10 · 2r)

√
ε/cr. □

We also need the simple fact that low-rank binary matrices can be partitioned into a small number
of homogeneous parts. This essentially corresponds to a classical bound on the log-rank conjecture.

Lemma 10.4. Fix r ∈ N, and let s = 2r. For any binary matrix Q ∈ {0, 1}n×n with rankQ ≤ r, we can
find partitions P1 ∪ · · · ∪ Ps and R1 ∪ · · · ∪Rs of [n], such that for all i, j ∈ [s], the submatrix Q[Pi×Rj ]
consists of only zeroes, or only ones.

Proof. First, we claim that the matrix Q has most 2r different row vectors: indeed, let r′ = rankQ ≤ r
and suppose without loss of generality that the submatrix Q[ [r′]×[r′] ] is non-singular. Then each row
of Q can be expressed as a linear combination of the first r′ rows, and any two rows of Q which agree
in the first r′ entries must be given by the same linear combination. Hence there can be at most 2r = s
different row vectors in the matrix Q, and we obtain a partition [n] = P1 ∪ · · · ∪ Ps such that any two
rows with indices in the same set Pi are identical.

Similarly, there is a partition [n] = P1 ∪ · · · ∪ Ps such that any two columns with indices in the same
set Rj are identical. Now, for all i, j ∈ [s], all entries of the submatrix Q[Pi×Rj ] must be identical to
each other, i.e., must be either all zeroes or all ones. □

Apart from Proposition 10.2 and Lemma 10.4, in our proof of Lemma 10.1 we will also use the fact
that every n-vertex graph has a clique or independent set of size at least 1

2 log n (this is a quantitative
version of Ramsey’s theorem proved by Erdős and Szekeres [38], as mentioned in the introduction).

Proof of Lemma 10.1. By Theorem 4.1 there exists some α = α(C, δ) > 0 such that every 2C/(1 − δ)-
Ramsey graph on sufficiently many vertices has density at least α and at most 1− α. Fix a sufficiently
large integer D = D(C, δ) such that 1/ log2D < α/4, and choose ε = ε(C, r, δ) > 0 small enough such
that

√
ε < 1/D2 and ε1/4 < α/(22rD+1Cr), where Cr is the constant in Proposition 10.2. It suffices to

prove that we have ∥A−B∥2F ≥ εn2 if n is sufficiently large with respect to C, δ, and r. So let us assume
for contradiction that ∥A−B∥2F < εn2.

Note that
∑

1≤k<j≤m

∥∥(A−B)[Ij×Ik]
∥∥2
F
≤ ∥A−B∥2F ≤ εn2, so there can be at most

√
εm2 pairs (j, k)

with 1 ≤ j < k ≤ m such that
∥∥(A−B)[Ij×Ik]

∥∥2
F
≥

√
ε(n/m)2. Hence a uniformly random subset of [m]

of size D contains such a pair (j, k) with probability at most
(
D
2

)
·
√
ε < 1. Thus, there exists a subset of

[m] of size D not containing any such pair (j, k), and we may assume without loss of generality that [D]

is such a subset. Then for any 1 ≤ j < k ≤ D we have
∥∥(A−B)[Ij×Ik]

∥∥2
F
<

√
ε(n/m)2 =

√
ε · |Ij | · |Ik|.

For any 1 ≤ j < k ≤ D, by Proposition 10.2 (recalling that rank(B[Ij×Ik]) ≤ r) we can find a binary
matrix Q(j,k) ∈ {0, 1}Ij×Ik with rank(Q(j,k)) ≤ r and ∥A[Ij×Ik] − Q(j,k)∥2F ≤ Crε

1/4(n/m)2. Now, by
Lemma 10.4, we can find partitions of Ij and Ik into 2r parts each, such that the corresponding (2r)2

submatrices of Q(j,k) each consist either only of zeroes or only of ones. Let us choose such partitions for
all pairs (j, k) with 1 ≤ j < k ≤ D, and for each of the sets I1, . . . , ID, let us take a common refinement
of the D − 1 partitions of that set. This way, for each of the sets I1, . . . , ID we obtain a partition into
2r(D−1) parts in such a way that for all 1 ≤ j < k ≤ D each of the submatrices of Q(j,k) induced by the
partitions of Ij and Ik consist either only of zeroes or only of ones.

For each j = 1, . . . , D, inside one of the parts of this partition of Ij , we can now choose a subset I ′j ⊆ Ij
of size |I ′j | = ⌈|Ij |/2r(D−1)⌉ = ⌈n/(2r(D−1)m)⌉. Then for all 1 ≤ j < k ≤ D, the submatrix Q(j,k)[I ′j , I

′
k]

consists either only of zeroes or only of ones. Consider the graph H on the vertex set [D] where for
1 ≤ j < k ≤ D we draw an edge if all entries of Q(j,k)[I ′j , I

′
k] are one (and we don’t draw an edge if all

entries are zero). Then, by Ramsey’s theorem (specifically, Erdős and Szekeres’ classical bound [38]),
this graph H must have a clique or independent set S ⊆ [D] of size |S| ≥ (log2D)/2. Without loss of
generality assume that S = {1, . . . , |S|}. Let us now consider the induced subgraph of the original graph
G on the vertex set I ′1 ∪ · · · ∪ I ′|S|.

If S = {1, . . . , |S|} is an independent set in H, then for all 1 ≤ j < k ≤ |S| the matrix Q(j,k)[I ′j×I ′k] is
all-zero, so A[Ij×Ik] ∈ {0, 1}Ij×Ik can contain at most Crε

1/4(n/m)2 ones (since ∥A[Ij×Ik]−Q(j,k)∥2F ≤
Crε

1/4(n/m)2). In other words, for all 1 ≤ j < k ≤ |S| the graph G[I ′1 ∪ · · · ∪ I ′|S|] has at most
Crε

1/4(n/m)2 ≤ Crε
1/4·22r(D−1)·|I ′j |·|I ′k| ≤ (α/2)·|I ′j |·|I ′k| edges between I ′j and I ′k. As |I ′1| = · · · = |I ′|S||,

the edges within the sets I1, . . . , Ik also contribute at most 1/|S| ≤ 2/ log2D < α/2 to the density of
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G[I ′1∪ · · · ∪ I ′|S|]. Thus, the graph G[I ′1∪ · · · ∪ I ′|S|] has density less than α, but it is a 2C/(1− δ)-Ramsey
graph since |I ′1 ∪ · · · ∪ I ′|S|| ≥ n/(2r(D−1)m) ≥ n1−δ/2r(D−1)+1 ≥ n(1−δ)/2. This is a contradiction.

Similarly, if S = {1, . . . , |S|} is a clique in H, then for all 1 ≤ j < k ≤ |S| the matrix Q(j,k)[I ′j , I
′
k] is an

all-ones matrix, and we can perform a similar calculation for the number of non-edges in G[I ′1∪· · ·∪I ′|S|].
We find that G[I ′1 ∪ · · · ∪ I ′|S|] has density greater than 1− α, which is again a contradiction. □

11. Lemmas for products of Boolean slices

In this section we study products of Boolean slices (that is, we consider random vectors x⃗ ∈ {−1, 1}n
whose index set is divided into “buckets”, uniform among all vectors with a particular number of “1”s in
each bucket). The main outputs we will need from this section are summarized in the following lemma.
Namely, for a “well-behaved” quadratic polynomial f , a Gaussian vector z⃗ and a vector x⃗ sampled from
an appropriate product of slices, we can compare f(x⃗) with f(z⃗). Our assumptions on f are certain
bounds on the coefficients, and that our polynomial is in a certain sense “balanced” within each bucket.

Lemma 11.1. Fix 0 < δ < 1/4. Suppose we are given a partition [n] = I1∪· · ·∪Im, with |I1| = · · · = |Im|
and nδ/2 ≤ m ≤ 2nδ, where n is sufficiently large with respect to δ. Consider a symmetric matrix
F ∈ Rn×n, a vector f⃗ ∈ Rn and a real number f0 satisfying the following conditions:

(a) ∥f⃗∥∞ ≤ n1/2+3δ.
(b) |Fi,j | ≤ 1 for all i, j ∈ [n].
(c) For each k = 1, . . . ,m, the sum of the entries in f⃗Ik is equal to zero.
(d) For all k, h ∈ [m], in the submatrix F [Ik×Ih] of F all row and column sums are zero.

Consider a sequence (ℓ1, . . . , ℓm) ∈ Nm with |ℓk − |Ik|/2| ≤
√
n1−δ log n for k = 1, . . . ,m. Then, let

x⃗ ∈ {−1, 1}n be a uniformly random vector such that x⃗Ik has exactly ℓk ones for each k = 1, . . . ,m,
and let z⃗ ∼ N (0, 1)⊗n be a vector of independent standard Gaussian random variables. Define X =

f0 + f⃗ · x⃗+ x⃗⊺Fx⃗ and Z = f0 + f⃗ · z⃗ + z⃗⊺F z⃗. Then the following three statements hold.
(1) EX = f0 +

∑n
i=1 Fi,i +O(n3/4+4δ) and EZ = f0 +

∑n
i=1 Fi,i.

(2) σ(X)2 = 2∥F∥2F + ∥f⃗∥22 +O(n7/4+7δ) and σ(Z)2 = 2∥F∥2F + ∥f⃗∥22.
(3) For any τ ∈ R we have

|φX(τ)− φZ(τ)| ≲ |τ |4 · n3+12δ + |τ | · n3/4+4δ.

We will apply this lemma in the additively structured case of our proof of Theorem 3.1. In that proof,
we will use Lemma 4.12 to partition (most of) the vertices of our graph into “buckets”, where vertices
in the same bucket have similar values of dv (for the vector d⃗ defined in Definition 9.1). This choice of
buckets will ensure that (a) holds, for a conditional random variable obtained by conditioning on the
number of vertices in each bucket (the resulting conditional distribution is a product of slices).

We also remark that the precise form of the right-hand side of the inequality in (3) is not important;
we only need that

∫
|τ |≤n−0.99 |φX(τ)− φZ(τ)| dτ is substantially smaller than 1/σ(X) (for small δ).

Lemma 11.1 can be interpreted as a type of Gaussian invariance principle, comparing quadratic
functions of products of slices to Gaussian analogs. There are already some invariance principles available
for the Boolean slice (see [42, 43]), and it would likely be possible to prove Lemma 11.1 by repeatedly
applying results from [42,43] to the individual factors of our product of slices. However, for our specific
application it will be more convenient to deduce Lemma 11.1 from a Gaussian invariance principle for
products of Rademacher random variables.

Indeed, we will first compare X to its “independent Rademacher analog” (i.e., to the random variable
Y defined as Y = f0 + f⃗ · y⃗ + y⃗⊺F y⃗, where y⃗ ∈ {−1, 1}n is uniformly random). In order to do this, we
will first show that for different choices of the sequence (ℓ1, . . . , ℓm), we can closely couple the resulting
random variables X (essentially, we just randomly “flip the signs” of an appropriate number of entries in
each Ik). Note that the “balancedness” conditions (c) and (d) in Lemma 11.1 ensure that the expected
value of X does not depend strongly on the choice of (ℓ1, . . . , ℓm).

Lemma 11.2. Fix 0 < δ < 1/4, and consider a partition [n] = I1 ∪ · · · ∪ Im as in Lemma 11.1, as well
as a symmetric matrix F ∈ Rn×n, a vector f⃗ ∈ Rn and a real number f0 satisfying conditions (a–d).
Assume that n is sufficiently large with respect to δ.

Consider sequences (ℓ1, . . . , ℓm), (ℓ′1, . . . , ℓ
′
m) ∈ Nm with |ℓk−|Ik|/2| ≤

√
n1−δ log n and |ℓ′k−|Ik|/2| ≤√

n1−δ log n for k = 1, . . . ,m. Then, let x⃗ ∈ {−1, 1}n be a uniformly random vector such that x⃗Ik has
exactly ℓk ones for each k = 1, . . . ,m and let x⃗′ ∈ {−1, 1}n be a uniformly random vector such that x⃗′Ik
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has exactly ℓ′k ones for each k = 1, . . . ,m. Let X = f0 + f⃗ · x⃗ + x⃗⊺Fx⃗ and X ′ = f0 + f⃗ · x⃗′ + x⃗′⊺Fx⃗′.
Then we can couple x⃗ and x⃗′ such that |X −X ′| ≤ n3/4+4δ with probability at least 1− exp(−nδ/2).

Proof. Let us couple the random vectors x⃗ and x⃗′ in the following way. First, independently for each
k = 1, . . . ,m, let us choose a uniformly random subset Rk ⊆ Ik of size |Ik|−2⌊|Ik|/2−

√
n1−δ log n⌋. Note

that then |Ik \Rk| is even and 2
√
n1−δ log n ≤ |Rk| ≤ 3

√
n1−δ log n. We also have 0 ≤ ℓk − |Ik \Rk|/2 ≤

|Rk| and 0 ≤ ℓ′k − |Ik \Rk|/2 ≤ |Rk|. Let us now sample x⃗Rk
∈ {−1, 1}Rk by taking a uniformly random

vector with exactly ℓk − |Ik \Rk|/2 ones, and independently let us sample x⃗′Rk
∈ {−1, 1}Rk by taking a

uniformly random vector with exactly ℓ′k −|Ik \Rk|/2 ones. Furthermore, let us sample a random vector
in {−1, 1}Ik\Rk with exactly |Ik \ Rk|/2 ones and define both of x⃗Ik\Rk

and x⃗′Ik\Rk
to agree with this

vector. After doing this for all k = 1, . . . ,m, we have defined x⃗ and x⃗′ with the appropriate number of
ones in each index set Ik. For convenience, write R = R1 ∪ · · · ∪Rk.

We now need to check that |X −X ′| ≤ n3/4+4δ with probability at least 1− exp(−nδ/2). Since x⃗ and
x⃗′ agree in all coordinates outside R, all terms that do not involve coordinates in R cancel out in X−X ′.
We may therefore write X −X ′ = gR(x⃗)− gR(x⃗

′), where (using that F is symmetric)

gR(x⃗) :=
∑
i∈R

fixi +
∑

(i,j)∈[n]
i∈R or j∈R

Fi,jxixj =
∑
i∈R

fixi +
∑

(i,j)∈R2

Fi,jxixj + 2
∑
i ̸∈R

∑
j∈R

Fi,jxixj . (11.1)

(and similarly for gR(x⃗′)). It suffices to prove that with probability at least 1 − exp(−nδ/2)/2 we have
|gR(x⃗)| ≤ n3/4+4δ/2 (then the same holds analogously for |gR(x⃗′)| and overall we obtain |X − X ′| =
|gR(x⃗)− gR(x⃗

′)| ≤ n3/4+4δ with probability at least 1− exp(−nδ/2)).
Let us first consider the first two summands on the right-hand side of (11.1). Their expectation is

E

∑
i∈R

fixi +
∑

(i,j)∈R2

Fi,jxixj

 =

n∑
i=1

fi · E[1i∈Rxi] +

n∑
i=1

n∑
j=1

Fi,j · E[1i,j∈Rxixj ]. (11.2)

Now note that for each k = 1, . . . ,m, the expectation E[1i∈Rxi] is the same for all indices i ∈ Ik. Since∑
i∈Ik

fi = 0 by condition (c), this means that the first summand on the right-hand side of (11.2) is zero.
For the second summand in (11.2), note that for any k, h ∈ [m] the expectation E[1i,j∈Rxixj ] has the
same value Ek,h for all indices i ∈ Ik and j ∈ Ih with i ̸= j. For all i ∈ Ik and j ∈ Ih, the magnitude of
this expectation is at most Pr[i ∈ R] ≤ 3

√
n1−δ log n/|Ik| ≤ n−1/2+δ (noting that |Ik| = n/m ≥ n1−δ/2).

By (d) we have
∑

i∈Ik

∑
j∈Ih

Fi,j = 0, and so we can conclude that∣∣∣∣∣∣E
∑
i∈R

fixi +
∑

(i,j)∈R2

Fi,jxixj

∣∣∣∣∣∣ =
∣∣∣∣∣

m∑
k=1

∑
i∈Ik

Fi,i(E[1i∈Rx
2
i ]− Ek,k)

∣∣∣∣∣ ≤
n∑

i=1

|Fi,i| · 2n−1/2+δ ≤ 2n1/2+δ,

where in the last step we used (b). Furthermore, note that∑
i∈R

fixi +
∑

(i,j)∈R2

Fi,jxixj = f⃗ · x⃗R + x⃗⊺RFx⃗R, (11.3)

where here by slight abuse of notation we consider x⃗R as a vector in {−1, 0, 1}n given by extending
x⃗R ∈ {−1, 1}R by zeroes for the coordinates outside R. Note that this describes a random vector
in {−1, 0, 1}n such that for each set Ik for k = 1, . . . ,m, exactly ℓk ≤ n1/2 entries are 1, exactly
|Ik| − 2⌊|Ik|/2 −

√
n1−δ log n⌋ − ℓk ≤ 3

√
n1−δ − ℓk log n ≤ n1/2 − ℓk entries are −1, and the remaining

entries are 0. Note that for any two outcomes of such a random vector differing by switching two entries,
the resulting values of f⃗ · x⃗R + x⃗⊺RFx⃗R differ by at most 5n1/2+3δ (indeed, by (a) the linear term f⃗ · x⃗R
differs by at most 4∥f∥∞ ≤ 4n1/2+3δ, and by (b) the term x⃗⊺RFx⃗R differs by at most 8|R| ≤ n1/2+3δ).
Thus, we can apply Lemma 4.17 and conclude that with probability at least 1 − 2 exp(−n3/2+8δ/(16 ·
2m · n1/2 · 25n1+6δ)) ≥ 1− 2 exp(−nδ/800) the quantity in (11.3) differs from its expectation by at most
n3/4+4δ/4. Given the above bound for this expectation, we can conclude that with probability at least
1− 2 exp(−nδ/800), ∣∣∣∣∣∣

∑
i∈R

fixi +
∑

(i,j)∈R2

Fi,jxixj

∣∣∣∣∣∣ ≤ n3/4+4δ/3. (11.4)

It remains to bound the third summand on the right-hand side of (11.1).
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In order to do so, we first claim that with probability at least 1 − 2n exp(−nδ/256) for each i =
1, . . . , n we have |

∑
j∈R 2Fi,jxj | ≤ n1/4+δ. Indeed, for any fixed i, the sum

∑
j∈R 2Fi,jxj can be

interpreted as a linear function (with coefficients bounded by 2 in absolute value by (b)) of a random
vector in {−1, 0, 1}n such that for each set Ik for k = 1, . . . ,m, exactly ℓk ≤ n1/2 entries are 1, exactly
|Ik|−2⌊|Ik|/2−

√
n1−δ log n⌋−ℓk ≤ n1/2−ℓk entries are −1, and the remaining entries are 0. So for each

i = 1, . . . , n, by Lemma 4.17 (noting that E[
∑

j∈R Fi,jxj ] = 0 by (d)) we have |
∑

j∈R Fi,jxj | ≤ n1/4+δ

with probability at least 1− 2 exp(−n1/2+2δ/(2m · n1/2 · 82)) ≥ 1− 2 exp(−nδ/256).
Let us now condition on an outcome of R and x⃗R such that we have |

∑
j∈R 2Fi,jxj | ≤ n1/4+δ for

i = 1, . . . , n. Note that

2
∑
i ̸∈R

∑
j∈R

Fi,jxixj =
∑
i̸∈R

∑
j∈R

2Fi,jxj

xi.
Subject to the randomness of the coordinates outside R (which are chosen to be half 1 and half −1 inside
each set Ik \ Rk for k = 1, . . . ,m), the expectation of this quantity is 0 (since for each individual xi
with i ∈ R we have Exi = 0). Furthermore, this quantity can be interpreted as a linear function of the
entries xi with i ̸∈ R, with coefficients bounded in absolute value by n1/4+δ. Thus, by Lemma 4.17 we
have |2

∑
i ̸∈R

∑
j∈R Fi,jxixj | ≤ n3/4+3δ with probability at least 1− 2 exp(−n3/2+6δ/(2n · 16n1/2+2δ) ≥

1− 2 exp(−nδ).
Combining this with (11.4) and (11.1), we conclude that |gR(x⃗)| ≤ n3/4+4δ/2 with probability at least

1− 2(n+ 2) exp(−nδ/800) ≥ 1− exp(−nδ/2)/2. □

The following lemma gives a comparison between the random variable X in Lemma 11.1 and its
“independent Rademacher analog”. This lemma is a simple consequence of Lemma 11.2, since a uniformly
random vector y⃗ ∈ {−1, 1}n can be interpreted as a mixture of different Boolean slices.

Lemma 11.3. Fix 0 < δ < 1/4, and consider a partition [n] = I1 ∪ · · · ∪ Im as in Lemma 11.1, as well
as a symmetric matrix F ∈ Rn×n, a vector f⃗ ∈ Rn and a real number f0 satisfying conditions (a–d).
Assume that n is sufficiently large with respect to δ.

Consider a sequence (ℓ1, . . . , ℓm) ∈ Nm with |ℓk − |Ik|/2| ≤
√
n1−δ log n and for k = 1, . . . ,m, and

let x⃗ ∈ {−1, 1}n be a uniformly random vector such that x⃗Ik has exactly ℓk ones for each k = 1, . . . ,m.
Furthermore let y⃗ ∈ {−1, 1}n be a uniformly random vector (with independent coordinates). Let X =

f⃗0 + f · x⃗+ x⃗⊺Fx⃗ and Y = f0 + f⃗ · y⃗ + y⃗⊺F y⃗. Then we can couple x⃗ and y⃗ such that |X − Y | ≤ n3/4+4δ

with probability at least 1− exp(−(log n)2/8).

Proof. For k = 1, . . . ,m, consider independent binomial random variables ℓ′k ∼ Bin(|Ik|, 1/2). We can
sample y⃗ by taking a random vector in {−1, 1}n with exactly ℓ′k ones among the entries with indices in Ik
for each k = 1, . . . ,m. Note that altogether this gives precisely a uniformly random vector in {−1, 1}n.

We now need to define the desired coupling of x⃗ and y⃗. By the Chernoff bound (see Lemma 4.16), with
probability at least 1−4nδ · exp(−(log n)2/4) ≤ 1− exp(−(log n)2/6) we have |ℓ′k−|Ik|/2| ≤

√
n1−δ log n

for k = 1, . . . ,m (here, we used that m ≤ 2nδ and |Ik| = n/m ≤ 2n1−δ). Whenever this is the case, then
by Lemma 11.2 we can couple x⃗ and y⃗ in such a way that we have |X − Y | ≤ n3/4+4δ with probability
at least 1− exp(−nδ/2). Otherwise, let us couple x⃗ and y⃗ arbitrarily.

Now, the overall probability of having |X−Y | ≤ n3/4+4δ is at least 1−exp(−(log n)2/6)−exp(−nδ/2) ≥
1− exp(−(log n)2/8), as desired. □

In order to obtain the comparison of the characteristic functions of X and Z in Lemma 11.1(3), we
will use Lemma 11.3 to relate X to Y . It then remains to compare the characteristic functions of Y and
Z. To do so, we use the Gaussian invariance principle of Mossel, O’Donnell, and Oleszkiewicz [74]. The
version stated in Theorem 11.5 below is a special case of [81, (11.29)].

Definition 11.4. Given a multilinear polynomial g(x1, . . . , xn) =
∑

S⊆[n] aS
∏

i∈S xi, for t = 1, . . . , n

the influence of the variable xt is defined as

Inft[g] =
∑
S⊆[n]
t∈S

a2S .

Theorem 11.5. Let g be an n-variable multilinear polynomial of degree at most k. Let y⃗ ∈ {−1, 1}n
be a uniformly random vector (i.e., a vector of independent Rademacher random variables), and let
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z⃗ ∼ N (0, 1)⊗n be a vector of independent standard Gaussian random variables. Then for any four-times-
differentiable function ψ : R → R, we have∣∣∣E[ψ(g(y⃗))− ψ(g(z⃗))]

∣∣∣ ≤ 9k

12
· ∥ψ(4)∥∞

n∑
t=1

Inft[g]
2.

As a simple consequence of Theorem 11.5, we obtain the following lemma.

Lemma 11.6. Fix 0 < δ < 1/4. Consider a vector f⃗ ∈ Rn with ∥f⃗∥∞ ≤ n1/2+3δ and a matrix F ∈ Rn×n

with entries bounded in absolute value by 1, as well as a real number f0. Assume that n is sufficiently
large with respect to δ.

Let y⃗ ∈ {−1, 1}n be a uniformly random vector, and let z⃗ ∼ N (0, 1)⊗n be a vector of independent
standard Gaussian random variables. Let Y = f0 + f⃗ · y⃗ + y⃗⊺F y⃗ and Z = f0 + f⃗ · z⃗ + z⃗⊺F z⃗. Then for
any four-times-differentiable function ψ : R → R, we have∣∣∣E[ψ(Y )− ψ(Z)]

∣∣∣ ≲ ∥ψ(4)∥∞ · n3+12δ + ∥ψ′∥∞ · n1/2.

Proof. Let F ′ be obtained from F by setting each diagonal entry to zero. Define the multilinear poly-
nomial g by g(x⃗) = f0 + f⃗ · x⃗ + x⃗⊺F ′x⃗ +

∑
i Fi,i, and let Y ′ = g(y⃗) and Z ′ = g(z⃗). Note that

Inft[g] ≤ (n1/2+3δ)2 + n ≤ 2n1+6δ for t = 1, . . . , n, so
∑n

t=1 Inft[g]
2 ≤ 4n3+12δ. Theorem 11.5 then

implies that ∣∣∣E[ψ(Y ′)− ψ(Z ′)]
∣∣∣ ≤ 27∥ψ(4)∥∞ · n3+12δ.

Furthermore, we always have y2i = 1 for i = 1, . . . , n, meaning that Y ′ = Y and in particular E[ψ(Y ′)−
ψ(Y )] = 0. By the Cauchy–Schwarz inequality, we also have

|E[ψ(Z ′)− ψ(Z)]| ≤ E|ψ(Z ′)− ψ(Z)| ≤ ∥ψ′∥∞ · E|Z ′ − Z| ≤ ∥ψ′∥∞ · (E[(Z ′ − Z)2])1/2 ≤ 2∥ψ′∥∞n1/2,

where we used E[(Z ′ − Z)2] = E[(F1,1(z
2
1 − 1) + · · ·+ Fn,n(z

2
n − 1))2] = 2|F1,1|2 + · · ·+ 2|Fn,n|2 ≤ 2n in

the last step. Combining these estimates gives the desired result. □

Let us now prove Lemma 11.1.

Proof of Lemma 11.1. We may assume that n is sufficiently large with respect to δ. Let y⃗ ∈ {−1, 1}n
be a uniformly random vector and define Y = f0 + f⃗ · y⃗+ y⃗⊺F y⃗. By Lemma 11.3 we can couple x⃗ and y⃗
such that |X − Y | ≤ n3/4+4δ with probability at least 1− exp(−(log n)2/8).

We can now compute EY = EZ = f0 +
∑n

i=1 Fi,i. Furthermore, since |X − Y | ≲ n2 always holds,
we have |EX − EY | ≤ E|X − Y | ≲ n3/4+4δ + exp(−(log n)2/8) · n2 ≲ n3/4+4δ and therefore EX =
f0 +

∑n
i=1 Fi,i +O(n3/4+4δ). This proves (1).

Note that Y − EY = f⃗ · y⃗ +
∑

i<j 2Fi,jyiyj (here we are using that y2i = 1 and that F is symmetric).
Therefore (4.5) gives σ(Y )2 = ∥f⃗∥22 +

∑
i<j 4F

2
i,j = 2∥F∥2F + ∥f⃗∥22 − 2

∑n
i=1 F

2
i,i = 2∥F∥2F + ∥f⃗∥22 +O(n)

(and so in particular σ(Y )2 ≲ n2+6δ). Furthermore (using the Cauchy–Schwarz inequality), we have

|σ(X)2 − σ(Y )2| =
∣∣E[(X − EX)2 − (Y − EY )2

]∣∣ ≤ E[|X − Y − EX + EY | · |X + Y − EX − EY |]

≤
(
E
[
(|X − Y |+ |EX − EY |)2

])1/2 · (E[(|X − EX|+ |Y − EY |)2
])1/2

≤
(
E
[
(|X − Y |+O(n3/4+4δ))2

])1/2
·
(
2E
[
|X − EX|2

]
+ 2E

[
|Y − EY |2

])1/2
≲
(
E[|X − Y |2] + E|X − Y | ·O(n3/4+4δ) +O(n3/2+8δ)

)1/2
·
(
σ(X)2 + σ(Y )2

)1/2
≲
(
n3/2+8δ + exp(−(log n)2/8) · n4 +O(n3/2+8δ)

)1/2
· (σ(X) + σ(Y ))

≲ n3/4+4δ · (σ(X) + σ(Y )).

Hence |σ(X)− σ(Y )| ≲ n3/4+4δ and in particular σ(X) ≤ σ(Y ) +O(n3/4+4δ) ≲ n1+3δ. Thus, we obtain
|σ(X)2 − σ(Y )2| = |σ(X) − σ(Y )|(σ(X) + σ(Y )) ≲ n3/4+4δ · n1+3δ = n7/4+7δ. This gives σ(X)2 =

σ(Y )2 +O(n7/4+7δ) = 2∥F∥2F + ∥f⃗∥22 +O(n7/4+7δ).
To finish the proof of (2), we observe that Z −EZ = f⃗ · z⃗ +

∑n
i=1 Fi,i(z

2
i − 1) +

∑
i<j 2Fi,jzizj , so we

can compute σ(Z)2 = ∥f⃗∥22 +
∑n

i=1 2F
2
i,i +

∑
i<j(2Fi,j)

2 = 2∥F∥2F + ∥f⃗∥22.
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For (3), consider some τ ∈ R. We have

|φY (τ)− φZ(τ)| =
∣∣∣E[exp(iτY )− exp(iτZ)]

∣∣∣ = ∣∣∣E[cos(τY ) + i sin(τY )− cos(τZ)− i sin(τZ)]
∣∣∣

≤
∣∣∣E[cos(τY )− cos(τZ)]

∣∣∣+ ∣∣∣E[sin(τY )− sin(τZ)]
∣∣∣∣∣∣ ≲ |τ |4 · n3+12δ + |τ | · n1/2,

where in the last step we applied Lemma 11.6 to the functions u 7→ cos(τu) and u 7→ sin(τu). We
furthermore have

|φX(τ)−φY (τ)| =
∣∣∣E[exp(iτX)−exp(iτY )]

∣∣∣ ≤ E
[
| exp(iτX)−exp(iτY )|

]
≤ |τ |·E[|X−Y |] ≲ |τ |·n3/4+4δ,

using that the absolute value of the derivative of the function u 7→ exp(iτu) is bounded by |τ |. Combining
these two bounds using the triangle inequality gives (3). □

12. Short interval control in the additively structured case

Recall the definition of γ-structuredness from Definition 9.1, and recall that in Section 9 we fixed
γ = 10−4 and proved Theorem 3.1 in the case where (G, e⃗) is γ-unstructured. In this section, we finally
prove Theorem 3.1 in the complementary case where (G, e⃗) is γ-structured.

As outlined in Section 3, the idea is as follows. First, we apply Lemma 4.12 to the vector d⃗ in
Definition 9.1 to divide the vertex set into “buckets” such that the dv in each bucket have similar values.
We encode the number of vertices in each bucket as a vector ∆⃗; if we condition on an outcome of ∆⃗
then we can use the machinery developed in the previous sections to prove upper and lower bounds on
the conditional small-ball probabilities of X. Then, we need to average these estimates over ∆⃗. For this
averaging, it is important that our conditional small-ball probabilities decay as we vary ∆⃗ (this is where
we need the non-uniform anticoncentration estimates in Theorem 5.2(1) and Lemma 6.2).

This section mostly consists of combining ingredients from previous sections, but there are still a few
technical difficulties remaining. Chief among these is the fact that, as we vary the numbers of vertices
in each bucket, the conditional expected value and variance of X fluctuate fairly significantly. We need
to keep track of these fluctuations and ensure that they do not correlate adversarially with each other.

Proof of Theorem 3.1 in the γ-structured case. Recall that G is a C-Ramsey graph with n vertices, e0 ∈
R and e⃗ ∈ RV (G) is a vector satisfying 0 ≤ ev ≤ Hn for all v ∈ V (G), and that U ⊆ V (G) is a uniformly
random vertex subset and X = e(G[U ])+

∑
v∈U ev + e0. We may assume that n is sufficiently large with

respect to C,H, and A.

Step 1: Bucketing setup. As in Definition 9.1, define d⃗ ∈ RV (G) by dv = ev +degG(v)/2 for all v ∈ V (G).
We are assuming that (G, e⃗) is γ-structured, meaning that D̂L,γ(d⃗) ≤ n1/2, where L = ⌈100/γ⌉ = 106

(recall that γ = 10−4).
Note that ∥d⃗∥∞ ≤ (H + 1)n. Furthermore, for any subset S ⊆ V (G) of size |S| = ⌈n1−γ⌉, we have

∥d⃗S∥2 ≳H n3/2−3γ/2 by Lemma 7.3 and therefore in particular ∥d⃗S∥2 ≥ n3/2−2γ . Thus, we can apply
Lemma 4.12 and obtain a partition V (G) = R ∪ (I1 ∪ · · · ∪ Im) and real numbers κ1, . . . , κm ≥ 0 with
|R| ≤ n1−γ and |I1| = · · · = |Im| = ⌈n1−2γ⌉ such that |dv − κk| ≤ n1/2+4γ for all k = 1, . . . ,m and
v ∈ Ik. Let V = I1 ∪ · · · ∪ Im = V (G) \R.

Since |R| ≤ n1−γ , we have 2n/3 ≤ |V | ≤ n (i.e., |V | is of order n) and thus furthermore |V |2γ/2 ≤
n2γ/2 ≤ m ≤ 21−2γn2γ ≤ 2|V |2γ (which means that we can apply Lemmas 10.1 and 11.1 to the partition
V = I1 ∪ · · · ∪ Im).

In the next step of the proof, we will condition on an outcome of U ∩ R, and from then on we will
only use the randomness of U ∩ (I1 ∪ · · · ∪ Im) = U ∩ V .

Step 2: Conditioning on an outcome of U ∩ R. Recall that U ⊆ V (G) is a random subset obtained by
including each vertex with probability 1/2 independently. Let xv = 1 if v ∈ U and xv = −1 if v /∈ U ,
so the xv are independent Rademacher random variables. Then, as in (3.1) and the proof of Lemma 7.1
our random variable X = e(G[U ]) +

∑
v∈U ev + e0 can be expressed as

EX +
1

2

∑
v∈V (G)

(
ev +

1

2
degG(v)

)
xv +

1

4

∑
uv∈E(G)

xuxv = EX +
1

2

∑
v∈V (G)

dvxv +
1

4

∑
uv∈E(G)

xuxv. (12.1)

Let us now write x⃗ for the vector (xv)v∈V ; we emphasize that this does not include the indices in R.
We first rewrite (12.1) as a quadratic polynomial in x⃗ (where we view the random variables xu for
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u ∈ R = V (G) \ V as being part of the coefficients of this quadratic polynomial). To this end, let
M ∈ {0, 1}V×V be the adjacency matrix of G[V ], and also define

yv = dv +
1

2

∑
u∈R

uv∈E(G)

xu for v ∈ V and E = EX +
1

2

∑
v∈R

dvxv +
1

4

∑
uv∈E(G[R])

xuxv.

Then

X = E +
1

2
y⃗ · x⃗+

1

8
x⃗⊺Mx⃗. (12.2)

Since |R| ≤ n1−γ , and 0 ≤ dv ≤ Hn+n/2 ≤ (H+1)n for all v ∈ V (G), Theorem 4.15 (concentration via
hypercontractivity) in combination with (4.5) shows that with probability at least 1− exp(−ΩH(nγ/2))
(over the randomness of xu for u ∈ R) we have∣∣∣∣ ∑

u∈R
uv∈E(G)

xu

∣∣∣∣ ≤ n1/2 for each v ∈ V,

∣∣∣∣ ∑
uv∈E(G[R])

xuxv

∣∣∣∣ ≤ n,

∣∣∣∣∑
v∈R

dvxv

∣∣∣∣ ≤ n3/2/2,

which implies that |E − EX| ≤ n3/2 and |yv − dv| ≤ n1/2 for all v ∈ V . For the rest of the proof, we
implicitly condition on an outcome of U ∩R satisfying these properties, and we treat E and y⃗ = (yv)v∈V

as being non-random objects.
Note that ∥y⃗∥∞ ≤ Hn + n/2 + n1/2 ≤ (H + 2)n and ∥y⃗∥2 ≥ ∥d⃗V ∥2 − ∥y⃗ − dV ∥2 ≥ ∥d⃗V ∥2 − n.

Furthermore, we have ∥d⃗V ∥2 ≳C n3/2 by Lemma 7.3 and therefore ∥y⃗∥2 ≳C n3/2.

Step 3: Rewriting X via bucket intersection sizes. Recall that we have a partition V = I1 ∪ · · · ∪ Im into
“buckets” with |I1| = · · · = |Im| = |V |/m and |V |2γ/2 ≤ m ≤ 2|V |2γ . Let I ∈ RV×V be the identity
matrix, and let Q ∈ RV×V be the symmetric matrix defined by taking Qu,v = 1/|Ik| = m/|V | for u, v
in the same bucket Ik, and Qu,v = 0 otherwise. Multiplying a vector v⃗ ∈ RV by this matrix Q has the
effect of averaging the entries of v⃗ over each of the buckets Ik, and hence (I −Q)v⃗ has the property that
for k = 1, . . . ,m the sum of the entries in v⃗Ik is zero.

Let us define ∆⃗ ∈ RV by ∆⃗ = Qx⃗, so for any k = 1, . . . ,m and any v ∈ Ik we have

∆v =
1

|Ik|
∑
u∈Ik

xu =
2

|Ik|

(
|U ∩ Ik| −

|Ik|
2

)
.

Hence, ∆⃗ encodes the sizes of the intersections |U ∩ Ik| for k = 1, . . . ,m. In our analysis of the random
variable X, we will condition on an outcome of ∆⃗ and apply Lemma 11.1 to study X conditioned on ∆⃗.
However, the vector y⃗ and the matrix M appearing in (12.2) do not satisfy conditions (a), (c), and (d)
in Lemma 11.1. So, we need to modify the representation of X in (12.2).

Define M∗ = 1
8 (I−Q)M(I−Q) and w⃗∗

∆⃗
= 1

2 (I−Q)(y⃗+ 1
2M∆⃗). Then (recalling that Q is symmetric)

X = E +
1

2
y⃗ · x⃗+

1

8
x⃗⊺Mx⃗

= E +
1

2
(I −Q)y⃗ · x⃗+

1

2
y⃗ · (Qx⃗) + 1

8
x⃗⊺(I −Q)M(I −Q)x⃗+

1

4
x⃗⊺(I −Q)MQx⃗+

1

8
x⃗⊺QMQx⃗

=

(
E +

1

2
y⃗ · ∆⃗ +

1

8
∆⃗⊺M∆⃗

)
+ w⃗∗

∆⃗
· x⃗+ x⃗⊺M∗x⃗. (12.3)

Furthermore, M∗ has the property that for all k, h ∈ [m], in the submatrix M∗[Ik×Ih] all row and column
sums are zero, and w⃗∗

∆⃗
has the property that for each k = 1, . . . ,m, the sum of entries in (w⃗∗

∆⃗
)Ik is equal

to zero. Also note that since M has entries in {0, 1}, all entries of (I −Q)MQ and hence all entries of
M∗ have absolute value at most 1. Thus, w⃗∗

∆⃗
and M∗ satisfy conditions (b)–(d) in Lemma 11.1.

Also, since M∗ is defined in terms of the adjacency matrix of a Ramsey graph, Lemma 10.1 tells us
that it must have large Frobenius norm. Indeed,

∥M∗∥2F =
1

64
∥M − (MQ+QM −QMQ)∥2F ≳C n2 (12.4)

by Lemma 10.1 applied with δ = 2γ = 2 · 10−4 and r = 3 (here we are using that M is the adjacency
matrix of the (2C)-Ramsey graph G[V ] of size |V | ≳ n, and we are using that the matrix B = MQ +
QM −QMQ ∈ RV×V has the property that rankB[Ik×Ih] ≤ 3 for all k, h ∈ [m]).
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Step 4: Conditioning on bucket intersection sizes. By a Chernoff bound, with probability at least
1 − 2n2γ · n−ω(1) = 1 − n−ω(1) we have

∣∣|U ∩ Ik| − |Ik|/2
∣∣ ≤ √

|Ik|(log n)/2 =
√
|V |/m · (log n)/2 for

k = 1, . . . ,m, or equivalently |∆v| ≤
√
m/|V | log n for all v ∈ V .

We furthermore claim that with probability 1 − n−ω(1) we have ∥w⃗∗
∆⃗
∥∞ ≤ n1/2+5γ . Indeed, recall

that w⃗∗
∆⃗
= 1

2 (I −Q)(y⃗+ 1
2M∆⃗) and (from Step 2) |yv − dv| ≤ n1/2 for all v ∈ V . Recall from the choice

of buckets in Step 1 that for all k = 1, . . . ,m and v ∈ Ik, we have |dv − κk| ≤ n1/2+4γ , implying that
|yv − κk| ≤ 2n1/2+4γ . In particular, we obtain |yv − yu| ≤ 4n1/2+4γ for all u, v ∈ V that are in the same
bucket Ik. Hence ∥(I −Q)y⃗∥∞ ≤ 4n1/2+4γ . Furthermore, since all entries of (I −Q)MQ have absolute
value at most 1, Theorem 4.15 (concentration via hypercontractivity) shows that with probability at
least 1 − n · n−ω(1) = 1 − n−ω(1) we have ∥(I − Q)M∆⃗∥∞ = ∥(I − Q)MQx⃗∥∞ ≤

√
n log n, which now

implies ∥w⃗∗
∆⃗
∥∞ ≤ n1/2+5γ as claimed.

Let us say that an outcome of ∆⃗ is near-balanced if ∥w⃗∗
∆⃗
∥∞ ≤ n1/2+5γ and |∆v| ≤

√
m/|V | log n

for all v ∈ V . We have just shown that ∆⃗ is near-balanced with probability 1 − n−ω(1). Note that for
near-balanced ∆⃗ we in particular have ∥w⃗∗

∆⃗
∥∞ ≤ |V |1/2+6γ and

∣∣|U ∩Ik|−|Ik|/2
∣∣ ≤√|V |/m ·(log n)/2 ≤√

|V |1−2γ log |V | for k = 1, . . . ,m. If we condition on a near-balanced outcome of ∆⃗ (which is equivalent
to conditioning on the bucket intersection sizes |U ∩ Ik| for k = 1, . . . ,m), then we are in a position to
apply Lemma 11.1 with δ = 2γ = 2 · 10−4. Together with the machinery in Sections 5, 6, 8, and 10 we
can then obtain upper and lower bounds for the probability that, conditioning on our outcome of ∆⃗, the
random variable X lies in some short interval10

To state such upper and lower bounds, let us write E∆⃗ = E[X|∆⃗] and define σ∆⃗ ≥ 0 to satisfy
σ2
∆⃗
= Var[X|∆⃗]. By Lemma 11.1(2), for near-balanced ∆⃗ we have σ2

∆⃗
= 2∥M∗∥2F+∥w⃗∗

∆⃗
∥22+O(n7/4+14γ),

implying that σ∆⃗ ≥ ∥M∗∥F ≳C n by (12.4).

Claim 12.1. There is a constant B = B(C) > 0 such that the following holds for any fixed near-balanced
outcome of ∆⃗.

(1) For any x ∈ Z we have

Pr
[
|X − x| ≤ B

∣∣∣∆⃗] ≲C

exp
(
−ΩC

(
|x− E∆⃗|/σ∆⃗

))
+ n−0.1

σ∆⃗

(2) There is a sign s ∈ {−1, 1}, depending only on M∗, such that for any fixed A > 0 and any x ∈ Z
satisfying 3n ≤ s(x− E∆⃗) ≤ Aσ∆⃗, we have

Pr
[
|X − x| ≤ B

∣∣∣∆⃗] ≳C,A
1

σ∆⃗
.

We defer the proof of Claim 12.1 until the end of the section (specifically, we will prove it in Sec-
tion 12.1). The proof combines the machinery from Sections 5, 6, 8, 10, and 11.

Step 5: Estimating the conditional mean and variance. We wish to average the estimates in Claim 12.1
over different near-balanced outcomes of ∆⃗. To this end, we need to understand how the conditional
mean and variance E∆⃗ = E[X|∆⃗] and σ2

∆⃗
= Var[X|∆⃗] depend on ∆⃗ (recall that we already fixed an

outcome for U ∩ R in Step 2, which in particular fixes E and y⃗). Most importantly, E∆⃗ positively
correlates with the coordinates of ∆⃗: recall that ∆⃗ encodes the number of vertices of our random set U
in each bucket, so naturally if we take more vertices we are likely to increase the number of edges we end
up with. However, there are also certain (lower order, nonlinear) adjustments that we need to take into
account. In this subsection we will define “shift” random variables Eshift(1), Eshift(2) and σshift depending
on ∆⃗. We then show that these shift random variables control the dependence of E∆⃗ and σ∆⃗ on ∆⃗.

Let Eshift(1) = 1
2 y⃗ · ∆⃗ and Eshift(2) = 1

8∆⃗
⊺M∆⃗. Recalling (12.3), by Lemma 11.1(1) (applied with

δ = 2γ) we have E∆⃗ = E[X|∆⃗] = E+Eshift(1)+Eshift(2)+
∑

v∈V M
∗
v,v+O(n3/4+8γ) if ∆⃗ is near-balanced.

10Our upper and lower bounds for this probability differ by a constant factor. As suggested by one of the anonymous
referees, one may wonder whether in this setting it would also be possible to characterize this probability for short intervals
asymptotically (up to a 1 + o(1) factor), potentially even asymptotically characterising the conditional point probabilities
of the form Pr[X = x|∆⃗] (proving a local limit theorem conditional on the outcome of ∆). While one might be able to
asymptotically characterize conditional small-ball probabilities of the form Pr[|X − x| ≤ B|∆⃗] when B → ∞ as n → ∞
by adapting the arguments in this paper, characterising point probabilities (or probabilities for bounded-length intervals)
would likely require significant new ideas.
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Recalling γ = 10−4 and that all entries of M∗ have absolute value at most 1, we obtain∣∣E∆⃗ − E − Eshift(1) − Eshift(2)

∣∣ ≤ 2n. (12.5)

for all near-balanced ∆⃗ (i.e., E∆⃗ is “shifted” by about Eshift(1) + Eshift(2) from E).
Recall that ∥y⃗∥2 ≳C n3/2 and ∥y⃗∥∞ ≤ (H + 2)n from the end of Step 2. Furthermore, we observed

that ∥(I −Q)y⃗∥∞ ≤ 4n1/2+4γ in Step 4, which implies ∥(I −Q)y⃗∥2 ≤ 4n1+4γ . Thus we obtain ∥Qy⃗∥2 ≥
∥y⃗∥2 − ∥(I − Q)y⃗∥2 ≳C n3/2 and ∥Qy⃗∥∞ ≤ (H + 2)n. Roughly speaking, this means Qy⃗ behaves like
a vector where every entry has magnitude around n, and we can apply the Berry–Esseen theorem to
Eshift(1) = 1

2 y⃗ · ∆⃗ = 1
2 (Qy⃗) · x⃗ =

∑
v∈V (

1
2Qy⃗)vxv (the Berry–Esseen theorem is a quantitative central

limit theorem for sums of independent but not necessarily identically distributed random variables; see
for example [83, Chapter V, Theorem 3]). Indeed, let Z ∼ N (0, ( 12∥Qy⃗∥2)

2); the Berry–Esseen theorem
shows that for any interval [a, b] ⊆ R, we have

|Pr[Eshift(1) ∈ [a, b]]− Pr[Z ∈ [a, b]]| ≲C,H 1/
√
n. (12.6)

In particular, for every interval [a, b] ⊆ R of length b− a ≥ ∥M∗∥F, we have

Pr[Eshift(1) ∈ [a, b]] ≲C,H
b− a

n3/2
(12.7)

(recalling that ∥M∗∥F ≳C n by (12.4)).
Recall from Step 4 that for near-balanced ∆⃗ we have σ2

∆⃗
= 2∥M∗∥2F + ∥w⃗∗

∆⃗
∥22 + O(n7/4+14γ) =

2∥M∗∥2F+∥ 1
2 (I−Q)y⃗+ 1

4 (I−Q)M∆⃗∥22+O(n7/4+14γ) (using the definition of w⃗∗
∆⃗

in Step 3). Let us now
define σ ≥ 0 to satisfy σ2 = 2∥M∗∥2F + ∥ 1

2 (I −Q)y⃗∥22. Note that σ does not depend on ∆⃗ (in a moment
we will define σshift to bound the deviation of σ∆⃗ from σ). Also note that we have σ ≥ ∥M∗∥F ≳C n
(recalling (12.4)) and σ2 ≤ 2n2 + 4n2+8γ ≤ n2.1, meaning that σ ≤ n1.05.

Finally, let us define σshift = ∥ 1
4 (I − Q)M∆⃗∥2. Using the inequality ∥v⃗ + w⃗∥22 ≤ 2∥v⃗∥22 + 2∥w⃗∥22 for

any vectors v⃗, w⃗ ∈ RV , as well as (12.4) (recalling that γ = 10−4), for any near-balanced ∆⃗ we have

σ2
∆⃗
≤ 4∥M∗∥2F + 2

∥∥∥1
2
(I −Q)y⃗

∥∥∥2
2
+ 2
∥∥∥1
4
(I −Q)M∆⃗

∥∥∥2
2
= 2σ2 + 2σ2

shift.

Similarly (using ∥v⃗ − w⃗∥22 ≥ 1
2∥v⃗∥

2
2 − ∥w⃗∥22),

σ2
∆⃗
≥ ∥M∗∥2F +

1

2

∥∥∥1
2
(I −Q)y⃗

∥∥∥2
2
−
∥∥∥1
4
(I −Q)M∆⃗

∥∥∥2
2
=

1

2
σ2 − σ2

shift.

Therefore, for every near-balanced ∆⃗, we must have σ∆⃗ ≤ 2σshift or σ/2 ≤ σ∆⃗ ≤ 2σ (indeed, if σ2
shift ≤

σ2
∆⃗
/4, then σ2

∆⃗
/2 ≤ 2σ2 and (5/4)σ2

∆⃗
≥ σ2/2).

Step 6: Controlling correlations of the shifts. In order to average the estimates in Claim 12.1 over the
different outcomes of ∆⃗, we need to ensure that the “shifts” σshift, Eshift(1), Eshift(2) (each of which are
determined by ∆⃗) do not correlate adversarially with each other. More specifically, we need that the
quantities σshift, Eshift(2) do not correlate very strongly with Eshift(1), as shown in the following claim.

Claim 12.2. Let [a, b] ⊆ R be an interval of length b− a ≥ ∥M∗∥F. Then

E
[
(E2

shift(2) + σ2
shift)1Eshift(1)∈[a,b]

]
≲C,H n1/2(b− a).

In order to prove Claim 12.2, we will use a similar Fourier-analytic argument as in the proof of
Lemma 6.1 to estimate expressions of the form E[xv1 · · ·xvℓ1Eshift(1)∈[a,b]], and deduce the desired bounds
by linearity of expectation. We defer the details of this proof to the end of the section (specifically, we
will prove it in Section 12.1).

After all this setup, we are now ready to prove the desired bounds in the statement of Theorem 3.1.
Let B = B(C) > 0 be as in Claim 12.1. Consider x ∈ Z, and write x′ = x− E. Let E be the event that
|X − x| ≤ B. We wish to prove the upper bound Pr[E ] ≲C,H n−3/2, and if |x′| ≤ (A + 1)n3/2 for some
fixed A > 0 we wish to prove the lower bound Pr[E ] ≳C,H,A n−3/2 (recall that |E − EX| ≤ n3/2 from
Step 2, so we have |x′| = |x− E| ≤ (A+ 1)n3/2 whenever |x− EX| ≤ An3/2).

Step 7: Proof of the upper bound. First, recall from Step 4 that ∆⃗ is near-balanced with probability
1 − n−ω(1). Also, for E to have an appreciable chance of occurring, Eshift(1) must be quite close to x′.
Indeed, note that if E occurs, ∆⃗ is near-balanced, and |Eshift(1) − x′| ≥ σ(log n)2, then we have

|X − E − Eshift(1)| ≥ |Eshift(1) + E − x| −B = |Eshift(1) − x′| −B ≥ σ(log n)2/2
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(recalling that σ ≥ ∥M∗∥F ≳C n from Step 5). On the other hand by (12.2) we have (recalling that
Eshift(1) =

1
2 y⃗ · ∆⃗ = 1

2 (Qy⃗) · x⃗)

X − E − Eshift(1) =
1

2
y⃗ · x⃗+

1

8
x⃗⊺Mx⃗− 1

2
(Qy⃗) · x⃗ =

1

2
((I −Q)y⃗) · x⃗+

1

8
x⃗⊺Mx⃗.

Hence (as M is a symmetric matrix with zeroes on the diagonal), we have E[X − E − Eshift(1)] = 0 and
σ(X − E − Eshift(1))

2 = 1
32∥M∥2F + ∥ 1

2 (I − Q)y⃗∥22 ≤ n2 + σ2 ≲C σ2 by (4.5) and the definition of σ in
Step 5. Thus, accounting for the probability that ∆⃗ is not near-balanced, we have

Pr[E ∩ {|Eshift(1) − x′| ≥ σ(log n)2}] ≤ Pr[|X −E −Eshift(1)| ≥ σ(log n)2/2] + n−ω(1) ≤ n−ωC(1) ≤ n−3/2

(12.8)
by Theorem 4.15 (concentration via hypercontractivity).

So, it suffices to restrict our attention to ∆⃗ which are near-balanced and satisfy |Eshift(1) − x′| ≤
σ(log n)2. The plan is to apply Claim 12.1(1) to upper-bound Pr[E|∆⃗] for all such ∆⃗, and then to
average over ∆⃗. When we apply Claim 12.1(1) we need estimates on σ∆⃗ and |x− E∆⃗|; we obtain these
estimates in different ways depending on properties of Eshift(1), Eshift(2), σshift.

First, the exponential decay in the bound in Claim 12.1(1) is in terms of |x − E∆⃗|. From (12.5) one
can deduce that |x−E∆⃗| is at least roughly as large as |x′ −Eshift(1)|, unless Eshift(2) is atypically large
(at the end of this step we will upper-bound the contribution from such atypical ∆⃗). Let H be the event
that ∆⃗ is near-balanced and satisfies |Eshift(1) − x′| ≤ σ(log n)2 and |x − E∆⃗| ≥ |Eshift(1) − x′|/2 − 2n;
we start by upper-bounding Pr[E ∩ H].

For any outcome of ∆⃗ such that H holds, by Claim 12.1(1) we have

Pr
[
|X − x| ≤ B

∣∣∣∆⃗] ≲C

exp
(
−ΩC

(
|x− E∆⃗|/σ∆⃗

))
+ n−0.1

σ∆⃗

≲C

exp
(
−ΩC

(
|Eshift(1) − x′|/σ∆⃗

))
σ∆⃗

+ n−1.1 (12.9)

(recalling from Step 4 that σ∆⃗ ≥ ∥M∗∥F ≳C n). Also note that by (12.7), we have

Pr[H] ≤ Pr[|Eshift(1) − x′| ≤ σ(log n)2] ≲C,H
σ(log n)2

n3/2
≤ n−0.45(log n)2

(recalling that σ ≥ ∥M∗∥F and σ ≤ n1.05 from Step 5).
Recall from the end of Step 5 that we always have σ∆⃗ ≤ 2σshift or σ/2 ≤ σ∆⃗ ≤ 2σ. First, we bound

Pr[E ∩ H ∩ {σ/2 ≤ σ∆⃗ ≤ 2σ}]

=

∞∑
j=0

Pr

[
E ∩ H ∩ {σ/2 ≤ σ∆⃗ ≤ 2σ} ∩

{
j ≤

|Eshift(1) − x′|
σ

< j + 1

}]

≲C

∞∑
j=0

Pr

[
H ∩ (σ/2 ≤ σ∆⃗ ≤ 2σ) ∩

{
j ≤

|Eshift(1) − x′|
σ

< j + 1

}]
·
(
exp(−ΩC(j))

σ
+ n−1.1

)

≤ Pr[H] · n−1.1 +

∞∑
j=0

Pr

[
j ≤

|Eshift(1) − x′|
σ

< j + 1

]
· exp(−ΩC(j))

σ

≲C,H n−0.45(log n)2 · n−1.1 +

∞∑
j=0

σ

n3/2
· exp(−ΩC(j))

σ
≲C n−3/2,

where in the first inequality we used (12.9) and in the final inequality we used (12.7) (recalling that
σ ≥ ∥M∗∥F).

Next, let us bound Pr[E ∩ H ∩ {σ∆⃗ ≤ 2σshift}]. Note that Claim 12.2 implies

E
[
σ2
∆⃗
1Eshift(1)∈[a,b]1σ∆⃗≤2σshift

]
≤ 4 · E

[
σ2
shift1Eshift(1)∈[a,b]

]
≲C,H n1/2(b− a) (12.10)

for any interval [a, b] ⊆ R of length b−a ≥ ∥M∗∥F. Hence, recalling from Step 4 that σ∆⃗ ≥ ∥M∗∥F ≳C n

for every near-balanced ∆⃗, we obtain

Pr[E ∩ H ∩ {σ∆⃗ ≤ 2σshift}]
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=

∞∑
i,j=0

Pr

[
E ∩ H ∩ {σ∆⃗ ≤ 2σshift} ∩

{
2i ≤

σ∆⃗
∥M∗∥F

< 2i+1

}
∩
{
j ≤

|Eshift(1) − x′|
2i∥M∗∥F

< j + 1

}]

≲C

∞∑
i,j=0

Pr

[
H ∩ {σ∆⃗ ≤ 2σshift} ∩

{
2i ≤

σ∆⃗
∥M∗∥F

< 2i+1

}
∩
{
j ≤

|Eshift(1) − x′|
2i∥M∗∥F

< j + 1

}]

·
(
exp(−ΩC(j))

2i∥M∗∥F
+ n−1.1

)
≤ Pr[H]

n1.1
+

∞∑
i,j=0

Pr

[
{σ∆⃗ ≤ 2σshift} ∩

{
2i ≤

σ∆⃗
∥M∗∥F

}
∩
{
j ≤

|Eshift(1) − x′|
2i∥M∗∥F

< j + 1

}]
· exp(−ΩC(j))

2i∥M∗∥F

≲C,H n−0.45(log n)2 · n−1.1 +

∞∑
i,j=0

n1/22i∥M∗∥F
(2i∥M∗∥F)2

· exp(−ΩC(j))

2i∥M∗∥F

= n−1.55(log n)2 +

∞∑
i,j=0

n1/2

22i∥M∗∥2F
· exp(−ΩC(j)) ≲C n−3/2 +

n1/2

∥M∗∥2F
≲C n−3/2,

(The first inequality is by (12.9) and in the third inequality we used (12.10) with Markov’s inequality.)
We have now proved that Pr[E∩H] ≲C,H n−3/2. Recalling the definition of H and (12.8), it now suffices

to upper-bound the probability that E holds, ∆⃗ is near-balanced, and |x−E∆⃗| ≤ |Eshift(1) − x′|/2− 2n.
If ∆⃗ is near-balanced and |x − E∆⃗| ≤ |Eshift(1) − x′|/2 − 2n, then |Eshift(1) − x′| ≥ 4n and, using

x′ = x − E and (12.5), furthermore |Eshift(2)| ≥ |Eshift(1) + E − x| − |E∆⃗ − x| − 2n ≥ |Eshift(1) − x′|/2.
Hence (using Claim 12.2 noting that ∥M∗∥F ≤ n, and Markov’s inequality)

Pr[|x− E∆⃗| ≤ |Eshift(1) − x′|/2− 2n and ∆⃗ is near-balanced]

≤
∞∑
i=2

Pr[(2in ≤ |Eshift(1) − x′| < 2i+1n) ∩ (|Eshift(2)| ≥ 2i−1n)] ≲C,H

∞∑
i=2

n1/2 · 2in
22(i−1)n2

≲ n−1/2.

For every near-balanced outcome of ∆⃗, by Claim 12.1(1) we have Pr[E|∆⃗] ≲C 1/σ∆⃗ ≲C 1/n (recalling
from Step 4 that σ∆⃗ ≥ ∥M∗∥F ≳C n). Hence the probability that E holds, ∆⃗ is near-balanced, and
|x−E∆⃗| ≤ |Eshift(1) − x′|/2− 2n is bounded by OC,H(n−3/2), completing the proof of the upper bound.

Step 8: Proof of the lower bound. Fix A > 0, and assume that |x − E| = |x′| ≤ (A + 1)n3/2. We
need to show that Pr[E ] ≳C,H,A n−3/2. To do so, we define an event F such that we can conveniently
apply Claim 12.1(2) after conditioning on this event (roughly speaking, we need Eshift(1) to take “about
the right value”, and we need Eshift(2) and σshift “not to be too large”). We study the probability of F
by applying (12.6) (Gaussian approximation for Eshift(1)) as well as Claim 12.2 together with Markov’s
inequality (as in the upper bound proof in the previous step).

Let s ∈ {−1, 1} be as in Claim 12.1(2). For any 0 < K < n3/2/(2σ), we can consider the event that
Kσ ≤ s(x′−Eshift(1)) ≤ 2Kσ, which can be interpreted as the event that Eshift(1) lies in a certain interval
of length Kσ whose endpoints both have absolute value at most |x′|+2Kσ ≤ (A+2)n3/2. Using (12.6),
we can compare the probability for this event to the probability that a normal random variable with
distribution N (0, ( 12∥Qy⃗∥2)

2) lies in this interval. In this way, we see that the probability of the event
Kσ ≤ s(x′ − Eshift(1)) ≤ 2Kσ is at least

Kσ ·
exp(−(A+ 2)2n3/( 12∥Qy⃗∥

2
2))√

2π · 1
2∥Qy⃗∥2

−OC,H(1/
√
n) ≥ Kσ · exp(−OC,A(1))

OH(n3/2)
−OC,H(1/

√
n), (12.11)

where we used that ∥Qy⃗∥2 ≳C n3/2 and ∥Qy⃗∥∞ ≤ (H + 2)n (which implies that ∥Qy⃗∥2 ≲H n3/2), as
discussed in Step 5.

Now, recalling that n1.05 ≥ σ ≥ ∥M∗∥F ≳C n from Step 5, we can take K = K(C,H,A) ≥ 104

to be a sufficiently large constant such that the right-hand-side of (12.11) is at least σ/n3/2, such that
∥M∗∥F ≥ K−1/4 · n, and such that the hidden constant in the ≲C,H notation in the statement of
Claim 12.2 is at most K1/4. By the choice of K, we have

Pr[Kσ ≤ s(x′ − Eshift(1)) ≤ 2Kσ] ≥ σ

n3/2
.
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Furthermore, using Claim 12.2 and Markov’s inequality we have

Pr[(E2
shift(2) + σ2

shift ≥ 2K5/4n2) ∩ (Kσ ≤ s(x′ − Eshift(1)) ≤ 2Kσ)] ≤ K1/4 · n
1/2 · σK
2K5/4n2

=
σ

2n3/2
.

Thus, with probability at least σ/(2n3/2), we have E2
shift(2)+σ

2
shift ≤ 2K5/4n2 andKσ ≤ s(x′−Eshift(1)) ≤

2Kσ. Let F be the event that these two conditions are satisfied and ∆⃗ is near-balanced (and note that F
only depends on the randomness of ∆⃗). Recalling from Step 4 that ∆⃗ is near-balanced with probability
1− n−ω(1), we see that Pr[F ] ≥ σ/(4n3/2).

We claim that whenever F holds, we have σ/K2 ≤ σ∆⃗ ≤ K2σ and 3n ≤ s(x − E∆⃗) ≤ 3K3σ∆⃗. For
the first claim, note that if F holds, then σ2

shift ≤ 2K5/4n2 ≤ K2n2/4 and hence σ2
∆⃗

≥ σ2/2 − σ2
shift ≥

σ2/2 − K2n2/4. So, if σ ≥ Kn, we obtain the desired lower bound σ∆⃗ ≥ σ/2 ≥ σ/K2. If σ ≤ Kn,
then we instead obtain the desired lower bound on σ∆⃗ by observing that σ ≤ Kn ≤ K2∥M∗∥F ≤ K2σ∆⃗
(using that ∆⃗ is near-balanced). For the upper bound on σ∆⃗, recall from the end of Step 5 that we have
σ∆⃗ ≤ 2σ ≤ K2σ or σ∆⃗ ≤ 2σshift. In the latter case, we obtain σ∆⃗ ≤ 2σshift ≤ Kn ≤ K2∥M∗∥F ≤ K2σ.
Altogether, we have proved that σ/K2 ≤ σ∆⃗ ≤ K2σ whenever F holds, as claimed.

For the second of our two claims, note that whenever F holds, we have E2
shift(2) ≤ 2K5/4n2 ≤

2K7/4∥M∗∥2F ≤ K2σ2/4, so |Eshift(2)| ≤ Kσ/2 and hence Kσ/2 ≤ s(x′ − Eshift(1) − Eshift(2)) ≤ 2.5Kσ.
Recalling (12.5) and x′ = x− E, this implies the desired claim

3n ≤ Kσ/2− 2n ≤ s(x− E∆⃗) ≤ 2.5Kσ + 2n ≤ 3Kσ ≤ 3K3σ∆⃗,

where in the first and fourth inequalities we used that n ≤ K1/4∥M∗∥F ≤ K1/4σ, and in the last
inequality we used the first claim.

Now, having established the above claims for all outcomes of ∆⃗ satisfying F , Claim 12.1(2) implies
that Pr[E|F ] ≳C,H,A 1/(K2σ). Thus, Pr[E ] ≥ Pr[F ] ·Pr[E|F ] ≳C,H,A σ/(4n3/2) · 1/(K2σ) ≳C,H,A n−3/2,
completing the proof of the lower bound. □

12.1. Proofs of claims. In order to finish the proof of Theorem 3.1 in the γ-structured case, it remains
to prove Claims 12.1 and 12.2.

Proof of Claim 12.1. Recall that in the statement of Claim 12.1 we fixed a near-balanced outcome of ∆⃗
and the desired conclusions are conditional on this outcome of ∆⃗. Throughout this proof, let us therefore
always condition on the fixed outcome of ∆⃗, which we now view as being non-random, and for notational
simplicity we omit all “|∆⃗” notation.

Recall that we have σ2
∆⃗

= 2∥M∗∥2F + ∥w⃗∗
∆⃗
∥22 + O(n7/4+14γ) and ∥w⃗∗

∆⃗
∥∞ ≤ n1/2+5γ (since ∆⃗ is near-

balanced). Also recalling that all entries of M∗ have absolute value at most 1, this implies σ2
∆⃗

≤
n2 + n · n1+10γ +O(n7/4+14γ) ≤ n2.2 (as γ = 10−4). Thus, σ∆⃗ ≤ n1.1.

For the upper bound in (1) we will use Lemma 6.2 and for the lower bound in (2) we will use
Lemma 6.3. Recalling (12.3), let Z be the “Gaussian analog” of X: let z⃗ ∼ N (0, 1)⊗n be a standard
n-variate Gaussian random vector and let

Z =

(
E +

1

2
y⃗ · ∆⃗ +

1

8
∆⃗⊺M∆⃗

)
+ w⃗∗

∆⃗
· z⃗ + z⃗⊺M∗z⃗.

Let ν = ν(2C, 0.001) > 0 be as in Lemma 8.1 and let ε = 2/ν. Let s ∈ {−1, 1} be the sign of the
eigenvalue of M∗ with the largest magnitude. We collect several estimates.

(A) σ(Z) ≍C σ∆⃗ ≳C n and |EZ − E∆⃗| ≤ 2n.
(B) For all x ∈ R,

Pr[|Z − x| ≤ ε] ≲C
ε

σ(Z)
exp

(
−ΩC

(
|x− EZ|
σ(Z)

))
≤ ε

σ(Z)
.

(C)
∫ 2/ε

−2/ε
|φX(τ)− φZ(τ)| dτ ≤ n−1.2.

(D) For any fixed A′ ∈ R≥0, assuming that n is sufficiently large with respect to A′, we have
pZ(y1)/pZ(y2) ≤ 2 for all y1, y2 ∈ R with 0 ≤ s(y1 − EZ) ≤ A′σ(Z) and |y1 − y2| ≤ 2n1/4ε.

(E) For any fixed A′ > 0 and any x ∈ Z satisfying 0 ≤ s(x− EZ) ≤ A′σ(Z),

Pr[|Z − x| ≤ ε] ≳C,A′
1

σ(Z)
and pZ(x) ≳C,A′

1

σ(Z)
.
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We will prove (A–E) using the results from Sections 5, 8, 10, and 11; before explaining how to do this,
we deduce the desired upper and lower bounds in (1) and (2). Let B = B(C) = 104 · 2ε. First, using
that by (A) we have ε ≤ σ(Z) for sufficiently large n, and using (B), we can apply Lemma 6.2 to X−EZ
and Z − EZ and σ(Z). Hence for all x ∈ Z we have

Pr[|X − x| ≤ B] ≤ 2 · 104 sup
y∈R

|x−y|≤B

Pr[|X − y| ≤ ε]

≲C
ε2

σ(Z)2
+

ε

σ(Z)
exp

(
−ΩC

(
|x− EZ|
σ(Z)

))
+ ε

∫ 2/ε

−2/ε

|φX(τ)− φZ(τ)| dτ.

The bound in (1) then follows from (A) and (C). Second, by (A) and (E), if x ∈ Z satisfies 3n ≤
s(x − E∆⃗) ≤ Aσ∆⃗ then Pr[|Z − x| ≤ ε] ≳C,A 1/σ∆⃗. Furthermore, for all y1, y2 ∈ [x − n1/4ε, x + n1/4ε]

by (A) we have 0 ≤ 3n − |EZ − E∆⃗| − n1/4ε ≤ s(y1 − EZ) ≤ A′σ(Z) for some A′ = A′(C,A), and
therefore pZ(y1)/pZ(y2) ≤ 2 by (D). Let K = 2 and R = n1/4, so by Lemma 6.3 we have (recalling that
B = 104 · 2ε = 104Kε)

Pr[|X − x| ≤ B] ≥ ΩC,A(1/σ∆⃗)− C6.3

(
R−1L(Z, ε) + ε

∫ 2/ε

−2/ε

|φX(τ)− φZ(τ)| dτ

)
.

The bound in (2) then follows from (A–C).
Now we prove (A–E). First, note that for any matrix M̃ ∈ RV×V with rank at most say 400, we have

∥M∗− M̃∥2F = 1
64∥M − (MQ+QM −QMQ+64M̃)∥2F ≳C n2 ≥ ∥M∗∥2F by Lemma 10.1. Also note that

M∗ and w⃗∗
∆⃗

satisfy conditions (a)–(d) in Lemma 11.1 for δ = 2γ = 2 · 10−4, as discussed at the end of
Step 3 and the start of Step 4 above.

Then, the two parts of (A) follow from parts (1) and (2) of Lemma 11.1 (applied with δ = 2γ = 2·10−4),
recalling σ∆⃗ ≳C n from the end of Step 4. Furthermore, (B) and (E) follow from Theorem 5.2(1–2) (for
the second part of (E), we use Theorem 5.2(2) with ε→ 0).

Now, consider y1, y2 as in (D), so in particular |y1 − y2| ≤ 2n1/4ε. By the inversion formula (4.1) and
Lemma 5.11 (with r = 8), and (A), we have

|pZ(y1)− pZ(y2)| =
∣∣∣∣ 12π

∫ ∞

−∞
(e−iτy1 − e−iτy2)EeiτZ dτ

∣∣∣∣ ≲ ∫ ∞

−∞
min{|τ(y1 − y2)|, 1} · |EeiτZ | dτ

≲C

∫ ∞

−∞
min{n1/4|τ |, 1} · (1 + τ2n2)−2 dτ ≲ n−7/4 = o(1/σ(Z)),

from which we may deduce (D) using the second part of (E). It remains to prove (C), i.e., to bound the
integral

∫ 2/ε

−2/ε
|φX(τ) − φZ(τ)| dτ by n−1.2. If |τ | ≤ n−0.99, then by Lemma 11.1(3) (with δ = 2γ) we

have |φX(τ)− φZ(τ)| ≲ |τ |4 · n3+24γ + |τ | · n3/4+8γ ≲ |τ | · n3/4+8γ . Thus, the contribution of the range
|τ | ≤ n−0.99 to the integral

∫ 2/ε

−2/ε
|φX(τ)− φZ(τ)| dτ is O((n−0.99)2 · n3/4+8γ) = O(n−1.23+8γ), which is

smaller than n−1.2/2 (recalling that γ = 10−4).
For n−0.99 ≤ |τ | ≤ 2/ε we bound |φX(τ)| and |φZ(τ)| separately. By Lemma 5.11 (with r = 400)

we have |φZ(τ)| ≲C (1 + τ2n2)−100 ≤ (n0.02)−100 = n−2. To bound |φX(τ)| we use Lemma 8.1, after
conditioning on any outcome of U ∩ (I2 ∪ · · · ∪ Im). After this conditioning, the remaining randomness
is just within the first bucket I1, and conditionally X is of the form required to apply Lemma 8.1 with
respect to the (2C)-Ramsey graph G[I1] of size |I1| ≥ n1−2γ , and we obtain |φX(τ)| ≲ n−(1−2γ)5 ≤ n−4

since |τ | ≥ n−0.99 ≥ |I1|−0.999. Thus, in the range n−0.99 ≤ |τ | ≤ 2/ε we have |φX(τ) − φZ(τ)| ≤
|φX(τ)|+ |φZ(τ)| ≲ n−2, and so the contribution of this range to the integral

∫ 2/ε

−2/ε
|φX(τ)− φZ(τ)| dτ

is also smaller than n−1.2/2. □

We will deduce Claim 12.2 from the following auxiliary estimate, applied with k = 1 and with k = 2
(recall that the functions ψ and f already appeared in the proof of Lemma 6.1).

Claim 12.3. Fix k ∈ N. Let us define the function ψ : R → R as the convolution ψ = 1[−1,1] ∗ 1[−1,1]

(where 1[−1,1] is the indicator function of the interval [−1, 1]) and let f = ψ̂ be the Fourier transform of
ψ. Consider a matrix A ∈ RV×V whose entries have absolute value at most 1, and a vector β⃗ ∈ RV with
∥β⃗∥∞ ≤ π/4. Then for any t ∈ R we have |E[(x⃗⊺Ax⃗)kf(β⃗ · x⃗− t)]| ≲k (

√
n/∥β⃗∥2)2k+1 · nk−1/2.
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Proof. Observing that x2v = 1, we can express (x⃗⊺Ax⃗)k as a multilinear polynomial of degree at most
2k in the |V | ≤ n variables xv for v ∈ V . For each ℓ ≤ 2k this polynomial has at most O(nℓ) terms of
degree ℓ, and for each such term the corresponding coefficient has absolute value at most Ok(n

(2k−ℓ)/2).
It suffices to prove that |E[xv1 · · ·xvℓf(β⃗ · x⃗ − t)]| ≲ℓ ∥β∥−(ℓ+1)

2 for any ℓ ≤ 2k and any distinct
v1, . . . , vℓ ∈ V . Indeed, this does imply |E[(x⃗⊺Ax⃗)kf(β⃗ · x⃗ − t)]| ≲k

∑2k
ℓ=0 n

ℓ · n(2k−ℓ)/2 · ∥β∥−(ℓ+1)
2 ≲k

(
√
n/∥β⃗∥2)2k+1 · nk−1/2 using that ∥β⃗∥2 ≤

√
n since |V | ≤ n and ∥β⃗∥∞ ≤ π/4 ≤ 1.

Note that the support of the function ψ is inside the interval [−2, 2] and we furthermore have 0 ≤
ψ(θ) ≤ 2 for all θ ∈ R. Therefore we can write

|E[xv1 · · ·xvℓ
f(β⃗ · x⃗− t)]| =

∣∣∣∣E[∫ ∞

−∞
xv1 · · ·xvℓψ(θ)e−iθ(β⃗·x⃗−t) dθ

]∣∣∣∣ ≤ 2

∫ 2

−2

|E[xv1
· · ·xvℓe−iθ(β⃗·x⃗)]| dθ.

By (4.2), for −π/2 ≤ λ ≤ π/2 and v ∈ V we have |E[eiλxv ]| = | cosλ| ≤ exp(−λ2/π2), and

|E[xveiλxv ]| =
∣∣∣∣12 exp(iλ)− 1

2
exp(−iλ)

∣∣∣∣ = | sinλ| ≤ |λ|.

Since |θβv| ≤ π/2 for all v ∈ V and −2 ≤ θ ≤ 2, we can deduce (also using that |βv| ≤ 1 for all v ∈ V )

|E[xv1 · · ·xvℓf(β⃗ · x⃗− t)]| ≤ 2

∫ 2

−2

ℓ∏
j=1

|θβvj |
∏

v∈V \{v1,...,vℓ}

e−(θ2/π2)β2
v ≤ 2

∫ 2

−2

|θ|ℓe−(θ2/π2)(∥β⃗∥2
2−ℓ)dθ

≲ℓ

∫ 2

−2

|θ|ℓe−θ2∥β⃗∥2
2/π

2

dθ =
πℓ+1

∥β⃗∥ℓ+1
2

∫ 2∥β⃗∥2/π

−2∥β⃗∥2/π

|z|ℓe−z2

dz ≲ℓ ∥β⃗∥−(ℓ+1)
2 ,

as desired (where in the last step we used that the integral
∫∞
−∞ |z|me−z2

dz is finite). □

Finally, let us deduce Claim 12.2.

Proof of Claim 12.2. First, note that it suffices to consider the case where the interval [a, b] has length
exactly (2H + 4)n. Indeed, in the general case we can cover [a, b] with ⌈(b − a)/((2H + 4)n)⌉ ≲C.H

(b− a)/((2H + 4)n) intervals of length exactly (2H + 4)n (here, we used that b− a ≥ ∥M∗∥F ≳C n by
(12.4)). So assume that b−a = (2H+4)n and let s = (a+b)/2, then [a, b] = [s− (H+2)n, s+(H+2)n].

Using that Q and M are symmetric, recall from Step 5 that

Eshift(1) =
1

2
y⃗ · ∆⃗ =

1

2
(Qy⃗) · x⃗, Eshift(2) =

1

8
∆⃗⊺M∆⃗ =

1

8
x⃗⊺(QMQ)x⃗,

σ2
shift =

1

16
∥(I −Q)M∆⃗∥22 =

1

16
∥(I −Q)MQx⃗∥22 =

1

16
x⃗⊺QM(I −Q)2MQx⃗ =

n

16
x⃗⊺
QM(I −Q)2MQ

n
x⃗.

Recall that M has entries in {0, 1}, and recall the definition of Q in Step 3 (and the fact that multiplying
with Q has the effect of averaging values over buckets). This shows that in QMQ and also in (I−Q)MQ
(and consequently in (1/n)QM(I −Q)2MQ) all entries have absolute value at most 1.

Furthermore recall from Step 4 that ∥Qy⃗∥∞ ≤ (H +2)n and ∥Qy⃗∥2 ≳C n3/2. Consider ψ and f as in
the statement of Claim 12.3, and recall from the proof of Lemma 6.1 that f(t) ≥ 1[−1,1](t) for all t ∈ R
(more specifically, the function f is given by f(t) = (2(sin t)/t)2 for t ̸= 0 and f(0) = 22). Also note that
E2

shift(2) and σ2
shift are both nonnegative.

Now, let β⃗ ∈ RV be given by ((H + 2)n)−1 · 1
2Qy⃗, and note that then ∥β⃗∥∞ ≤ 1/2 < π/4 and

∥β⃗∥2 ≳C,H n1/2. Furthermore, let t = ((H + 2)n)−1s, so (recalling that Eshift(1) = 1
2 (Qy⃗) · x⃗ and

[a, b] = [s− (H + 2)n, s+ (H + 2)n]) we have Eshift(1) ∈ [a, b] if and only if β⃗ · x⃗− t ∈ [−1, 1]. Hence

E[E2
shift(2)1Eshift(1)∈[a,b]] = E[E2

shift(2)1β⃗·x⃗−t∈[−1,1]] ≤ E[E2
shift(2)f(β⃗·x⃗−t)] =

E[(x⃗⊺(QMQ)x⃗)2f(β⃗ · x⃗− t)]

64
and therefore by Claim 12.3 applied with A = QMQ and k = 2,

E[E2
shift(2)1Eshift(1)∈[a,b]] ≲ (

√
n/∥β⃗∥2)5 · n3/2 ≲C,H n3/2.

Similarly, writing A = (1/n)QM(I −Q)2MQ and applying Claim 12.3 wih k = 1, we have

E[σ2
shift1Eshift(1)∈[a,b]] ≤ E[σ2

shiftf(β⃗ · x⃗− t)] =
n

16
·E[(x⃗⊺Ax⃗)f(β⃗ · x⃗− t)] ≲ n · (

√
n/∥β⃗∥2)3 ·n1/2 ≲C,H n3/2.

Summing these two estimates and recalling that b− a = (2H + 4)n now gives the desired result

E[(E2
shift(2) + σ2

shift)1Eshift(1)∈[a,b]] ≲C,H n1/2(b− a). □
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13. Switchings for pointwise probability estimates

So far (in Theorem 3.1), we have obtained near-optimal estimates on probabilities of events of the
form |X − x| ≤ B, for some large constant B. However, in order to prove Theorem 2.1, we need to
control the probability that X is exactly equal to x (assuming that e0 and the entries of the vector e⃗ are
integers). Of course, an upper bound on Pr[|X − x| ≤ B] as in Theorem 3.1 implies an upper bound on
Pr[X = x]. So it only remains to prove the lower bound in Theorem 2.1.

In order to deduce the lower bound in Theorem 2.1 from Theorem 3.1, it suffices to show that Pr[X = x]
does not differ too much from Pr[X = x′] for x′ ∈ [x − B, x + B]. In order to show this, we use the
switching method, by which we study the effect of small perturbations to U . For example, in the setting
of Theorem 2.1 one can show that for a typical outcome of U there are many pairs of vertices (y, z) such
that y ∈ U , z /∈ U and |N(z) ∩ (U \ {y})| − |N(y) ∩ (U \ {z})| + ez − ey = ℓ. For such a pair (y, z),
modifying U by removing y and adding z (a “switch” of y and z) changes X by exactly ℓ.

As discussed in Section 3.5, we introduce an averaged version of the switching method. Roughly
speaking, we define random variables that measure the number of ways to switch between two classes,
and study certain moments of these random variables. We can then make our desired probabilistic
conclusions with the Cauchy–Schwarz inequality.

First, we need a lemma providing us with a special set of vertices which we will use for switching
operations (the properties in the lemma make it tractable to compute the relevant moments).

For vertices v1, . . . , vs in a graph G, let us define

N(v1, . . . , vs) = V (G) \
(
{v1, . . . , vs} ∪N(v1) ∪ · · · ∪N(vs)

)
to be the set of vertices in V (G) \ {v1, . . . , vs} that are not adjacent to any of the vertices v1, . . . , vs.

Lemma 13.1. For any fixed C,H > 0 and D ∈ N, there exist ρ = ρ(C,D) with 0 < ρ < 1 and
δ = δ(C,D) > 0 with δ < ρ3/3D+1 such that the following holds for all sufficiently large n. For every
C-Ramsey graph G on n vertices and every vector e⃗ ∈ ZV (G) with 0 ≤ ev ≤ Hn for all v ∈ V (G), there
exist subsets S ⊆ S0 ⊆ V (G) with |S| ≥ n0.48 and |S0| ≥ δ1/ρ · n such that the following properties hold.

(1) The induced subgraph G[S0] is (δ, ρ)-rich (see Definition 4.3).
(2) For any vertices v1, . . . , vs ∈ S with s ≤ D, we have |N(v1, . . . , vs) ∩ S0| ≥ δ|S0|.
(3) For any vertices v, w ∈ S, we have |degG(v)/2 + ev − degG(w)/2− ew| ≤

√
n.

Remark 13.2. We will apply Lemma 13.1 with D = 8B + 4, where B = B(C) is as in Theorem 3.1. So
the size of S0 depends on B. Eventually, we will apply Theorem 3.1 to a Ramsey graph G[N ], for a
certain subset N ⊆ S0 (with U ∩ N as our random vertex set, conditioning on an outcome of U \ N).
Since the proportion of G that N ⊆ S0 occupies depends on D, we will have to apply Theorem 3.1 with
A,H depending on D (and therefore on B). So, it is crucial that in Theorem 3.1, B does not depend on
A,H.

To prove Lemma 13.1 (specifically, property (2)), we will need a dependent random choice lemma: the
following simple yet powerful lemma appears as [46, Lemma 2.1].

Lemma 13.3. Let F be a graph on n vertices with average degree d. Suppose that a, s, r ∈ N satisfy

sup
t∈N

(
dt

nt−1
−
(
n

r

)
·
( s
n

)t)
≥ a.

Then, F has a subset W of at least a vertices such that every r vertices in W have at least s common
neighbors in F .

Proof of Lemma 13.1. Let ε = ε(2C) be as in Theorem 4.1, so for sufficiently large m every 2C-Ramsey
graph on m vertices has average degree at least εm. Let ρ = ρ(C, 1/5) > 0 be as in Lemma 4.4. Let
δ = δ(C,D) > 0 be sufficiently small such that δ < ρ3/3D+1 and for all sufficiently large m (in terms of
C and D) we have

sup
t∈N

(
εtm−

(
m

D

)
δt
)

≥ m0.99.

To see that this is possible, consider t = η logm for some small η (in terms of ε), and let δ be small in
terms of η and D.

By Lemma 4.4, we can find a (δ, ρ)-rich induced subgraph G[S0] of size |S0| ≥ δ1/ρ · n.
Since |S0| ≥ δ1/ρ ·n ≥

√
n, the graph G[S0] is 2C-Ramsey. Let G[S0] be the complement of this graph,

so that G[S0] is also a 2C-Ramsey graph and therefore has average degree at least ε|S0|. By Lemma 13.3
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and the choice of δ, the graph G[S0] contains a set S′ of |S′| ≥ |S0|0.99 ≥ 2(H+1)n0.98 vertices such that
every D vertices in S′ have at least δ|S0| common neighbors in G[S0]. This means that for any s ≤ D
and any v1, . . . , vs ∈ S′, we have |N(v1, . . . , vs) ∩ S0| ≥ δ|S0|, so (2) holds for any subset S ⊆ S′.

Finally, note that degG(v)/2+ ev ∈ [0, (H+1)n] for all v ∈ S′, and consider a partition of the interval
[0, (H+1)n] into ⌊2(H+1)

√
n⌋ sub-intervals of length (H+1)n/⌊2(H+1)

√
n⌋ ≤

√
n. By the pigeonhole

principle, there exists a set S ⊆ S′ of at least 2(H + 1)n0.98/⌊2(H + 1)
√
n⌋ ≥ n0.48 vertices v whose

associated values degG(v)/2 + ev lie in the same sub-interval. Then (3) holds. □

As foreshadowed earlier, the next lemma estimates moments of certain random variables that measure
the number of ways to switch between certain choices of the set U . The proof of this lemma relies on
Theorem 3.1.

Lemma 13.4. Fix C,H,A > 0, let B = B(2C) be as in Theorem 3.1 and define D = D(C) = 8B + 4.
Consider a C-Ramsey graph G on n vertices and a vector vector e⃗ ∈ ZV (G) with 0 ≤ ev ≤ Hn for all
v ∈ V (G). Let S ⊆ S0 ⊆ V (G), ρ = ρ(C,D) > 0 and δ = δ(C,D) > 0 be as in Lemma 13.1, and define

T =
{
(y, z) ∈ S2 : |(N(z) \N(y)) ∩ S0| ≥ ρ2|S0| and |(N(y) \N(z)) ∩ S0| ≥ ρ2|S0|

}
.

Consider a random vertex subset U ⊆ V (G) obtained by including each vertex with probability 1/2
independently, and let X = e(G[U ])+

∑
u∈U eu. For ℓ = −B, . . . , B, let Yℓ be the number of vertex pairs

(y, z) ∈ T with y ∈ U and z /∈ U such that (|N(z)∩ (U \ {y})|+ ez)− (|N(y)∩ (U \ {z})|+ ey) = ℓ. For
x ∈ Z, let Zx−B,x+B ∈ {0, 1} be the indicator random variable for the event that x−B ≤ X ≤ x+B.

Then, for any x ∈ Z satisfying |x− EX| ≤ An3/2, and any a−B , . . . , aB ∈ {0, 1, 2}, we have

E[Y a−B

−B · · ·Y aB

B Zx−B,x+B ] ≍C,H,A
(|T |/

√
n)a−B+···+aB

n3/2
.

We defer the proof of Lemma 13.4 (using Theorem 3.1) until the end of the section, first showing how
it can be used to prove Theorem 2.1. This argument requires the set T in Lemma 13.4 to be non-empty,
which is implied by the following lemma.

Lemma 13.5. The set T defined in Lemma 13.4 has size |T | ≥ |S|2/2 ≥ n0.96/2.

Proof. Recall that the set S ⊆ S0 has size |S| ≥ n0.48 and that G[S0] is (δ, ρ)-rich, where δ < ρ3/3D+1 < ρ
is as in Lemma 13.1. We first claim that at least (3/4) · |S|2 pairs (y, z) ∈ S2 satisfy the first condition
|(N(z)\N(y))∩S0| ≥ ρ2|S0| in the definition of T . Indeed, by Definition 4.3, all but at most n1/5 vertices
z ∈ S0 satisfy |N(z) ∩ S0| ≥ ρ|S0|. Hence, |N(z) ∩ S0| ≥ ρ|S0| for at least |S| − n1/5 vertices z ∈ S.
Furthermore, for each such z ∈ S we have |(N(z) \N(y))∩S0| = |(N(z)∩S0) \N(y)| ≥ ρ · |N(z)∩S0| ≥
ρ2|S0| for all but at most n1/5 vertices y ∈ S0 and in particular for at least |S|−n1/5 vertices y ∈ S. Thus,
there are at least (|S| − n1/5)2 ≥ (3/4) · |S|2 pairs (y, z) ∈ S2 satisfying |(N(z) \ N(y)) ∩ S0| ≥ ρ2|S0|.
Analogously, at least (3/4)·|S|2 pairs (y, z) ∈ S2 satisfy the second condition |(N(y)\N(z))∩S0| ≥ ρ2|S0|
in the definition of T . This means that the number of pairs (y, z) ∈ S2 satisfying both conditions is at
least |S|2 − 2(|S|2 − (3/4) · |S|2) = |S|2/2 and hence |T | ≥ |S|2/2 ≥ n0.96/2. □

Now we are ready to deduce Theorem 2.1 from Lemma 13.4.

Proof of Theorem 2.1. Consider a C-Ramsey graph G, a random subset U ⊆ V (G) and X = e(G[U ]) +∑
v∈U ev + e0 as in Theorem 2.1, and consider the setup of Lemma 13.4. Note that the upper bound in

Theorem 2.1 follows immediately from the upper bound in Theorem 3.1, so it only remains to prove the
lower bound.

For x ∈ Z let Zx be the indicator random variable for the event that X = x. Note that for all x ∈ Z
and ℓ = −B, . . . , B we have E[Y−ℓZx+ℓ] = E[YℓZx]. Indeed, if X = e(G[U ]) +

∑
u∈U eu + e0 = x + ℓ,

then Y−ℓ is the number of ways to perform a “switch” of two vertices y ∈ U , z /∈ U with (y, z) ∈ T ,
to obtain a vertex subset U ′ = (U \ {y}) ∪ {z} with e(G[U ′]) +

∑
v∈U ′ ev + e0 = x. Conversely, if

X = e(G[U ]) +
∑

v∈U ev + e0 = x, then Yℓ is the number of ways to perform such a switch “in reverse”
to obtain a vertex subset U ′ with e(G[U ′]) +

∑
v∈U ′ ev + e0 = x + ℓ. So, 2nE[Y−ℓZx+ℓ] and 2nE[YℓZx]

both describe the total number of ways to switch in this way between an outcome of U with X = x+ ℓ
and an outcome with X = x.

Now, for every x ∈ Z with |x− EX| ≤ An3/2 there is some ℓ ∈ {−B, . . . , B} such that

E[Y−B · · ·YBZx+ℓ] ≥
1

2B + 1

B∑
ℓ′=−B

E[Y−B · · ·YBZx+ℓ′ ]
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=
1

2B + 1
E[Y−B · · ·YBZx−B,x+B ] ≳C,H,A

(|T |/
√
n)2B+1

n3/2
,

where the last step is by Lemma 13.4. For this ℓ, the Cauchy–Schwarz inequality, together with
Lemma 13.4 and the fact that Zx+ℓ ≤ Zx−B,x+B , implies that

E[YℓZx] = E[Y−ℓZx+ℓ] ≥
(E[Y−B · · ·YBZx+ℓ])

2

E[Y 2
−B · · ·Y 2

−ℓ−1Y−ℓY 2
−ℓ+1 · · ·Y 2

BZx+ℓ]
≳C,H,A

(|T |/
√
n)4B+2/n3

(|T |/
√
n)4B+1/n3/2

=
|T |/

√
n

n3/2
.

Finally, we use the Cauchy–Schwarz inequality and Lemma 13.4 once more (noting that Zx ≤
Zx−B,x+B) to conclude that

Pr[X = x] = EZx ≥ (E[YℓZx])
2

E[Y 2
ℓ Zx]

≳C,H,A
(|T |/

√
n)2/n3

(|T |/
√
n)2/n3/2

=
1

n3/2
. □

It now remains to prove the moment estimates in Lemma 13.4. We will write the desired moments as
a combinatorial sum of probabilities; for various tuples of pairs of vertices (y, z), we then need to control
the joint probability that X = e(G[U ])+

∑
u∈U eu lies in a certain interval and that U contains a specified

number of vertices from the neighborhoods of the various y and z. The next lemma gives a lower bound
for certain probabilities of this form. Slightly more precisely, it allows us to specify the intersection
sizes of U in with given disjoint vertex subsets W1, . . . ,Ws. When applying this lemma in the proof of
Lemma 13.4, we will take s = a−B+· · ·+aB , and given s pairs of vertices (y1, z1), . . . , (ys, zs) ∈ T , we will
takeW1, . . . ,Ws to be certain regions of the Venn diagram given by the neighborhoods of y1, z1, . . . , ys, zs.
We can then use the intersection sizes of U with W1, . . . ,Ws to control the events that the s-tuple of pairs
(y1, z1), . . . , (ys, zs) contributes to Y

a−B

−B · · ·Y aB

B Zx−B,x+B . For this argument, we will, however, need
to condition on the outcome of U outside these special regions of the Venn diagram. This conditioning
affects the linear terms and constant terms in our random variable X, so we use the variables fv and f0
in the lemma statement below (when applying the lemma, we take fv and f0 to be the terms obtained
from ev and e0 after accounting for this conditioning).

Lemma 13.6. Let δ′ > 0 and R ≥ 1, and consider an n-vertex graph G, a real number f0, and a
sequence f⃗ ∈ RV (G) with |fv| ≤ Rn for each v ∈ V (G). Let U ⊆ V (G) be a vertex subset obtained by
including each vertex with probability 1/2 independently, and let X = e(G[U ])+

∑
v∈U fv + f0. Then the

following hold.
(1) Var[X] ≤ R2n3.
(2) For any s ≤ R and any disjoint subsets W1, . . . ,Ws ⊆ V (G), each of size at least δ′n, and any

w1, . . . , ws ∈ Z satisfying
∣∣wi − |Wi|/2

∣∣ ≤ R
√
n for i = 1, . . . , s, we have

Pr
[
|X − EX| ≤ 6R2n3/2 and |U ∩Wi| = wi for i = 1, . . . , s

]
≳δ′,R n−s/2.

Proof. For (1), the expression for X in (3.1) and the formula in (4.5) show that

Var[X] =
1

4

∑
v∈V (G)

(
fv +

1

2
deg(v)

)2

+
1

16
e(G) ≤ R2n3.

Let E = EX and note that for each i = 1, . . . , s we have

Pr[|U ∩Wi| = wi] =

(
|Wi|
wi

)−1

≍δ′,R n−1/2.

and these events are independent for all i. Thus, in order to establish (2), it suffices to show that when
conditioning on |U ∩Wi| = wi for i = 1, . . . , s, we have |X −E| ≤ 6R2n3/2 with probability at least 1/2.

Also note that the value of X changes by at most (R+1)n when adding or deleting a vertex of U . We
can sample a uniformly random subset U ⊆ V (G) conditioned on |U ∩Wi| = wi for i = 1, . . . , s by the
following procedure. First, sample a uniformly random subset U ′ ⊆ V (G), and then construct U from U ′

by deleting |U ′∩Wi|−wi uniformly randomly chosen vertices from U ′∩Wi (if |U ′∩Wi| ≥ wi) or adding
wi − |U ′ ∩Wi| randomly chosen vertices from Wi \ U ′ to U ′ (if |U ′ ∩Wi| < wi) for each i = 1, . . . , s.
With probability at least 1/2 the value X ′ = e(G[U ′]) +

∑
v∈U ′ fv + f0 satisfies |X ′ − E| ≤ 2Rn3/2 and

we have ||U ′ ∩Wi| − |Wi|/2| ≤ s
√
n for i = 1, . . . , n (by Chebyshev’s inequality using Var[X ′] ≤ R2n3

and Var[|U ′ ∩Wi|] ≤ n/4). Whenever this is the case, we have
∣∣|U ′ ∩Wi| −wi

∣∣ ≤ 2R
√
n for i = 1, . . . , s,

implying |X −X ′| ≤ 4R2n3/2 and thus |X − E| ≤ 4R2n3/2 + 2Rn3/2 ≤ 6R2n3/2, as desired. □
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The proof of Lemma 13.4 involves the consideration of tuples ((y1, z1), . . . , (ys, zs)) ∈ T s and studies
the probability that each (yi, zi) contributes to some specified Yℓi . So, we will need to establish various
properties of the tuples ((y1, z1), . . . , (ys, zs)) ∈ T s. In particular, the properties in the following definition
will be used in our proof of the upper bound in Lemma 13.4. In this definition, and for the rest of this
section, we write 1⃗A for the characteristic vector of a set A (with (⃗1A)i = 1 if i ∈ A, and (⃗1A)i = 0
otherwise)11.

Definition 13.7. Fix C > 0 and let ρ = ρ(C) > 0 and δ = δ(C) > 0 be as in Lemma 13.4.
For a C-Ramsey graph G on n vertices and vertex pairs (y1, z1), . . . , (ys, zs) ∈ V (G)2, let us define
M(y1, z1, . . . , ys, zs) to be the s × n matrix (with rows indexed by 1, . . . , s and columns indexed by
V (G)) with entries in {−1, 0, 1} such that for i = 1, . . . , s the i-th row of M(y1, z1, . . . , ys, zs) is the
difference of characteristic vectors 1⃗N(zi)\{yi} − 1⃗N(yi)\{zi} ∈ RV (G). We say that ((y1, z1), . . . , (ys, zs))

is k-degenerate for some k ∈ {0, . . . , s} if it is possible to delete at most δ3/ρ ·n columns from the matrix
M(y1, z1, . . . , ys, zs) and obtain a matrix of rank at most s − k. We furthermore define the degeneracy
of ((y1, z1), . . . , (ys, zs)) to be the maximum k such that ((y1, z1), . . . , (ys, zs)) is k-degenerate.

Note that (y1, z1, . . . , ys, zs) is always 0-degenerate (so the definition of degeneracy is well-defined).
The significance of the matrix M(y1, z1, . . . , ys, zs) is as follows. For any subset U ⊆ V (G) the entries

of the product M(y1, z1, . . . , ys, zs)⃗1U (which is a vector with s entries) are precisely |N(zi)∩(U \{yi})|−
|N(yi) ∩ (U \ {zi})| for i = 1, . . . , s (these quantities occur in the definition of Yℓ in Lemma 13.4). We
can obtain a bound on the joint anticoncentration of these quantities from the following version of a
theorem of Halász [55] (which can be viewed as a multi-dimensional version of the Erdős–Littlewood–
Offord theorem [32]). This version follows via a fairly short deduction from the standard version of
Halász’ theorem [55, Theorem 1] (for the case r = s, see also [93, Exercise 7.2.3]), but it is slightly more
convenient to instead make our deduction from a version of Halász’ theorem due to Ferber, Jain and
Zhao [41].

Theorem 13.8. Fix integers s ≥ r ≥ 0 and λ > 0 and consider a matrix M ∈ Rs×n. Suppose that
whenever we delete at most λn columns of M , the resulting matrix still has rank at least r. Then for a
uniformly random vector ξ⃗ ∈ {0, 1}n we have Pr[Mξ⃗ = λ⃗] ≲s,λ n

−r/2 for any vector λ⃗ ∈ Rs.

Proof. The assumption on M implies that the set of columns of M contains ⌈λn/r⌉ disjoint linearly
independent subsets of size r (indeed, consider a maximal collection of such subsets, and note that upon
deleting the corresponding columns fromM the resulting matrix has rank less than r). Hence the columns
of M can be partitioned into ⌈λn/r⌉ subsets, such that the span of each of these subsets has dimension
at least r. By [41, Theorem 1.10] this implies that Pr[Mξ⃗ = λ⃗] ≲s (⌈λn/r⌉)−r/2 ≲s,λ n

−r/2. □

Applying this theorem to the matrix-vector product M(y1, z1, . . . , ys, zs)⃗1U yields bounds that get
weaker as the degeneracy of ((y1, z1), . . . , (ys, zs)) increases. We therefore need to show that there are
only few s-tuples ((y1, z1), . . . , (ys, zs)) ∈ T s with high degeneracy (see part (b) of Lemma 13.10 below),
and we will use the following technical lemma to do this.

Lemma 13.9. For a C-Ramsey graph G on n vertices (where n is sufficiently large with respect to
C), let S ⊆ S0 ⊆ V (G), T ⊆ V (G)2, D = D(C), ρ = ρ(C) > 0 and δ = δ(C) > 0 be defined as
in Lemma 13.4. Let ((y1, z1), . . . , (ys, zs)) ∈ T s be a k-degenerate s-tuple for some 0 ≤ s ≤ D/2 and
k ∈ {0, . . . , s}. Then there exist indices 1 ≤ i1 < · · · < is−k ≤ s such that the following holds. For
every vector t⃗ ∈ {−1, 0, 1}s−k, let Wt⃗ ⊆ V (G) be the set of vertices such that the corresponding column
of the (s − k) × n matrix M(yi1 , zi1 , . . . , yis−k

, zis−k
) (as in Definition 13.7) equals t⃗. Then for each

j ∈ [s] \ {i1, . . . , is−k} one can find a vector t⃗ ∈ {−1, 0, 1}s−k such that the set Wt⃗ fulfills the following
three conditions:

(i) |Wt⃗ ∩ S0| ≥ δ · |S0|.
(ii) |N(yj) ∩Wt⃗ ∩ S0| ≤ ρ · |Wt⃗ ∩ S0|.
(iii) |N(zj) ∩Wt⃗ ∩ S0| ≥ (1− ρ) · |Wt⃗ ∩ S0|.

Proof. Since ((y1, z1), . . . , (ys, zs)) ∈ T s is k-degenerate, there is a way to delete at most δ3/ρ ·n columns
from the s×n matrix M(y1, z1, . . . , ys, zs) and obtain a matrix M ′ of rank at most s−k. Let Q ⊆ V (G)
be the set of vertices corresponding to the deleted columns. We have the bound |Q|+ 2 ≤ δ3/ρ · n+ 2 ≤
δ2/ρ · |S0|+ 2 ≤ δ · |S0| ≤ (ρ2/2) · |S0| (recall from Lemma 13.1 that |S0| ≥ δ1/ρ · n and δ < ρ3/3D+1).

11In this section, we will not use the notation x⃗A for the restriction of a vector x⃗ to a set of indices A.
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Since M ′ has rank at most s− k, we can choose indices 1 ≤ i1 < · · · < is−k ≤ s such that every row
of M ′ can be written as a linear combination of the rows with indices i1, . . . , is−k. We will show that
this choice of indices satisfies the desired statement.

The rows of M ′ with indices i1, . . . , is−k form precisely the matrix M(yi1 , zi1 , . . . , yis−k
, zis−k

) with
the columns corresponding to vertices in Q deleted. Note that for each vector t⃗ ∈ {−1, 0, 1}s−k and each
h = 1, . . . , s − k, the entries in the ih-th row of M ′ in the columns with indices in Wt⃗ \ Q all have the
same value, namely th. In other words, writing

M⃗ ′
j = 1⃗N(zj)\({yj}∪Q) − 1⃗N(yj)\({zj}∪Q) ∈ {−1, 0, 1}V (G)\Q

for the j-th row of M ′ for j = 1, . . . , s, each of the row vectors M⃗ ′
i1
, . . . , M⃗ ′

is−k
are constant on each of the

column sets Wt⃗ \Q, for t⃗ ∈ {−1, 0, 1}s−k. Since every row M⃗ ′
j is a linear combination of these vectors,

it follows that in fact each row M⃗ ′
j is constant on each of the column sets Wt⃗ \Q.

Now, let us fix some j ∈ [s] \ {i1, . . . , is−k}. We need to show that we can find some t⃗ ∈ {−1, 0, 1}s−k

satisfying conditions (i)–(iii) in the lemma. Since (yj , zj) ∈ T , the definition of T (see the statement of
Lemma 13.4) implies |(N(zj) \N(yj))∩ S0| ≥ ρ2 · |S0|, and so |(N(zj) \N(yj))∩ (S0 \ (Q∪ {yj , zj}))| ≥
ρ2 · |S0| − |Q| − 2 ≥ (ρ2/2) · |S0|. This means that M⃗ ′

j has at least (ρ2/2)|S0| entries corresponding
to vertices in S0 \ (Q ∪ {yj , zj}) with value 1 − 0 = 1. Hence, by the pigeonhole principle there must
be some t⃗ ∈ {−1, 0, 1}s−k for which there are at least ρ2 · |S0|/(2 · 3s−k) ≥ (ρ2/3D+1) · |S0| vertices in
(Wt⃗ ∩ S0) \ (Q ∪ {yj , zj}) such that the corresponding entry in M⃗ ′

j is 1.
For this t⃗ we have |Wt⃗ ∩S0| ≥ (ρ2/3D+1) · |S0| ≥ (δ/ρ) · |S0|, so t⃗ satisfies (i) (recall from Lemma 13.1

that 0 < ρ < 1). Furthermore recall that M⃗ ′
j is constant on the index set Wt⃗ \Q, so this constant value

must be 1. This means that for all vertices v ∈Wt⃗ \(Q∪{yj , zj}) we must have v ∈ N(zi) and v ̸∈ N(yi).
Hence |N(yj)∩Wt⃗∩S0| ≤ |Q∪{yj , zj}| ≤ |Q|+2 ≤ δ · |S0| ≤ ρ · |Wt⃗∩S0|, establishing (ii). Furthermore,
we similarly have |N(zj)∩Wt⃗∩S0| ≥ |Wt⃗∩S0|− |Q∪{yj , zj}| ≥ (1−ρ) · |Wt⃗∩S0| as required in (iii). □

Given a graph G and vertex pairs (y1, z1), . . . , (ys, zs) ∈ V (G)2, for each i = 1, . . . , s define

Ni(y1, z1, . . . , ys, zs) = N(zi) ∩N(y1, z1, . . . , yi−1, zi−1, yi, yi+1, zi+1, . . . , ys, zs)

to be the set of vertices in V (G) \ {y1, z1, . . . , ys, zs} that are adjacent to zi but not to any of the
other vertices among y1, z1, . . . , ys, zs. For the lower bound in Lemma 13.4, we will consider tuples
((y1, z1), . . . , (ys, zs)) ∈ T s such that |Ni(y1, z1, . . . , ys, zs) ∩ S0| ≥ ρδ · |S0| for all i = 1, . . . , s.

Lemma 13.10. For a C-Ramsey graph G on n vertices (where n is sufficiently large with respect to
C), let S ⊆ S0 ⊆ V (G), T ⊆ V (G)2, D = D(C), ρ = ρ(C) > 0 and δ = δ(C) > 0 be defined as in
Lemma 13.4. Then for each s = 0, 1, . . . , D/2 the following statements hold.

(a) At least |T |s/2 different s-tuples ((y1, z1), . . . , (ys, zs)) ∈ T s with distinct y1, z1, . . . , ys, zs satisfy
|Ni(y1, z1, . . . , ys, zs) ∩ S0| ≥ ρδ · |S0| for all i = 1, . . . , s.

(b) For each k = 0, . . . , s, the number of k-degenerate s-tuples ((y1, z1), . . . , (ys, zs)) ∈ T s is at most
|T |s/

√
n
k.

Proof. For (a), we first claim that for each fixed i = 1, . . . , s there are at most |T |s/(4D) different s-
tuples ((y1, z1), . . . , (ys, zs)) ∈ T s with |Ni(y1, z1, . . . , ys, zs) ∩ S0| < ρδ · |S0|. Indeed, without loss of
generality assume i = s and note that there are |T |s−1 choices for the pairs (y1, z1), . . . , (ys−1, zs−1) and
|S| choices for ys. Fixing these choices determines the set N(y1, z1, . . . , ys−1, zs−1, ys) and by property
(2) of Lemma 13.1 this set satisfies

|N(y1, z1, . . . , ys−1, zs−1, ys) ∩ S0| ≥ δ · |S0|.
Hence, since the graph G[S0] is (δ, ρ)-rich (by property (1) of Lemma 13.1), there are at most n1/5 choices
for the remaining vertex zs such that the set

Ns(y1, z1, . . . , ys, zs) ∩ S0 = N(zs) ∩N(y1, z1, . . . , ys−1, zs−1, ys) ∩ S0

has size at most ρ · |N(y1, z1, . . . , ys−1, z−1, ys)∩ S0|. In particular, there are at most n1/5 choices for zs
with |Ns(y1, z1, . . . , ys, zs) ∩ S0| < ρδ · |S0|.

This indeed shows that for each i = 1, . . . , s there are at most |T |s−1 · |S| ·n1/5 ≤ |T |s/(4D) different s-
tuples ((y1, z1), . . . , (ys, zs)) ∈ T s with |Ni(y1, z1, . . . , ys, zs)∩S0| < ρδ · |S0| (recall from Lemma 13.5 that
|T | ≥ |S|2/2 ≥ |S| ·n0.48/2). Hence there are at least (3/4) · |T |s different s-tuples ((y1, z1), . . . , (ys, zs)) ∈
T s with |Ni(y1, z1, . . . , ys, zs)∩ S0| ≥ ρδ · |S0| for all i = 1, . . . , s. Now, at most Os(|T |s−1 · |S|) ≤ |T |s/4
of these s-tuples can have a repetition among the vertices y1, z1, . . . , ys, zs. This proves (a).
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For (b), fix some k ∈ {0, . . . , s}. For each k-degenerate s-tuple ((y1, z1), . . . , (ys, zs)) ∈ T s we
can find indices 1 ≤ i1 < · · · < is−k ≤ s with the property in Lemma 13.9. It suffices to show
that for any fixed 1 ≤ i1 < · · · < is−k ≤ s, there are at most |T |s/(

√
n
k ·
(
s
k

)
) different s-tuples

((y1, z1), . . . , (ys, zs)) ∈ T s with the property in Lemma 13.9. To show this, first note that there
are |T |s−k choices for (yi1 , zi1), . . . , (yis−k

, zis−k
) ∈ T . After fixing these choices, we claim that for

each j ∈ [s] \ {i1, . . . , is−k} there are at most 3s−k · n2/5 possibilities for the vertices yj and zj . In-
deed, for every such j there must be a vector t⃗ ∈ {−1, 0, 1}s−k such that conditions (i) to (iii) in
Lemma 13.9 hold. There are at most 3s−k possibilities for t⃗ satisfying (i), and whenever (i) holds
there are at most n1/5 choices for yj satisfying (ii) and at most n1/5 choices for zj satisfying (iii),
since the graph G[S0] is (δ, ρ)-rich. So overall, for fixed indices 1 ≤ i1 < · · · < is−k ≤ s, there
are indeed at most |T |s−k · (3s−kn2/5)k ≤ 3Dk · |T |s−k · (n0.4)k ≤ |T |s/(

√
n
k ·
(
s
k

)
) different s-tuples

((y1, z1), . . . , (ys, zs)) ∈ T s satisfying the property in Lemma 13.9 for n sufficiently large (recalling that
|T | ≥ n0.96/2 by Lemma 13.5). □

Now we prove Lemma 13.4.

Proof of Lemma 13.4. We may assume that n is sufficiently large with respect to C and A. Let X =
e(G[U ]) +

∑
u∈U eu and let us define E = EX. Consider x ∈ Z such that |x − E| ≤ An3/2, and fix

a−B , . . . , aB ∈ {0, 1, 2}. Let s = a−B + · · ·+ aB ≤ 4B + 2 and fix a list (ℓ1, . . . , ℓs) containing aℓ copies
of each ℓ = −B, . . . , B. For (y, z) ∈ T , let Ei(y, z) be the event that (y, z) contributes to Yℓi ; i.e., the
event that we have y ∈ U and z /∈ U and (|N(z)∩ (U \ {y})|+ ez)− (|N(y)∩ (U \ {x})|+ ey) = ℓi. Now,

E[Y a−D

−D · · ·Y aD

D Zx−B,x+B ] =
∑

Pr
[
|X − x| ≤ B and Ei(yi, zi) holds for i = 1, . . . , s

]
, (13.1)

where the sum is over all s-tuples ((y1, z1), . . . , (ys, zs)) ∈ T s. To prove the lemma, we separately establish
lower and upper bounds on this quantity. Note that for s = 0, we already know that Pr[|X − x| ≤
B] ≍C,H,A n−3/2 by Theorem 3.1, so we may assume that s ≥ 1.

Step 1: the lower bound. For the lower bound, we will only consider the contribution to (13.1) from
s-tuples in T s satisfying Lemma 13.10(a). There are at least |T |s/2 such s-tuples. So in order to establish
the desired lower bound ΩC,H,A((|T |/

√
n)s · n−3/2) for the sum in (13.1), it suffices to prove that each

such s-tuple contributes at least ΩC,H,A(n
−(s+3)/2) to the sum. In other words, it suffices to show that

Pr
[
|X − x| ≤ B and Ei(yi, zi) holds for i = 1, . . . , s

]
≳C,H,A n−s/2 · n−3/2 (13.2)

for any s-tuple ((y1, z1), . . . , (ys, zs)) ∈ T s with |Ni(y1, z1, . . . , ys, zs)∩S0| ≥ ρδ|S0| for all i = 1, . . . , s and
such that the vertices y1, z1, . . . , ys, zs are distinct. So let ((y1, z1), . . . , (ys, zs)) ∈ T s be such an s-tuple.
For simplicity of notation we write N = N(y1, z1, . . . , ys, zs)∩ S0 and Ni = Ni(y1, z1, . . . , ys, zs)∩ S0 for
i = 1, . . . , s. Then |Ni| ≥ ρδ|S0| ≥ ρδ1+1/ρ · n for i = 1, . . . , s, and also |N | ≥ δ|S0| ≥ δ1+1/ρ · n by
property (2) of Lemma 13.1 (as 2s ≤ 8B + 4 ≤ D). Note that N1, . . . , Ns and N are disjoint subsets of
S0 \ {y1, z1, . . . , ys, zs}. Let us write W = V (G) \ (N1 ∪ · · · ∪ Ns ∪ N), and note that N(yi) ⊆ W and
N(zi) ⊆W ∪Ni for i = 1, . . . , s.

We will now expose the random subset U ⊆ V (G) in several steps. First, we expose U∩W and consider
the conditional expectation E[X |U ∩W ] (which is a function of the random outcome of U ∩W ). Note
that this random variable is of the form in Lemma 13.6 applied to the graph G[W ] with the random set
U ∩W ⊆W , with fw = ew+degV (G)\W (w) for all w ∈W , with f0 = e(V (G)\W )+

∑
v∈V (G)\W ev, and

with R = (H+1)n/|W |. By Lemma 13.6(1), its variance is at most ((H+1)n/|W |)2 · |W |3 ≤ (H+1)2n3,
and trivially its expectation is exactly E = E[X]. Now, we claim that with probability at least 2−2s−2 =
ΩC(1) the random outcome of U ∩W satisfies the following three properties:

(A) y1, . . . , ys ∈ U and z1, . . . , zs /∈ U , and
(B) |E[X |U ∩W ]− E| ≤ 2s+1(H + 1)n3/2, and
(C) for all i = 1, . . . , s, the quantity |U ∩W ∩ (N(zi) \ {yi})| = |U ∩ (N(zi) \ ({yi} ∪ Ni))| differs

from |N(zi) \ ({yi} ∪ Ni)|/2 by at most 2s+1s
√
n and similarly |U ∩ W ∩ (N(yi) \ {zi})| =

|U ∩ (N(yi) \ {zi})| differs from |N(yi) \ {zi}|/2 by at most 2s+1s
√
n.

Indeed, (A) holds with probability exactly 2−2s, and by Chebyshev’s inequality, (B) and (C) fail with
probability at most 2−2s−2 and 2s · 2−2s−2/s2, respectively.

From now on we condition on an outcome of U∩W satisfying (A–C). Next we expose U∩(N1∪· · ·∪Ns),
which then determines all of U \ N and in particular determines whether the events Ei(yi, zi) for i =
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1, . . . , s hold. More precisely, after fixing the outcome of U ∩W , for each i = 1, . . . , s the event Ei(yi, zi)
is now determined by U ∩Ni and holds if and only if

|U ∩Ni| = −|U ∩ (N(zi) \ ({yi} ∪Ni))| − ezi + |U ∩ (N(yi) \ {zi})|+ eyi
+ ℓi. (13.3)

In particular, the quantity on the right-hand side is determined given the information U ∩W . By (C),
this quantity differs by at most 2s+2s

√
n ≤ 2D+2D

√
n from

− |N(zi) \ ({yi} ∪Ni)|/2− ezi + |N(yi) \ {zi}|/2 + eyi
+ ℓi

= |Ni|/2− |N(zi) \ {yi}|/2− ezi + |N(yi) \ {zi}|/2 + eyi + ℓi

= |Ni|/2 + (deg(yi)/2 + eyi
)− (deg(zi)/2 + ezi) + ℓi

Recalling that |(deg(yi)/2 + eyi
) − (deg(zi)/2 + ezi)| ≤

√
n by property (3) of Lemma 13.1, this means

that the quantity on the right-hand side of (13.3) differs from |Ni|/2 by at most (2D+2D+ 1)
√
n+B ≤

2D+3D
√
n. Now note that, conditioning on our fixed outcome of U∩W , the random variable E[X |U \N ]

is of the form in Lemma 13.6 with the graph G[N1 ∪ · · · ∪ NS ] (of size at least ρδ · δ1/ρn) and with
R = R(C,H) = max{2D+3D, (H+1)/(ρδ1+1/ρ)}. This random variable has expected value E[X |U∩W ],
which differs from E by at most 2s+1(H + 1)n3/2 by (B). So, by Lemma 13.6(2), with probability at
least ΩC,H(n−s/2) the outcome of U \N satisfies both∣∣E[X |U \N ]− E

∣∣ ≤ (2s+1(H + 1) + 6R2) · n3/2 (13.4)

and (13.3) for all i = 1, . . . , s (which implies that Ei(yi, zi) holds for all i = 1, . . . , s). From now on, we
condition on such an outcome of U \N .

Finally, consider the randomness of U ∩N (having conditioned on our outcome of U \N). Note that
G[N ] is a (2C)-Ramsey graph (as |N | ≥ δ1+1/ρ ·n ≥

√
n), and that (in our conditional probability space)

X has the form in Theorem 3.1, with expectation E[X |U \N ]. Now, recalling (13.4) and the fact that
|x−E| ≤ An3/2, note that x differs from E[X |U \N ] by at most (A+2s+1(H+1)+6R2) ·n3/2. Therefore
Theorem 3.1 (plugging in (H + 1)/δ1+1/ρ for the “H” and (A+ 2s+1(H + 1) + 6R2)/(δ1+1/ρ)3/2 for the
“A” in Theorem 3.1) implies that (conditioned on our fixed outcome of U \ N and subject only to the
randomness of U ∩N) we have Pr[|X − x| ≤ B] ≳C,H,A n−3/2. This proves (13.2) and thereby gives the
desired lower bound for the sum in (13.1).

Step 2: the upper bound. To establish the desired upper bound OC,H,A((|T |/
√
n)s ·n−3/2) for the sum in

(13.1), for each k = 0, . . . , s, we separately consider the contribution of s-tuples ((y1, z1), . . . , (ys, zs)) ∈
T s of degeneracy k (see Definition 13.7). By Lemma 13.10, for each k = 0, . . . , s there are at most
|T |s/

√
n
k different such s-tuples of degeneracy k. Thus, it suffices to prove that for every s-tuple

((y1, z1), . . . , (ys, zs)) ∈ T s of degeneracy k we have

Pr
[
|X − x| ≤ B and Ei(yi, zi) holds for i = 1, . . . , s

]
≲C,H n−(s−k)/2 · n−3/2. (13.5)

Recall the definition of the s×n matrix M(y1, z1, . . . , ys, zs) in Definition 13.7. For every outcome of U ⊆
V (G), the entries of the vectorM(y1, z1, . . . , ys, zs)⃗1U are precisely |N(zi)∩(U \{yi})|−|N(yi)∩(U \{zi})|
for i = 1, . . . , s, since

1⃗N(zi)\{yi} · 1⃗U − 1⃗N(yi)\{zi} · 1⃗U = |(N(zi) \ {yi}) ∩ U | − |(N(yi) \ {zi}) ∩ U |
= |N(zi) ∩ (U \ {yi})| − |N(yi) ∩ (U \ {zi})|.

So if the events Ei(yi, zi) for i = 1, . . . , s hold, we must have M(y1, z1, . . . , ys, zs)⃗1U = (eyi
− ezi + ℓi)

s
i=1.

Since ((y1, z1), . . . , (ys, zs)) is not (k + 1)-degenerate, whenever we delete δ3/γ · n columns of the matrix
M(y1, z1, . . . , ys, zs) the resulting matrix still has rank at least s − k. So applying Theorem 13.8 (with
λ = δ3/ρ and r = s− k) yields:

Pr
[
Ei(yi, zi) holds for i = 1, . . . , s

]
≤ Pr

[
M(y1, z1, . . . , ys, zs)⃗1U = (eyi

− ezi + ℓi)
s
i=1

]
≲C n−(s−k)/2.

Thus in order to show (13.5), it now suffices to prove the conditional probability bound

Pr
[
|X − x| ≤ B

∣∣ Ei(yi, zi) for i = 1, . . . , s
]
≲C,H n−3/2. (13.6)

Note that the events Ei(yi, zi) for i = 1, . . . , s only depend on U∩(V (G)\N(y1, z1, . . . , ys, zs)). So, condi-
tion on any outcome of U∩(V (G)\N(y1, z1, . . . , ys, zs)) such that Ei(yi, zi) holds for i = 1, . . . , s. Subject
to the randomness of U ∩N(y1, z1, . . . , ys, zs), our random variable X has the form in Theorem 3.1, with
the graph G[N(y1, z1, . . . , ys, zs)] (which is a (2C)-Ramsey graph, since |N(y1, z1, . . . , ys, zs)| ≥ δ|S0| ≥
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δ1+1/ρ ·n ≥
√
n by property (2) of Lemma 13.1). Thus, in our conditional probability space, Theorem 3.1

(plugging in (H + 1)δ−1−1/ρ for the “H” in Theorem 3.1) yields

Pr
[
|X − x| ≤ B

∣∣U ∩ (V (G) \N(y1, z1, . . . , ys, zs))
]
≲C,H n−3/2.

This proves (13.6) and therefore establishes (13.5), as desired. □
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