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Abstract

We prove several different anti-concentration inequalities for functions of independent Bernoulli-
distributed random variables. First, motivated by a conjecture of Alon, Hefetz, Krivelevich and
Tyomkyn, we prove some “Poisson-type” anti-concentration theorems that give bounds of the form
1/e+ o(1) for the point probabilities of certain polynomials. Second, we prove an anti-concentration
inequality for polynomials with nonnegative coefficients which extends the classical Erdős–Littlewood–
Offord theorem and improves a theorem of Meka, Nguyen and Vu for polynomials of this type. As an
application, we prove some new anti-concentration bounds for subgraph counts in random graphs.

1 Introduction

In probabilistic combinatorics (and probability in general), many arguments are heavily dependent on
concentration inequalities, which show that certain random variables are likely to lie in a small interval
around their mean. For example, if X takes the binomial distribution Bin(n, p), which has mean µ = np
and variance σ2 = p(1− p)n, then typically X = µ ± O(σ). In the other direction, anti-concentration
inequalities give upper bounds on the probability that a random variable falls into a small interval or is
equal to a particular value. The Lévy concentration function QX of a random variable X is defined by

QX(t) := sup
x∈R

Pr(x ≤ X ≤ x+ t).

Returning to the example X ∈ Bin(n, p), we can compute Pr(X = x) = O(1/σ) for all x ∈ N, which
implies that QX(t) = O((t+ 1)/σ). Bounds of this type can be proved for a variety of different kinds of
random variables. See for example [32, 39] for surveys on anti-concentration.

In the above example X ∈ Bin(n, p), in the case where p is fixed and n is large, the above concentration
and anti-concentration phenomena can both be explained by comparison to a Gaussian distribution.
More generally, as an important example generalising the binomial distribution, let a1, . . . , an be a fixed
sequence of nonzero real numbers, let ξ1, . . . , ξn be a sequence of i.i.d. p-Bernoulli-distributed random
variables (meaning that Pr(ξi = 1) = p, Pr(ξi = 0) = 1 − p) and let X := a1ξ1 + · · · + anξn. If 1 ≤
|ai| = O(1) for each i, then one can apply a quantitative central limit theorem to compare X to a
Gaussian distribution and show that Pr(|X − x| < 1) = O(1/

√
n) for any x ∈ R (and therefore QX(t) =

O((t+ 1)/
√
n)). Remarkably, the same result holds even when we require no upper bound on the |ai|,

meaning that X may be far from Gaussian and may not even be particularly well-concentrated. This is
the content of the Erdős–Littlewood–Offord theorem1 [13]. A precursor to the Erdős–Littlewood–Offord
theorem was first used by Littlewood and Offord [27] in their study of random polynomials more than
50 years ago, and since then, the theorem and its variants have played an important role in probability,
especially in random matrix theory (see for example [37, 38]).

Observe that a1ξ1 + · · ·+ anξn is a linear polynomial in the ξi, so a natural variation on the Littlewood–
Offord problem is to consider polynomials of higher degree. This problem seems to have been first
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studied by Rosiński and Samorodnitsky [34] in connection with Lévy chaos, but it was later popularised
by Costello, Tao and Vu [10] when they used a quadratic variant of the Littlewood–Offord inequality
in their proof of Weiss’ conjecture that a random symmetric ±1 matrix typically has full rank. Anti-
concentration inequalities for higher-degree polynomials have since found several applications in the
theory of Boolean functions (see for example [31, 35]). The current most general result is due to Meka,
Nguyen, and Vu [31], and gives a bound in terms of the rank of a polynomial, as follows. For a real
multilinear degree-d polynomial f in n variables, consider the d-uniform hypergraph on the vertex set
{1, . . . , n} with a hyperedge {i1, . . . , id} if the coefficient of xi1 . . . xid in f has absolute value at least
1. Then the rank of f is defined to be the largest matching in this hypergraph. For example, if all

(
n
d

)
degree-d coefficients of f have absolute value at least 1, then f has rank bn/dc = Ω(n). Meka, Nguyen
and Vu proved that for fixed d ∈ N and p ∈ (0, 1), any multilinear degree-d rank-r polynomial f in n
variables, any x ∈ R, and ξ = (ξ1, . . . , ξn) ∈ Ber(p)

n, we have

Pr(|f(ξ)− x| < 1) ≤ (log r)
O(1)

√
r

.

Up to the polylogarithmic factor, this result is best-possible in multiple regimes. Consider for example the
polynomial x1 . . . xd + xd+1 . . . x2d + · · ·+ x(r−1)d+1 . . . xrd, with only linearly many nonzero coefficients,
or the polynomial (x1 + · · ·+ xn)d with Θ(nd) nonzero coefficients.

Our first result is that if the coefficients of f are nonnegative, then we can remove the polylogarithmic
factor in the Meka–Nguyen–Vu theorem, even with a slightly looser notion of rank. For a multilinear
polynomial f in n variables, let r(f) be the largest matching in the (non-uniform) hypergraph on the
vertex set {1, . . . , n} with a hyperedge {i1, . . . , ik} if the coefficient of xi1 . . . xik in f has absolute value
at least 1.

Theorem 1.1. Fix d ∈ N and p ∈ (0, 1), let f be a degree-d multilinear polynomial in n variables with
nonnegative coefficients, and let ξ ∈ Ber(p)

n. Then for any x ∈ R, with r(f) as defined above, we have

Pr(|f(ξ)− x| < 1) ≤ O
(

1/
√
r(f)

)
.

We remark that polynomials of Bernoulli random variables with nonnegative coefficients arise naturally
in probabilistic combinatorics. An important example is the number of copies of a fixed graph H in a
random graph G(n, p) (we will say more about this in Section 1.3). Actually there is also a rich theory
of concentration inequalities for these kinds of polynomials, due primarily to Kim and Vu (see [24] for a
survey).

Actually, it seems that for many polynomials that arise in combinatorics, their polynomial structure is
less important than the fact that they are strongly monotone: changing some ξi from 0 to 1 tends to
cause a large increase in the value of f(ξ). Our next result extends Theorem 1.1 in this setting.

Theorem 1.2. Fix p ∈ (0, 1). Consider a function f : {0, 1}n → R, let ξ ∈ Ber(p)
n, and define the

random variables

∆i(ξ) := f(ξ1, . . . , ξi−1, 1, ξi+1, . . . , ξn)− f(ξ1, . . . , ξi−1, 0, ξi+1, . . . , ξn).

Suppose for some positive s (which may be a function of n) that Pr(∆i(ξ) ≤ 2s) ≤ n−ω(1) for all i ∈
{1, . . . , n}. Then, for any x ∈ R,

Pr(|f(ξ)− x| < s) ≤ max
t

(
n

t

)
pt(1− p)n−t + o

(
1/
√
n
)

= O
(
1/
√
n
)
.

We will prove Theorems 1.1 and 1.2 in Section 2. Both proofs are quite similar (and quite short), and
proceed along similar lines to Erdős’ original proof of the Erdős–Littlewood–Offord theorem: the events
in question are “almost” antichains in the n-dimensional Boolean lattice. We remark that the main term
of Theorem 1.2 is best-possible: consider the case f(ξ) = ξ1 + · · ·+ ξn, with any s < 1/2.

The above discussion concerns the regime where p is fixed and n is large, in which case we expect anti-
concentration behaviour to be “Gaussian-like”. However, if p is allowed to be a decaying function of n,
then we cannot hope for bounds as strong as O(1/

√
n). Indeed, consider the case X ∈ Bin(n, p) with

p = 1/n. The Poisson limit theorem (see for example [23, p. 64]) shows that X is asymptotically Poisson,
which implies that Pr(X = x) ≤ 1/e+ o(1) for each x ∈ N. To our knowledge there is not yet a theory of
anti-concentration that generalises this fact, though a recent conjecture of Alon, Hefetz, Krivelevich and
Tyomkyn [2] hints at the existence and utility of such a theory. We discuss this in the next subsection,
and in Section 1.2 we will present some general “Poisson-type” inequalities for certain polynomials.
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1.1 Edge-statistics in graphs

For an n-vertex graph G and some 0 ≤ k ≤ n, consider a uniformly random set of k vertices A ⊆ V (G)
and define the random variable XG,k := e(G[A]) to be the number of edges induced by the random k-set
A. Motivated by connections to graph inducibility2, Alon, Hefetz, Krivelevich and Tyomkyn [2] recently
initiated the study of the anti-concentration of XG,k, and made the following three conjectures.

Conjecture 1.3 ([2, Conjecture 6.2]). Suppose k → ∞ and n/k → ∞, and consider ` satisfying ` =

Ω
(
k2
)
and

(
k
2

)
− ` = Ω

(
k2
)
. Then Pr(XG,k = `) = O

(
1/
√
k
)
.

Conjecture 1.4 ([2, Conjecture 6.1]). Suppose k →∞ and n/k →∞, and consider ` satisfying ` = ω(k)
and

(
k
2

)
− ` = ω(k). Then Pr(XG,k = `) = o(1).

Conjecture 1.5 ([2, Conjecture 1.1]). Suppose k → ∞ and n grows sufficiently rapidly in terms of k.
Then for all 0 < ` <

(
k
2

)
we have Pr(XG,k = `) ≤ 1/e+ o(1).

There has already been a lot of progress on these conjectures. Kwan, Sudakov and Tran [26] proved
Conjecture 1.4 and proved that in the setting of Conjecture 1.3, we have Pr(XG,k = `) = (log k)

O(1)
/
√
k.

Combining the results of [26] with several new ideas, Conjecture 1.5 was then proved, independently by
Fox and Sauermann [19] and by Martinsson, Mousset, Noever and Trujić [29].

Actually, Kwan, Sudakov and Tran’s work on Conjectures 1.3 and 1.4 involved an application of the Meka–
Nguyen–Vu polynomial anti-concentration inequality mentioned earlier. To illustrate the connection
between polynomial anti-concentration and this problem, instead of the random size-k subset A ⊆ V (G),
consider the closely related random subset ABer ⊆ V (G), where each of the n vertices is included with
probability k/n independently. Then, XBer

G,k := e
(
G
[
ABer

])
can be interpreted as a quadratic polynomial

of a Ber(k/n)
n-distributed random vector, whose coefficients correspond to edges in the graph.

As our first application of our new anti-concentration theorems, we observe that Theorem 1.2 can be used
to prove a stronger “Bernoulli version” of Conjecture 1.3, in the more general setting of hypergraphs.

Proposition 1.6. Fix r ∈ N, suppose k → ∞ and n ≥ 2k, and consider any ` satisfying ` = Ω(kr).
Then for any r-uniform hypergraph G, we have Pr

(∣∣∣XBer
G,k − `

∣∣∣ ≤ kr−1
)

= O
(

1/
√
k
)
.

Note that Proposition 1.6 is best-possible, as can be seen by considering the case where G is a clique.
We defer the proof of Proposition 1.6 to Section 4.

While the Littlewood–Offord point of view has been very useful for attacking Conjecture 1.3, the proofs
of Conjecture 1.5 in [19, 29] proceeded along rather different lines. Our original motivation for developing
Poisson-type analogues to the Littlewood–Offord problem (where p may go to zero) was that they may
give a simpler proof of Conjecture 1.5 and faciliate generalisation to hypergraphs (a problem that was
also suggested by Alon, Hefetz, Krivelevich and Tyomkyn). While we did not manage to achieve this
original goal, we were able to prove several Poisson-type anti-concentration inequalities (stated in the
next subsection), one of which (Theorem 1.10) implies the following “Bernoulli version” of Conjecture 1.5.
The short deduction can be found in Section 4.

Proposition 1.7. Suppose n/k → ∞. Then for any ` 6= 0 and any r-uniform hypergraph G, we have
Pr
(
XBer
G,k = `

)
≤ 1/e+ o(1).

1.2 Poisson-type anti-concentration inequalities for polynomials

Consider first the Littlewood–Offord case whereX = a1ξ1+· · ·+anξn, for some fixed sequence (a1, . . . , an) ∈
Rn and a random vector (ξ1, . . . , ξn) ∈ Ber(p)

n. We want to prove an anti-concentration theorem for the
case where p is small. Of course, if p is extremely small, then we are very likely to see ξ1 = · · · = ξn = 0,
meaning that Pr(X = 0) ≈ 1. Discounting this trivial case, we are able to prove the following theorem
(in Section 3).

2Roughly speaking, the inducibility of a graph H measures the maximum number of induced copies of H a large graph
can have. This notion was introduced in 1975 by Pippenger and Golumbic [33], and has enjoyed a recent surge of interest;
see for example [3, 21, 41, 25].
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Theorem 1.8. Consider a sequence (a1, . . . , an) ∈ Rn, let ξ ∈ Ber(p)
n and let X := a1ξ1 + · · · + anξn.

Then for any x 6= 0,

Pr(X = x) ≤ 1

e
+ op→0(1).

(The notation op→0(1) refers to a function g(p), not depending on n, such that g(p)→ 0 as p→ 0). We
remind the reader that in the case where p does not tend to zero, the Littlewood–Offord theorem gives
a bound of O(1/

√
n) on the point probabilities of X.

One might hope to prove that the same conclusion holds whenever X is a polynomial of bounded degree
with zero constant coefficient. Unfortunately, this is not true in general: for example, if X =

∑n
i=1 ξi −∑n

i=1

∑n
j=i+1 ξiξj , and p = 1/n, then Pr(X = 1) = 3/(2e) + o(1). Nevertheless, we are able to prove that

Pr(X = x) is bounded away from 1 for any x 6= 0, as follows.

Proposition 1.9. Consider an n-variable polynomial f with degree at most d, and let ξ ∈ Ber(p)
n for

some p ≤ 1/2. Then for any x not equal to the constant coefficient of f ,

Pr(f(ξ) = x) ≤ 1− 2−d.

We prove Proposition 1.9 in Section 3, with the combinatorial Nullstellensatz (see [1]). Next, one way
to recover the “1/e” behaviour is to consider only polynomials with nonnegative coefficients, as in Theo-
rem 1.1. We also prove the following theorem in Section 3.

Theorem 1.10. Consider an n-variable polynomial f with nonnegative coefficients, and consider a ran-
dom vector ξ ∈ Ber(p)

n. Then for any x not equal to the constant coefficient of f ,

Pr(f(ξ) = x) ≤ 1

e
+ op→0(1).

We emphasise that Theorem 1.10 makes no assumption on the degree of the polynomial f .

1.3 Subgraph counts in random graphs

Fix p ∈ (0, 1) and let G ∈ G(n, p) be a random labelled graph on the vertex set {1, . . . , n} where every
pair of vertices is included as an edge with probability p independently. This is called the binomial or
Erdős–Renyi model of random graphs. For a fixed graph H, let XH be the number of copies of H in
G. The study of XH and its distribution is a fundamental topic in the theory of random graphs (see for
example [7, 22]). It is well-known that for any H with no isolated vertices, XH satisfies a central limit
theorem, but the anti-concentration behaviour of XH is not as well-understood. In this setting where p is
fixed, one can deduce3 from a quantitative central limit theorem by Barbour, Karoński and Ruciński [4]
that Pr(XH = x) ≤ O(1/

√
n) for all x. As an application of their Littlewood–Offord-type polynomial

anti-concentration inequality mentioned earlier in this paper, Meka, Nguyen and Vu proved the stronger
bound that Pr(XH = x) ≤ no(1)−1. This was a consequence of a more general result concerning random
graphs of the form Gp, obtained by starting with a fixed graph G and including each edge of G with
probability p independently. Specifically, Meka, Nguyen and Vu observed that if G has r edge-disjoint
copies of H, and XH(Gp) is the number of copies of H in Gp, then XH(Gp) can be interpreted as a rank-r
polynomial of independent p-Bernoulli random variables, so Pr(XH(Gp) = x) ≤ ro(1)−1/2 for all x ∈ N.
Since the polynomial corresponding to XH(Gp) has nonnegative coefficients, one can use Theorem 1.1 in
place of the Meka–Nguyen–Vu anti-concentration inequality to improve this as follows.

Corollary 1.11. Fix p ∈ (0, 1) and let G be a graph with r edge-disjoint copies of H. Then for any
x ∈ N we have

Pr(XH(Gp) = x) = O
(
1/
√
r
)
.

In particular, in G(n, p) we have
Pr(XH = x) ≤ O(1/n).

We believe that in G(n, p), the above bound is far from optimal.
3The central limit theorem of Barbour, Karoński and Ruciński is not stated with a metric that allows one to directly

read off an estimate for the distribution function of XH . But, it is possible to deduce such an estimate with the method of
[36, Proposition 1.2.2].
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Conjecture 1.12. Fix p ∈ (0, 1) and fix a graph H with h non-isolated vertices. Let G ∈ G(n, p). Then
for any x ∈ N,

Pr(XH = x) = O
(

1/
√

Var(XH)
)

= O
(
1/nh−1

)
.

Conjecture 1.12 would imply that QXH
(t) = O

(
(t+ 1)n1−h). If true, this is best-possible; anything

stronger would contradict the central limit theorem known to hold for XH . Although it is not obvious
how to prove Conjecture 1.12, we can use Theorem 1.2 to obtain the optimal bound QXH

(
nh−2

)
= O(1/n)

for anti-concentration at a “coarse” scale.

Theorem 1.13. Fix p ∈ (0, 1) and fix a graph H with h vertices and at least one edge. Let G ∈ G(n, p).
Then for any x ∈ N,

Pr
(
|XH − x| ≤ nh−2

)
= O(1/n).

The short deduction of Theorem 1.13 appears in Section 5.

With a bit more effort, one can combine Theorem 1.2 with some inductive arguments to prove an almost-
optimal bound in the case where H is a clique.

Theorem 1.14. Fix p ∈ (0, 1) and h ∈ N. Then Pr(XKh
= x) ≤ no(1)+1−h for all x ∈ N.

The proof of Theorem 1.14 appears in Section 5. We note that, after we had proved Theorem 1.14
and were working on writing this paper, Berkowitz [6] released a preprint proving a local limit theorem
that gives an asymptotic estimate for the point probabilities of XKh

in terms of the density of a normal
distribution (see also [20, 5]). This local limit theorem directly implies Theorem 1.14 and a strengthening
of Conjecture 1.12 in the case where H is a clique. However, we still feel that it is worthwhile to include
the proof of Theorem 1.14 in this paper: our proof is simpler and more combinatorial, and with some
more work the ideas can be generalised to give a comparable bound for a larger class of subgraphs H. In
a separate paper [17] we will introduce some additional ideas to generalise Theorem 1.14 to all connected
H.

We remark that the number of cliques of each size is determined by the Tutte polynomial of a graph (see
for example [11, Theorem 2.4]), so Theorem 1.14 has the following corollary.

Corollary 1.15. The probability that two independently chosen random graphs from G(n, 1/2) have the
same Tutte polynomial is n−ω(1).

Corollary 1.15 improves on a bound of O(1/ log n) for this probability due to Loebl, Matoušek and
Pangrác [28, Corollary 1.3] (the study of this question was motivated by a conjecture of Bollobás, Pebody
and Riordan [8] that almost all graphs are determined by their Tutte polynomial).

1.4 Structure of the paper and outline of the proofs

The rest of the paper is organised as follows. First, in Section 2 we prove Theorems 1.1 and 1.2. The rough
idea for both proofs is the same, and is motivated by Erdős’ proof of the Littlewood–Offord theorem. We
consider a process that flips the bits ξi from zero to one in a random order, where we start with ξ being
the all-zero vector, and end with ξ being the all-one vector. We show that our random variable f(ξ)
tends to increase fairly substantially on each flip (for Theorem 1.1, this is where we use the assumption
that the coefficients are nonnegative). We deduce that during our process, f(ξ) does not tend to spend
very long in the vicinity of any given value. This can then be translated into an anti-concentration result.

Next, in Section 3 we prove Theorem 1.8, Proposition 1.9 and Theorem 1.10. First, Proposition 1.9 has a
fairly routine proof, using the combinatorial Nullstellensatz. Second, Theorems 1.8 and 1.10 are proved
in a unified way, via a careful induction on n.

In the next two sections we give some applications: in Section 4 we prove Propositions 1.6 and 1.7, and
in Section 5 we prove Theorems 1.13 and 1.14. These are all quite direct deductions from the theorems
proved in Sections 2 and 3, with the exception of Theorem 1.14. Roughly speaking, the idea for the proof
of Theorem 1.14 is to fix a vertex v and then decompose the random variable XKh

(G) (counting copies
of Kh in G ∈ G(n, p)) as XKh

= XKh
(G− v) + XKh−1

(G[NG(v)]). That is to say, every copy of Kh

in G either does not use the vertex v, or it is comprised of the vertex v and a copy of Kh−1 inside the

5



neighbourhood NG(v) of v. We then apply Theorem 1.2 to XKh
(G− v), and deal with XKh−1

(G[NG(v)])
by induction on h. The main challenge for this approach is that the random variables XKh

(G− v) and
XKh−1

(G[NG(v)]) are not independent.

Finally, Section 6 contains some concluding remarks, including some open questions and some further
miscellaneous results.

1.5 Notation

We use standard asymptotic notation throughout, and all asymptotics are as n → ∞ unless stated
otherwise. For functions f = f(n) and g = g(n) we write f = O(g) to mean there is a constant C such
that |f | ≤ C|g|, we write f = Ω(g) to mean there is a constant c > 0 such that f ≥ c|g| for sufficiently
large n, we write f = Θ(g) to mean that f = O(g) and f = Ω(g), and we write f = o(g) or g = ω(f) to
mean that f/g → 0 as n→∞.

We also use standard graph-theoretic notation: V (G) and E(G) are the sets of vertices and (hyper)edges
of a (hyper)graph G, and v(G) and e(G) are the cardinalities of these sets. The subgraph of G induced
by a vertex subset U is denoted G[U ], the neighbourhood of a vertex v in a graph G is denoted NG(v),
and the degree of v is denoted degG(v) = |NG(v)|.

For a zero-one vector x ∈ {0, 1}n, we write |x| for the number of entries that are ones. For a real number
x, the floor and ceiling functions are denoted bxc = max{i ∈ Z : i ≤ x} and dxe = min{i ∈ Z : i ≥ x}.
Finally, all logarithms are in base e.

1.6 Concentration inequalities

For the convenience of the reader, in this section we collect some standard concentration inequalities
that will be used throughout the paper (since these inequalities are standard, we will refer to them by
name and not by their theorem number). First, we will frequently need to use Chernoff bounds for the
binomial and hypergeometric distributions. The following bounds can be found in [22, Corollary 2.3 and
Theorem 2.10].

Lemma 1.16 (Chernoff bound). Suppose X has a binomial or hypergeometric distribution, and consider
0 < ε ≤ 3/2. Then

Pr(|X − EX| ≥ εEX) ≤ 2 exp

(
−ε

2

3
EX
)
.

Second, we will need (a simple consequence of) the Azuma–Hoeffding inequality, as follows. See for
example [22, Corollary 2.27].

Lemma 1.17. Let X1, . . . , Xn be indepenent random variables, and let X = f(X1, . . . , Xn) be some
function of these random variables. Suppose that if we change the value of some Xi, then the value of X
changes by at most c. Then for every t > 0, we have

Pr(|X − EX| ≥ t) ≤ 2 exp

(
− t2

2nc2

)
.

2 Generalising Littlewood–Offord to nonnegative polynomials

In this section we prove Theorems 1.1 and 1.2.

Proof of Theorem 1.1. Let H be the hypergraph in the definition of r(f), with a hyperedge for each
coefficient of f with size at least 1. Let M be a matching of size r = r(f) in this hypergraph, and
condition on any outcome of the variables whose indices do not appear in M . We may assume the
remaining variables (corresponding to the vertices of M) are ξ1, . . . , ξN , with r ≤ N ≤ rd. Then, f(ξ) is
a polynomial in ξ1, . . . , ξN . Abusing notation, we write ξ = (ξ1, . . . , ξN ); we will not need to worry about
the specific values of any of the ξi we have conditioned on.
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Also, it will be more convenient to estimate probabilities of the form Pr(|f(ξ) − x| < 1/2) than of the
form Pr(|f(ξ)− x| < 1). It suffices to show that Pr(|f(ξ)− x| < 1/2) = O(1/

√
r), because we can cover

the length-2 interval {y : |f(ξ) − x| < 1} with three (open) length-1 intervals. For the rest of the proof
we fix some x ∈ R.

Choose N1 = pN − o(r) and N2 = pN + o(r) so that Pr(N1 ≤ |ξ| ≤ N2) = 1 − o(1/
√
r) (such N1, N2

exist by the Chernoff bound). Let σ : {1, . . . , N} → {1, . . . , N} be a uniformly random permutation, and
let ξt be the length-N zero-one vector with a 1 in positions σ(1), . . . , σ(t). Let Y be the number of t
satisfying N1 ≤ t ≤ N2 and |f

(
ξt
)
− x| < 1/2.

Recall that maxt
(
N
t

)
pt(1− p)N−t = Θ(1/

√
N) (one can prove this with Stirling’s approximation). We

can use linearity of expectation to estimate EY , as follows (recalling that r = Θ(n)).

EY =

N2∑
t=N1

|{x ∈ {0, 1}N : |x| = t, |f(x)− x| < 1/2}|(
N
t

)
=

N2∑
t=N1

Pr(|f(ξ)− x| < 1/2 and |ξ| = t)(
N
t

)
pt(1− p)N−t

≥ 1

maxt
(
N
t

)
pt(1− p)N−t

N2∑
t=N1

Pr(|f(ξ)− x| < 1/2 and |ξ| = t)

= Θ
(√

N
)(

Pr(|f(ξ)− x| < 1/2)− Pr(|ξ| < N1)− Pr(|ξ| > N2)
)

= Θ
(√
r
)

Pr(|f(ξ)− x| < 1/2)− o(1). (1)

We can also estimate EY a different way, using the relationship between the ξt. Let Xt be the number of
e ∈M such that e∩σ({1, . . . , t}) = |e| − 1 (that is, all but one of the elements of e have been “activated”
by time t). If t = pN + o(r) = (1 + o(1))pN then the probability that any particular e ∈ M contributes
to Xt is (1 + o(1))|e|p|e|−1(1− p) = Θ(1), so EXt = Θ(N). Also, changing σ by a transposition changes
Xt by at most 2, as M is a matching. So, by a McDiarmid-type concentration inequality for random
permutations (see for example [30, Section 3.2]), for each N1 ≤ t ≤ N2 we have

Pr(Xt < EXt/2) = exp

(
−Ω

(
(EXt/2)2

N · 22

))
= e−Ω(N).

Now, observe that f(ξt) is increasing in t, because f has nonnegative coefficients. For N1 ≤ t ≤ N2, let
Et be the event that |f

(
ξt
)
− x| < 1/2, but f(ξs)− x ≤ −1/2 for N1 ≤ s < t (that is, t is the first time

that f(ξt) enters the desired range). Note that Y = 0 unless some Et occurs.

For any t, condition on a specific outcome of (σ(1), . . . , σ(t)) such that Et holds and such that Xt ≥
EXt/2 = Θ(N). Let U be the set of i /∈ σ({1, . . . , t}) such that there is e ∈ M with i ∈ e and e \ {i} ⊆
σ({1, . . . , t}). By definition we have |U | = Xt. Let τ := min{s ∈ {t + 1, . . . , N} : σ(τ) ∈ U} be the
first time that we have σ(τ) ∈ U . By the definition of U , some edge e ∈ M will be “activated” at
time τ , so f(ξτ ) ≥ f

(
ξt
)

+ 1 and in particular |f(ξτ ) − x| ≥ 1/2. Under our conditioning, τ − t + 1
is stochastically dominated by the geometric distribution Geom(Xt/(N − t)), which has expected value
(N − t)/Xt = O(1). We have proved that E[Y | Et ∩ {Xt ≥ EXt/2}] = O(1).

Recall that we can have Y > 0 only if some Et occurs, and observe that the Et are disjoint and that
Y ≤ N with probability 1. So,

EY ≤
N2∑
t=N1

Pr(Et)E[Y | Et ∩ {Xt ≥ EXt/2}] +N Pr(Xt < EXt/2 for some t)

= O(1) Pr(EN1
∪ · · · ∪ EN2

) +N2e−Ω(N) = O(1).

Combining this with (1), the desired result follows.

Proof of Theorem 1.2. We proceed in almost the same way as in the proof of Theorem 1.1.

Let α := maxt
(
n
t

)
pt(1− p)n−t, and observe that α = Θ(1/

√
n) (this can be proved with Stirling’s

approximation; see for example [12, Proposition 1]). Let |ξ| be the number of ones in ξ, which has
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a binomial distribution. By the Chernoff bound, we can choose n1 = pn − O
(√
n log n

)
and n2 =

pn + O
(√
n log n

)
such that Pr(n1 ≤ |ξ| ≤ n2) ≥ 1 − o(1/

√
n). Observe that Pr(|ξ| = t) ≥ n−O(1) for

n1 ≤ t ≤ n2 (this can be proved by comparison to the modal probability α or by direct computation using
Stirling’s inequality; see for example [12, Proposition 1]). Let σ : {1, . . . , n} → {1, . . . , n} be a uniformly
random permutation, and for each 0 ≤ t ≤ n let ξt be the length-n zero-one vector with a one in positions
σ(1), . . . , σ(t), and zeros in the other positions. Let Y be the number of t satisfying n1 ≤ t ≤ n2 and∣∣f(ξt)− x∣∣ < s.

The same calculation as in the proof of Theorem 1.1 gives

EY ≥ α−1 Pr(|f(ξ)− x| < s)− o(1), (2)

but on the other hand, by the choice of n1, n2, for all i we have

Pr
(
∆i

(
ξt
)
< 2s for some t ∈ {n1, . . . , n2}

)
≤

n2∑
t=n1

Pr
(

∆i(ξ) < 2s
∣∣∣ |ξ| = t

)
≤ Pr(∆i(ξ) < 2s)

n2∑
t=n1

1

Pr(|ξ| = t)

= n−ω(1)O
(√

n log n
)
nO(1) = n−ω(1).

Let E be the event that ∆i(ξ
r) ≥ 2s for all i and all n1 ≤ r ≤ n2, so that Pr(E) = n · n−ω(1) = n−ω(1).

Note that ∆i(ξ
t) = f(ξt+1)− f(ξt) for i = σ(t+ 1). Therefore, if E holds and

∣∣f(ξt)− x∣∣ < s for some
t, then f(ξr)− x ≥ s for all r satisfying t < r ≤ n2. That is to say, if E holds then Y ≤ 1. Since Y can
never be greater than n2 − n1 + 1 ≤ n, it follows that

EY ≤ 1 · Pr(E) + nPr(E) ≤ 1 + n · n−ω(1) ≤ 1 + o(1).

Combining this with (2), we obtain Pr(|f(ξ)− x| < s) ≤ (1 + o(1))α = α+ o(1/
√
n), as desired.

3 Poisson-type anti-concentration

In this section we prove Theorem 1.8, Proposition 1.9 and Theorem 1.10. First, Proposition 1.9 will be
a corollary of the following non-asymptotic bound for anti-concentration of polynomials of unbiased coin
flips.

Lemma 3.1. Consider a multilinear n-variable polynomial f with degree d ≥ 1, and let ξ ∈ Ber(1/2)
n.

Then for any ` ∈ R,
Pr(f(ξ) = `) ≤ 1− 2−d.

We prove Lemma 3.1 with the combinatorial Nullstellensatz, whose statement is as follows (see [1, The-
orem 1.2])

Theorem 3.2. Let f be an n-variable polynomial over an arbitrary field F, with degree
∑n
i=1 ti (where

each ti is a nonnegative integer). Suppose that the coefficient of xt11 . . . xtnn is nonzero. If S1, . . . , Sn are
subsets of F with |Si| > ti, then there is s ∈ S1 × · · · × Sn with f(s) 6= 0.

Proof of Lemma 3.1. Suppose without loss of generality that the coefficient of ξ1 . . . ξd is nonzero, and
condition on any outcomes for ξd+1, . . . , ξn. Then, f(ξ)− ` becomes a degree-d polynomial of ξ1, . . . , ξd,
and the coefficient of ξ1 . . . ξd is nonzero. By Theorem 3.2 with Si = {0, 1}, at least one of the 2d equally
likely outcomes of (ξ1, . . . , ξd) gives f(ξ)− ` 6= 0. We have proved that

Pr(f(ξ) = ` | ξd+1, . . . , ξn) ≤ 1− 2−d,

and the desired result then follows from the law of total probability.

Now we prove Proposition 1.9.
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Proof of Proposition 1.9. First note that we can assume f is multilinear, because ξ2
i = ξi for each i.

Consider any x not equal to the constant coefficient of f . Let ξ′ ∈ Ber(2p)
n and γ ∈ Ber(1/2)

n be
independent random vectors, so that (ξ′1γ1, . . . , ξ

′
nγn) has the same distribution as ξ. Note that if we

condition on any outcome of ξ′ then f(ξ′1γ1, . . . , ξ
′
nγn) becomes a multilinear polynomial of γ whose

constant coefficient is the same as the constant coefficient of f . If this polynomial is constant then
Pr(f(ξ) = x) = 0, and otherwise Lemma 3.1 gives Pr(f(ξ) = x) ≤ 1− 2−d.

Next, we give a unified proof of Theorems 1.8 and 1.10. For 0 < p < 1, define

τ(p) := sup
n∈N

Pr(Xn,p = 1) = sup
n∈N

np(1− p)n−1,

where Xn,p ∈ Bin(n, p). It is a straightforward computation to determine the limiting behaviour of τ(p)
as p→ 0, as follows.

Lemma 3.3. We have τ(p) ≤ 1/e+ op→0(1).

Proof. For 0 < p < 1, define ηp : [0,∞)→ R by ηp(n) := np(1− p)n−1. We compute

η′p(n) = p(1− p)n−1
(1 + n log(1− p)),

so η′p(n) = 0 only when n = −1/ log(1− p). Since ηp(0) = 0 and ηp(n)→ 0 as n→∞, we have

τ(p) ≤ sup
n∈[0,∞)

ηp(n) = ηp(−1/ log(1− p)) =
−p

e(1− p) log(1− p)
.

This converges to 1/e as p→ 0, by L’Hôpital’s rule.

The following lemma then implies Theorems 1.8 and 1.10.

Lemma 3.4. Let f be an n-variable polynomial, with zero constant coefficient, which is either of degree
1 or has all coefficients nonnegative. Consider any p ∈ (0, 1) and ` 6= 0. Then

Pr(f(ξ) = `) ≤ τ(p),

where ξ ∈ Ber(p)
n.

Proof. We prove this by induction on n (it is trivially true for n = 0). So, consider some n > 0, and
assume that the statement is true for the case n− 1. As in the proof of Lemma 3.1 we can assume that
f is multilinear.

If a1 = · · · = an = ` then the only way we can have f(ξ) = ` is if exactly one of the ξi is equal to one.
So, in this case Pr(f(ξ) = `) = Pr(Xn,p = 1) ≤ τ(p).

Otherwise, there must be some aj 6= `. Suppose without loss of generality that an 6= `, so `−an 6= 0. De-
fine (n− 1)-variable polynomials g and h by f(x1, . . . , xn) = g(x1, . . . , xn−1)+anxn+h(x1, . . . , xn−1)xn,
and observe that g and h both have zero constant coefficient. Let ξ′ = (ξ1, . . . , ξn−1). Applying the
induction hypothesis to g and g + h gives

Pr(f(ξ) = `) = Pr(ξn = 0) Pr(f(ξ) = ` | ξn = 0) + Pr(ξn = 1) Pr(f(ξ) = ` | ξn = 1)

= (1− p) Pr
(
g
(
ξ′
)

= `
)

+ pPr
(
g
(
ξ′
)

+ h
(
ξ′
)

= `− an
)

≤ (1− p)τ(p) + pτ(p)

≤ τ(p).

4 Anti-concentration of the edge-statistic

In this section we give the short proofs of Propositions 1.6 and 1.7. First, note that Proposition 1.7 is an
immediate consequence of Theorem 1.10.
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Proof of Proposition 1.7. Let ξ ∈ Ber(k/n)
n, and let f(ξ) :=

∑
e∈E(G)

∏
i∈e ξi. This polynomial has

nonnegative coefficients. Then, XBer
G,k has the same distribution as f(ξ), and since we are assuming

n/k →∞ we can apply Theorem 1.10.

Next, it is almost as simple to deduce Proposition 1.6 from Theorem 1.2. We need the following well-
known lemma, which may be proved by induction, iteratively deleting any vertices with degree less than
d/r (see for example [18, Lemma 2.5]).

Lemma 4.1. Let G be an r-uniform hypergraph with average degree d. Then G has an induced subgraph
with minimum degree at least d/r.

Proof of Proposition 1.6. We can obtain our random subset ABer by first sampling a random subset A′,
where each element is present with probability 2k/n, then deleting each element from A′ with probability
1/2. By the Chernoff bound, with probability 1 − e−Ω(k) we have (3/2)k ≤ |A′| ≤ 3k; consider such an
outcome of A′, and let G′ := G[A′]. Let X be a random variable having the same distribution as X
conditioned on this outcome of A′. It now suffices to show that Pr

(
|X − `| ≤ kr−1

)
= O

(
1/
√
k
)
.

Now, note that EX = e(G′)/4, and observe that deleting an element of ABer can change X by at most
|A′|r−1. If e(G′) ≤ ` then |`−EX| ≥ 3`/4 ≥ `/2+kr−1 and therefore by the Azuma–Hoeffding inequality
we have

Pr
(
|X − `| ≤ kr−1

)
≤ Pr(|X − EX| ≥ `/2) ≤ exp

(
−Ω

(
(`/2)

2

|A′|2(r−1) · |A′|

))
= e−Ω(k).

So, we may assume that e(G′) ≥ ` = Ω(kr). By Lemma 4.1, this implies that G′ has an induced
subgraph G′[B] with minimum degree Ω

(
kr−1

)
. Condition on any outcome of ABer \B, and for i ∈ B let

ξi := 1i∈ABer , so that XG,k can be viewed as a function of (ξi)i∈B . Recalling the definition of ∆i from
Theorem 1.2 we have ∆i =

∣∣NG(i) ∩ABer
∣∣ ≥ ∣∣NG(i) ∩ABer ∩B

∣∣. By our minimum degree assumption,∣∣NG(i) ∩ABer ∩B
∣∣ has a binomial distribution with mean Ω(kr−1), so by the Chernoff bound, with

probability 1 − e−Ω(kr−1) each ∆i = Ω
(
kr−1

)
, which allows us to apply Theorem 1.2. (This gives us a

bound for the probability that X falls in an interval of length Ω(kr−1), which suffices because we can
cover any interval of length 2kr−1 with O(1) such intervals).

5 Anti-concentration for subgraph counts in random graphs

First we give the simple deduction of Theorem 1.13 from Theorem 1.2.

Proof of Theorem 1.13. For this proof it is convenient to redefine XH to count labelled copies of H (this
changes the anti-concentration behaviour by a constant factor depending on the number of automorphisms
of H). For a pair of distinct vertices x, y ∈ V (G), define ∆x,y to be the difference

XH(G+ {x, y})−XH(G− {x, y})

(that is, the number of copies of H that would be created or destroyed by flipping the status of {x, y}).
Observe that

E∆x,y = 2e(H)pe(H)−1n(n− 1) . . . (n− h+ 1) = Ω
(
nh−2

)
, (3)

Also, observe that for any vertex other than x or y, changing the set of edges adjacent to that vertex
can affect ∆x,y by at most O(nh−3). So, by the Azuma–Hoeffding inequality (with the vertex exposure
martingale) it follows that

Pr(∆x,y ≤ E∆x,y/2) = exp

(
−Ω

(
n2(h−2)

n · n2(h−3)

))
= n−ω(1). (4)

Let D be the common value of the E∆x,y. We now apply Theorem 1.2 with
(
n
2

)
= Θ(n2) variables and

with s = D/4 = Ω(nh−2), and observe that the interval {r ∈ R : |r−x| ≤ nh−2} (having length O(nh−2))
can be covered by O(1) intervals of length 2s.
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Next, we turn to Theorem 1.14. First we illustrate the high-level strategy of the proof, which is by
induction on h. Recall that XKh−1

= XKh−1
(G) is the number of copies of Kh in G ∈ G(n, p). Now,

let X be the number of copies of Kh in G ∈ G(n, p) which contain some fixed vertex v (this is equal to
the number of copies of Kh−1 in G[NG(v)]). Then, we have the decomposition XKh

= XKh
(G− v) +X,

where XKh
(G− v) is typically much larger than X. One may then hope to establish anti-concentration

of XKh
by first showing that XKh

(G− v) is anti-concentrated at a “coarse” scale as in Theorem 1.13,
then establishing anti-concentration of X on a finer scale. For this second step, we may first observe that
the approximate value of X is primarily driven by |NG(v)| (which has a binomial distribution and is thus
easy to study), and if we condition on NG(v) then X is the number of copies of Kh−1 in a fixed vertex
subset of G− v, which we may study with the induction hypothesis.

The main complication with this approach is that it does not suffice to analyse XKh
(G− v) and X sepa-

rately, because in principle they could correlate with each other in a way that increases the concentration
probabilities. So, we must analyse the concentration behaviour of X conditioned on an outcome of G−v.
Our approach is to show that G− v is very likely to have certain properties that ensure that, conditioned
on this outcome of G − v, X has approximately the concentration behaviour we would expect uncondi-
tionally. For this, we will need something a bit stronger than Theorem 1.14 as our induction hypothesis,
as follows.

Definition 5.1. For real numbers c ∈ (0, 1/2) and q ∈ (0, 1), we say an n-vertex graph G is (c, q, h)-
dispersed if for all cn ≤ k ≤ (1 − c)n and all `, the number of induced subgraphs of G with k vertices
and exactly ` copies of Kh is at most

(
n
k

)
q.

Theorem 5.2. For any constants c ∈ (0, 1/2), p ∈ (0, 1) and h ∈ N, there are functions α = αh,p,c and
φ = φh,p,c, with limn→∞ α(n) = 0 and limn→∞ φ(n) = ∞, such that the random graph G ∈ G(n, p) is(
c, nα+1−h, h

)
-dispersed with probability at least 1− n−φ.

To see that Theorem 5.2 implies Theorem 1.14, observe that we can obtain a random graph G ∈ G(n, p)
by first taking a random graph G′ ∈ G(2n, p), and then taking a random subset of n vertices of G′.
Theorem 5.2 tells us that G′ is very likely to be

(
1/3, no(1)+1−h, h

)
)-dispersed, and if it is, then the

definition of being dispersed gives the required bound on the point probabilities of XKh
.

Proof of Theorem 5.2. As in the proof of Theorem 1.13, we count labelled cliques, which affects XH by
a constant factor h!. The proof is by induction on h (the case h = 1 is trivial). Fix ε > 0 and t ∈ N.
We will prove that with probability at least 1 − no(1)+1+h−εt, G ∈ G(n, p) is

(
c, nε+1−h, h

)
-dispersed

(asymptotics are allowed to depend on t and ε, which we view as fixed constants for most of the proof).
After we have proved this, we can then let ε→ 0 and tε→∞.

For cn ≤ r ≤ (1 − c)n and 0 ≤ ` ≤
(
n
h

)
, let Zr,` be the number of sets of r vertices in G that induce

exactly ` copies of Kh. We need to show that with probability 1−no(1)+1+h−εt we have Zr,` ≤ nε+1−h(n
r

)
for all cn ≤ r ≤ (1− c)n and all 0 ≤ ` ≤

(
n
h

)
. We upper-bound EZtr,`. Note that if we randomly choose a

sequence S1, . . . , St of r-vertex sets (with replacement), then with probability 1− n−ω(1) we have

|S1 ∪ · · · ∪ Si−1| ≤ 1− (c/2)i−1n,

|Si \ (S1 ∪ · · · ∪ Si−1)| ≥ (c/2)in = Ω(n) (5)

for each i ∈ {1, . . . , t}. This can be proved by repeatedly applying a Chernoff bound for the hypergeo-
metric distribution.

Let S be the collection of sequences (S1, . . . , St) which satisfy (5) for each i ∈ {1, . . . , t}. For any
(S1, . . . , St) ∈ S, with Gi := G[Si], we wish to prove that

Pr(XKh
(Gi) = ` for each i) ≤ no(1)+(1−h)t. (6)

It will follow from (6) that

EZtr,` =
∑

(S1,...,St)∈S

Pr(XKh
(G[Si]) = ` for each i) +

∑
(S1,...,St)/∈S

Pr(XKh
(G[Si]) = ` for each i)

≤
(
n

r

)t
no(1)+t(1−h) +

(
n

r

)t
n−ω(1)
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= no(1)+t(1−h)

(
n

r

)t
,

so

Pr

(
Zr,` ≥ nε+1−h

(
n

r

))
= Pr

(
Ztr,` ≥ nt(ε+1−h)

(
n

r

)t)
≤

EZtr,`
nt(ε+1−h)

(
n
r

)t = no(1)−tε.

We can then take a union bound over all the (at most n
(
n
h

)
≤ nh+1) possibilities for r, `.

So, it suffices to prove (6). For the rest of the proof we fix a sequence (S1, . . . , St) ∈ S. The t events
XKh

(Gi) = ` are not independent, but by the choice of S1, . . . , St, for each i there is still a lot of
randomness in Gi after exposing outcomes of G1, . . . , Gi−1. The plan is to show that for each i, if we
condition on an outcome of G∩i := G[Si ∩ (S1 ∪ · · · ∪ Si−1)], then unless G∩i has some atypical properties,
there is still enough randomness to guarantee Pr(XKh

(Gi) = `) ≤ no(1)+(1−h).

For each i fix some vi ∈ Si \ (S1 ∪ · · · ∪ Si−1) (which is possible by (5)), let Ni = NG(vi)∩ Si, and define

Xi = XKh
(Gi)−XKh

(Gi − vi) = XKh−1
(G[Ni])

to be the number of copies of Kh in Gi which contain vi. Also, let n′ = r − 1 = Ω(n) be the common
size of the sets Si \ {vi}, let c′ = min{p, 1 − p}/2, let I = {k ∈ N : c′n′ ≤ k ≤ (1− c′)n′} and let Ek =

E
[
Xi

∣∣ |Ni| = k
]

= p(
h−1
2 )( k

h−1

)
. Let β = αh−1,p,c′(n

′) = o(1) and ψ = (log n)
1/2

= ω(1), recalling the
notation in the statement of Theorem 5.2. We say that an outcome of Gi − vi is good if

1. it is
(
c′, (n′)β+2−h, h− 1

)
-dispersed;

2. for each k ∈ I, at most
(
n′

k

)
n−ψ size-k subsets S ⊆ Si \ {vi} fail to satisfy∣∣XKh−1

(Gi[S])− Ek
∣∣ ≤ nh−2 log n.

Then, for {x, y} ⊆ Si \ {vi}, define ∆
(i)
x,y to be the difference

XKh
((Gi − vi) + {x, y})−XKh

((Gi − vi)− {x, y})

(that is, the number of copies of Kh in Gi − vi that would be created or destroyed by flipping the status
of {x, y}). Note that each E∆

(i)
x,y is equal to some common value D = Θ((n′)h−2) = Θ(nh−2), with

essentially the same calculation as in (3). Fix some χ = ω(1) that grows sufficiently slowly to satisfy
certain inequalities we will encounter later in the proof. Say that an outcome G∗ of G∩i is good-inducing
if

Pr
(
Gi − vi is good, ∆(i)

x,y ≥ D/2 for all x, y ∈ Si \ {vi}
∣∣∣G∩i = G∗

)
≥ 1− n−χ.

We now break the remainder of the proof into a sequence of claims. First, we need to show that it is very
likely that each G∩i is good-inducing (here we specify χ).

Claim 5.3. There is χ = ω(1) such that G∩i is good-inducing for each i ∈ {1, . . . , t}, with probability
1− n−ω(1).

We defer the proof of Claim 5.3 until later. It will be a fairly straightforward consequence of the induction
hypothesis and a concentration inequality. Next, recalling (5), note that after exposing G∩i there are still
Ω(n2) edges of Gi left unexposed. So, we can apply Theorem 1.2 with s = D/4 (and O(m) different
values of x) to prove the following claim, establishing anti-concentration of XKh

at a “coarse” scale.

Claim 5.4. For any x ∈ R, any real m ≥ 1 and any good-inducing outcome G∗ of G∩i , we have

Pr
(
|XKh

(Gi − vi)− x| < mnh−2
∣∣G∩i = G∗

)
= O

(m
n

)
.

Then, note that if Gi − vi is good, typically Xi = XKh−1
(G[Ni]) is approximately equal to E|Ni| (specif-

ically, this follows from the second property of being good). So, the following claim establishes anti-
concentration of Xi.
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Claim 5.5. For any x ∈ R, we have

Pr
(∣∣E|Ni| − x

∣∣ ≤ nh−2 log n
)

= O

(
log n√
n

)
.

Further, we have
Pr
(∣∣E|Ni| − EXi

∣∣ > nh−3/2 log n
)

= n−ω(1).

We defer the proof of Claim 5.5 until later. The proof is fairly simple, since |Ni| is binomially distributed,
and we have an explicit formula for Ek. Next, recalling that Xi is the number of copies of Kh−1 in
G[Ni], the following claim is a direct consequence of the first property of being good (that Gi − vi is(
c′, (n′)β+2−h, h− 1

)
-dispersed). Indeed, after conditioning on the event that |Ni| = k, note that Ni is a

uniformly random k-vertex subset of Gi − vi.

Claim 5.6. For any x ∈ R, any k ∈ I, and any good outcome G′ of Gi − vi, we have

Pr(Xi = x |Gi − vi = G′, |Ni| = k) ≤ nβ+2−h = no(1)+2−h.

Finally, the following claim follows directly from the Chernoff bound, since |Ni| has a binomial distribution
with parameters n′ = Ω(n) and p.

Claim 5.7. For each i,
Pr(|Ni| /∈ I) = n−ω(1)

Before proving Claims 5.3 and 5.5, we show how the above claims can be used to deduce (6). Let Tx be
the set of all k ∈ N such that |Ek − x| ≤ nh−2 log n. Then, Pr(|Ni| ∈ Tx) = O(log n/

√
n) by the first part

of Claim 5.5. Next, consider any good outcome G′ of Gi − vi. If |Ni| /∈ Tx then in order to have Xi = x
we must have |Xi − E|Ni|| > nh−2 log n. So, by the second property of being good, we have

Pr(Xi = x |Gi − vi = G′, |Ni| ∈ I \ Tx) ≤ n−ψ = n−ω(1).

By Claims 5.6 and 5.7, it follows that for any x ∈ R we have

Pr(Xi = x |Gi − vi = G′)

≤
∑

k∈I∩Tx

Pr(Xi = x |Gi − vi = G′, |Ni| = k) · Pr(|Ni| = k)

+ Pr(Xi = x |Gi − vi = G′, |Ni| ∈ I \ Tx) + Pr(|Ni| /∈ I)

≤ Pr(|Ni| ∈ Tx)no(1)+2−h + n−ω(1) + n−ω(1) = no(1)+3/2−h. (7)

For i ∈ {1, . . . , t}, let Fi be the event that |XKh
(Gi − vi) + EXi − `| ≤ 2nh−3/2 log n (note that EXi is

an unconditional expectation and Fi only depends on Gi − vi). By Claim 5.4 with x = ` − EXi and
m = 2

√
n log n, for any good-inducing outcome G∗ of G∩i we have Pr(Fi |G∩i = G∗) = O(log n/

√
n).

Also, by the second part of Claim 5.5 and the second property of being good, for any good outcome G′
of Gi − vi (not satisfying Fi) we have

Pr
(
Xi = `−XKh

(Gi − vi)
∣∣Fi, Gi − vi = G′

)
= n−ω(1).

Using (7), for any good-inducing outcome G∗ of G∩i we then have

Pr(XKh
(Gi) = ` |G∩i = G∗)

= Pr(XKh
(Gi − vi) +Xi = ` |G∩i = G∗)

≤ Pr(Fi |G∩i = G∗) Pr(Xi = `−XKh
(Gi − vi) | Fi, Gi − vi is good, G∩i = G∗)

+ Pr
(
Xi = `−XKh

(Gi − vi)
∣∣Fi, Gi − vi is good, G∩i = G∗

)
+ Pr(Gi − vi is not good |G∩i = G∗)

≤ O
(

log n√
n

)
no(1)+3/2−h + n−ω(1) + n−ω(1) = no(1)+1−h. (8)
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Now, let Hi be the event that XKh
(Gi) = ` and that G∩i+1 is good-inducing (if i = t this is just the event

that XKh
(Gt) = `). Observe that G∩1 = ∅ is not actually random, so Claim 5.3 implies that it is always

good-inducing. Applying (8) we have

Pr(Hi |H1, . . . ,Hi−1) ≤ Pr(XKh
(Gi) = ` |H1, . . . ,Hi−1) ≤ no(1)+1−h,

so

Pr(H1 ∩ · · · ∩ Ht) =

t∏
i=1

Pr(Hi |H1, . . . ,Hi−1) ≤ no(1)+(1−h)t.

Finally, by Claim 5.3, we have

Pr(XKh
(Gi) = ` for each i) ≤ Pr(H1 ∩ · · · ∩ Ht) + Pr(some G∩i is not good-inducing)

≤ no(1)+(1−h)t + n−ω(1) = no(1)+(1−h)t,

concluding the proof of (6). Pending the proofs of Claims 5.3 and 5.5, which are given below, this
completes the proof of Theorem 5.2.

Claim 5.3 will be a consequence of the law of total expectation and the following claim.

Claim 5.8. Let Ai be the event that Gi − vi fails to satisfy the first property of being good, let Bi be the
event that it fails to satisfy the second property of being good, and let Ci be the event that ∆

(i)
x,y < D/2 =

E∆
(i)
x,y/2 for some x, y ∈ Si \ {vi}. Then, for each i ∈ {1, . . . , t}, we have Pr(Ai ∪ Bi ∪ Ci) = n−ω(1).

Proof. First, we have Pr(Ai) ≤ (n′)−φh−1,p,c′ (n
′) = n−ω(1), by Theorem 5.2 for h − 1 (which we are

assuming as our induction hypothesis).

Second, we have Pr(Ci) = e−Ω(n′) = n−ω(1) with exactly the same argument as in (4) in the proof of
Theorem 1.13 (using the Azuma–Hoeffding inequality) and the union bound.

Third, we consider Bi. For each k ∈ I and each subset S ⊆ Si−vi of size k, consider the random variable
XKh−1

(Gi[S]). This random variable has mean Ek = Ω(nh−1) and flipping the status of an edge causes
a change of at most O(nh−3). So, by the Azuma–Hoeffding inequality we have

Pr
(∣∣XKh−1

(Gi[S])− Ek
∣∣ > nh−2 log n

)
= exp

(
−Ω

((
nh−2 log n

)2
n2 · n2(h−3)

))
= e−Ω((logn)2).

Hence, the expected number of subsets S for which
∣∣XKh−1

(Gi[S])− Ek
∣∣ > nh−2 log n is

(
n′

k

)
e−Ω((logn)2),

and by Markov’s inequality, the probability that this occurs for more than
(
n′

k

)
e−(logn)3/2 =

(
n′

k

)
n−ψ

subsets is at most e−Ω((logn)2) = n−ω(1). We can then take the union bound over all k ∈ I ⊆ {1, . . . , n}
to obtain Pr(Bi) ≤ n−ω(1).

Now we prove Claim 5.3.

Proof of Claim 5.3. Fix some i; we will show that G∩i is good-inducing with probability n−ω(1). We can
then take the union bound over all i.

LetW be the random variable Pr(Ai ∪ Bi ∪ Ci |G∩i ) (which depends on G∩i ). By the law of total expecta-
tion and Claim 5.8, we have EW = Pr(Ai ∪ Bi ∪ Ci) ≤ f for some f = n−ω(1), so Pr

(
W ≥

√
f
)
≤
√
f by

Markov’s inequality. Since
√
f is still of the form n−ω(1), letting χ = − log

√
f/ log n, the desired result

follows.

Proof of Claim 5.5. For any k ≤ n′, note that

Ek − Ek−1 = p(
h−1
2 )
(

k

h− 1

)
− p(

h−1
2 )
(
k − 1

h− 1

)
= O

(
nh−2

)
.
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Now, the second inequality then follows from the Azuma–Hoeffding inequality: we have just observed
that adding or removing a vertex from Ni changes E|Ni| by O

(
nh−2

)
, so

Pr
(∣∣E|Ni| − EXi

∣∣ > nh−3/2 log n
)

= exp

(
−Ω

((
nh−3/2 log n

)2
n · n2(h−2)

))
= e−Ω((logn)2) = n−ω(1).

For the first inequality, we can now assume that x ≥ EXi − nh−3/2 log n − nh−2 log n = Ω(nh−1).
Therefore, we can only have |Ek − x| ≤ nh−2 log n if k = Ω(n). If k = Ω(n) then we can compute
Ek−Ek−1 = Ω(nh−2), so there are only O(log n) values of k which yield |Ek − x| ≤ nh−2 log n. Since |Ni|
has the binomial distribution Bin(n′, p), the probability that |Ni| takes one of these values is O(log n/

√
n),

recalling that n′ = Ω(n).

6 Concluding remarks

In this paper we have proved several new anti-concentration inequalities and given some applications.
There are many interesting directions of future research.

First, we still do not have a complete understanding of anti-concentration for bounded-degree polynomials
in the “Gaussian” regime where p is fixed. Most obviously, it would be very interesting to remove the
polylogarithmic factor from the Meka–Nguyen–Vu inequality, for polynomials which have both positive
and negative coefficients. As noted in [26], this would imply Conjecture 1.3.

Also, while the Meka–Nguyen–Vu inequality gives an almost-optimal bound on Qf(ξ)(1) (for a bounded-
degree polynomial f and ξ ∈ Ber(p)n), our understanding of the whole concentration function Qf(ξ) is
still quite limited, even for “dense” polynomials with many large coefficients. For example, if f has degree
d = O(1) and Ω(nd) coefficients with absolute value at least 1, then the Meka–Nguyen–Vu inequality
gives Qf(ξ)(r) = O((log n)O(1)(r + 1)/

√
n), whereas it seems likely that the correct bound should be

Qf(ξ)(r) = O((r1/d + 1)/
√
n) (attained by the polynomial (x1 + · · ·+ xn − pn)

d).

Second, regarding the “Poisson” regime where p may be a vanishing function of n, we were not able
to find a polynomial anti-concentration inequality that implies Conjecture 1.5, which was our initial
motivation for this study. There are invariance principles (see [15, 16]) which allow us to compare XG,k

to polynomials of Bernoulli random variables, but as we observed in Section 1.2, in general there are
bounded-degree polynomials yielding point probabilities much larger than 1/e. The invariance principles
in [15, 16] yield polynomials with special structure (harmonic polynomials), and perhaps it would be
feasible to prove an analogue of Theorem 1.10 for such polynomials, which might yield a new proof of
Conjecture 1.5 and a generalisation for hypergraphs.

So far, in order to avoid trivialities, when we allow p to decrease with n we have been considering
probabilities of the form Pr(X = x) only when x 6= 0. A different way to avoid trivialities would be to
impose that the ai are nonzero and explicitly specify the dependence of p on n; of particular interest may
be the Poisson regime where p = λ/n for some constant λ. However, in this setting there do not seem to
be theorems that are quite as elegant as Theorem 1.8. In the case where all the ai are positive, one can
imitate Erdős’ proof of the Erdős–Littlewood–Offord theorem to prove a bound of the form

Pr(a1ξ1 + · · ·+ anξn = x) ≤ max
x∈Z

Pr(Z = x) + o(1),

where Z has the Poisson distribution Po(λ). If we do not require that the ai are all positive, we get some
more complicated behaviour. We can resolve the linear case with Fourier analysis, as follows.

Proposition 6.1. Fix λ > 0 and consider a linear polynomial X =
∑n
i=1 aiξi, where ξ ∈ Ber(λ/n)

n.
Then for any x ∈ R,

Pr(X = x) ≤ I0(λ)

eλ
+ o(1),

where

I0(λ) =

∞∑
i=0

(λ/2)
2i

(i!)
2

is an evaluation of a modified Bessel function of the first kind.
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This bound is best-possible, as can be proved by considering the case where a1, . . . , abn/2c = 1 and
abn/2c+1, . . . , an = −1.

Proof of Proposition 6.1. First, with a standard reduction we may assume all the ai are integers. Indeed,
we can view R as a vector space over the rational numbers Q, and choose a projection map P : R→ Q such
that P (ai) 6= 0 for each i. Clearing denominators by multiplying by some integer d, we obtain nonzero
integers a′i = dP (ai) such that whenever we have a1ξ1 +· · ·+anξn = x, we have a′1ξ1 +· · ·+a′nξn = dP (x).
That is, any anti-concentration bound for the random variable a′1ξ1 + · · ·+ a′nξn implies the same bound
for a1ξ1 + · · ·+ anξn.

So, we assume each ai is an integer (therefore we may also assume x is an integer). We do Fourier
analysis over Z/NZ, for some prime N very large relative to n, x and the ai. For all a ∈ Z/NZ, let
fa = (1− λ/n)δ0 + (λ/n)δa, so that

f̂a(k) =
λ

n
e−2πiak/N +

(
1− λ

n

)
.

Also, we have

Pr(X = x) = fa1 ∗ · · · ∗ fan(x)

=
1

N

N−1∑
k=0

e2πixk/N
n∏
j=1

f̂aj (k)

≤ 1

N

N−1∑
k=0

n∏
j=1

∣∣∣f̂aj (k)
∣∣∣

≤
n∏
j=1

(
1

N

N−1∑
k=0

∣∣∣f̂aj (k)
∣∣∣n)1/n

=
1

N

N−1∑
k=0

∣∣∣f̂1(k)
∣∣∣n,

where the second equality is by the Fourier inversion formula, and the second inequality is by Hölder’s
inequality. Now, taking N →∞ gives

Pr(X = x) ≤
∫ 1

0

∣∣∣∣λne−2πix +

(
1− λ

n

)∣∣∣∣n dx.

As n→∞ we can compute∣∣∣∣λne−2πix +

(
1− λ

n

)∣∣∣∣n → ∣∣∣e−λ(1−cos(2πx)+i sin(2πx))
∣∣∣ = e−λ+λ cos(2πx),

and it is known (see for example [40, Eq. (3), p. 181]) that∫ 1

0

eλ cos(2πx) dx = I0(λ),

so by the dominated convergence theorem, Pr(X = x) ≤ I0(λ)e−λ + o(1).

We also think it might be interesting to study the situation for general p (in particular, the intermediate
regime between p = λ/n “Poisson” behaviour and p = 1/2 “Gaussian” behaviour). The linear case would
be a good start, as follows.

Question 6.2. Let a = (a1, . . . , an) ∈ (R \ {0})n, ξ ∈ Ber(p)
n for some 0 < p ≤ 1/2 and X =

a1ξ1 + · · ·+anξn. What upper bounds (in terms of n and p) can we give on the maximum point probability
QX(0) = maxx∈R Pr(X = x)?

16



Also, we remark that the constant 1/e in Theorems 1.8 and 1.10 appears in several other combinatorial
and probabilistic problems, such as in a well-known conjecture of Feige [14].

Finally, on the subject of subgraph counts in random graphs, it may also be interesting to study anti-
concentration of the number of induced copies X ′H of a subgraph H in a random graph G(n, p). (This
question was also raised by Meka, Nguyen and Vu [31]). Using Theorem 1.2 in the same way as the proof
of Theorem 1.13, one can prove that Pr

(
|X ′H − x| ≤ nh−2

)
= O

(
1
n

)
, provided p is different to the edge-

density of H. The natural analogue of Conjecture 1.12 is that for a fixed graph H and fixed p ∈ (0, 1),
we have

max
x∈N

Pr(X ′H = x) = O

(
1/
√

Var(X ′H)

)
.

We remark that the behaviour of
√

Var(X ′H) is not entirely trivial: for most values of p it has order
Θ(nh−1), but when p is exactly equal to the edge-density of H it may have order Θ(nh−3/2) or Θ(nh−2)
(see [22, Theorem 6.42]).

Acknowledgements. We would like to thank Van Vu for some clarifications regarding his work with
Meka and Nguyen [31]. Also, after we completed a draft of this paper, Anders Martinsson and Frank
Mousset told us that one can give an alternative proof of Theorem 1.10 using the ideas in [29, Section 2].
Finally, in a previous version of this paper we stated a specific conjecture in the setting of Question 6.2,
which was observed by Mihir Singhal to be incorrect.
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