
EXPONENTIAL ANTICONCENTRATION OF THE PERMANENT

ZACH HUNTER, MATTHEW KWAN, AND LISA SAUERMANN

Abstract. Let A ∈ Rn×n be a random matrix with independent entries, and suppose that the entries
are “uniformly anticoncentrated” in the sense that there is a constant ε > 0 such that each entry aij
satisfies supz P[aij = z] ≤ 1 − ε (for example, A could be a uniformly random n × n matrix with ±1

entries). Significantly improving previous bounds of Tao and Vu, we prove that the permanent of A is
exponentially anticoncentrated: there is cε > 0 such that supz P[per(A) = z] ≤ exp(−cεn). Our proof
also works for the determinant, giving an alternative proof of a classical theorem of Kahn, Komlós and
Szemerédi. As a consequence, we see that there are at least exponentially many different permanents
of n× n matrices with ±1 entries, resolving a problem of Ingram and Razborov.

1. Introduction

Two important matrix parameters are the determinant and permanent : for an n×n matrix A = (aij),
they are defined as

det(A) =
∑
π∈Sn

sign(π)

n∏
i=1

aiπ(i) and per(A) =
∑
π∈Sn

n∏
i=1

aiπ(i). (1.1)

Determinants are omnipresent throughout mathematics and the sciences. Permanents are of fundamental
importance in combinatorics and computational complexity theory, and also play an important role in
quantum physics and statistics (see for example the books and surveys [2, 16,17,20,27]).

In combinatorics, computer science and random matrix theory, it is of great interest to understand
statistical properties of determinants and permanents, among various classes of discrete matrices. In
particular, one of the most intensive directions of research is the study of the singularity probability of
random sign matrices. Let An be a uniformly random n×n matrix with ±1 entries; what is the probability
that det(An) = 0? Perhaps the foundational theorem in combinatorial random matrix theory, due to
Komlós [12], is that P[det(An) = 0] = o(1) as n → ∞. A subsequent breakthrough by Kahn, Komlós
and Szemerédi [10] (simplified by Tao and Vu [22]) showed that the singularity probability is in fact
exponentially small : that is to say, P[det(An) = 0] = exp(−cn) for some constant c > 0. Quantitative
aspects were later improved by Tao and Vu [23] and by Bourgain, Vu and Wood [3], culminating in a
celebrated result of Tikhomirov [26] proving the essentially optimal bound P[det(An) = 0] ≤ (1/2+o(1))n.

It is reasonable to expect similar results for the permanent. In fact one may expect that even stronger
bounds should hold; for example, Vu (see [29, Conjecture 6.12] and [28]) conjectured that P[per(An) = 0]
decays faster than exponentially. However, the permanent is much more difficult to study than the
determinant, and much less is known: until now, the only theorem in this direction is due to Tao and
Vu [25], who proved that

P[per(An) = 0] ≤ n−c

for some constant c > 0 (see also [24] for an earlier, simpler version of their argument that gives a bound
of shape exp(−c

√
log n)). Although Tao and Vu did not attempt to optimise the constant c, they note

that their argument cannot hope to obtain a stronger bound than about 1/
√
n, owing to their use of

the so-called Erdős–Littlewood–Offord inequality (they write that “in principle, one can obtain better
results by using more advanced Littlewood-Offord inequalities, but it is not clear to the authors how to
restructure the rest of the argument so that such inequalities can be exploited”).

In this paper, we overcome this barrier, obtaining the first exponential bound.

Theorem 1.1. There is an absolute constant c > 0 such that the following holds. Let An be a uniformly
random n× n matrix with ±1 entries. Then, for any x ∈ R,

P[per(An) = x] ≤ exp(−cn).
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Here, we stated a bound for the probability that per(An) = x for general x, not just for x = 0, but
this should not be viewed as a new feature of our work: it is easy to make the same generalisation with
all previous work on determinants and permanents of discrete random matrices.

It is worth remarking that our proof works in exactly the same way for the determinant instead of
the permanent, so as a byproduct this also gives a new proof of the Kahn–Komlós–Szemerédi theorem.
All previous work on determinants of random matrices fundamentally used linear-algebraic properties of
the determinant; since such properties are unavailable for the permanent, our proof is necessarily very
different. In fact, our proof is also very different to the previous approach of Tao and Vu in [25] (which
was until now the only known approach to study permanents of random matrices).

1.1. General entry distributions. Some of the previous work on determinants and permanents of
discrete random matrices readily generalises to other entry distributions. For example, shortly after
Komlós’ foundational paper showing that P[det(An) = 0] = o(1), in a second paper [13] he proved that
the same result holds for a random matrix with independent µ-distributed entries, for any non-degenerate
distribution µ (fixing µ and sending n → ∞).

Bourgain, Vu and Wood [3] observed that in fact one does not need to fix the entry distribution; it
suffices for the entries to be independent and “uniformly anticoncentrated” in the sense that there is a
constant ε > 0 such that each entry aij satisfies supz P[aij = z] ≤ 1− ε. Specifically, they observed (see
[3, Theorem 1.4]) that some of their ideas could be combined with an approach of Tao and Vu [22], to
prove that P[det(An) = 0] decays exponentially in this very general setting. Here, we prove the same
statement for the permanent.

For a random variable X, we write Q[X] = supx P[X = x] for the maximum point probability of X.

Theorem 1.2. For any 0 < p < 1 there is cp > 0 such that the following holds. Let An ∈ Rn×n be a
random matrix with independent entries, such that every entry ξ of An satisfies Q[ξ] ≤ p. Then

Q[per(An)] ≤ exp(−cpn).

Note that Theorem 1.1 is an immediate corollary of Theorem 1.2 for p = 1/2. We remark that while
Theorem 1.1 might be improvable to a super-exponential bound (as conjectured by Vu), in the more
general setting of Theorem 1.2 an exponential bound is best-possible. Indeed, if the entries in the first
row of An are each equal to zero with probability p, then with probability pn the entire first row is zero,
in which case per(An) = 0.

1.2. The range of the permanent. For any set S ⊆ R and any n ∈ N, we write ΦS(n) for the set of
all permanents of n× n matrices with entries in S.

For any discrete random variable X, it is easy to see that X must be supported on at least 1/Q[X]
different values. So, by applying Theorem 1.2 to random matrices whose entries are uniformly sampled
from any pair {a, b} ⊆ R, we obtain an exponential lower bound on |Φ{a,b}(n)|.

Corollary 1.3. For any set S ⊆ R of size at least 2, taking c1/2 as in Theorem 1.2, we have

|ΦS(n)| ≥ exp(c1/2n),

This result is not new when S = {0, 1}. Indeed, in this case a classical theorem of Brualdi and New-
man [4] says that Φ{0,1}(n) ⊇ {0, . . . , 2n−1} (see also the improvements in [7]). However, Corollary 1.3
significantly improves on previous results when S = {−1, 1}. Indeed, in 1993 Kräuter [14] showed that
|Φ{−1,1}(n)| ≥ n + 1. This has remained essentially the state of the art1 until very recently, when In-
gram and Razborov [9] showed how to use ideas from additive combinatorics and Diophantine geometry
to prove that |Φ{−1,1}(n)| ≥ exp(c(log n)2/ log log n) for some constant c > 0. Actually, they explic-
itly raised the problem (see [9, Problem 1]) of proving that |Φ{−1,1}(n)| grows exponentially in n; this
problem is solved by Corollary 1.3.

1.3. Proof ideas. The full proof of Theorem 1.2 is not very long, but it nonetheless seems worthwhile
to give a brief glimpse of the ideas. The starting point is a “relative anticoncentration inequality” (Theo-
rem 3.1), proved using a theorem of Kesten [11] (which appears as Theorem 3.2, and is the only aspect of
our proof which is not self-contained). Very roughly speaking, Theorem 3.1 says that, under certain as-
sumptions, sums of independent random variables are more anticoncentrated than “thinned-out versions
of themselves” obtained by taking a randomly subsampled subset of the summands. This inequality is
related to certain inequalities of Halász [8] that played a crucial role in the work of Kahn, Komlós and

1One can slightly improve Kräuter’s bound using Tao and Vu’s results on permanents of random matrices, but it is
unclear how to get more than o(n) additional permanents this way.
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Szemerédi [10] on the singularity probability (mentioned earlier in this introduction). However, the way
we use Theorem 3.1 is rather different to all previous work in this area: we use it to prove a recursive
anticoncentration bound, taking advantage of the recursive properties of the formula in (1.1).

In a bit more detail: in the setting of Theorem 1.2, it is not hard to see that per(An) can be interpreted
as a weighted sum a1ξ1 + · · ·+ anξn, where ξ1, . . . , ξn are the entries of the last row, and a1, . . . , an are
permanents of (n − 1) × (n − 1) submatrices of the first n − 1 rows. If we condition on the first n − 1
rows of An (so the only remaining randomness is in the last row) then this is a sum of independent
random variables, to which we can apply our relative anticoncentration theorem. It turns out that if we
average the resulting bound over all possible outcomes of the first n − 1 rows, we get a bound on the
anticoncentration of per(An), in terms of the anticoncentration of the permanents of certain “smaller”
random matrices.

To see why this is useful, suppose that we were able to prove a bound of the form Q[per(An)] ≤
αpQ[per(An−1)], for some αp < 1. We would then be able to iterate this bound to prove that Q[per(An)] ≤
αn
p ; i.e., per(An) is exponentially anticoncentrated, as desired. Unfortunately, the situation is not quite

this simple: it turns out that for our smaller random matrices, the point probabilities of the entries are
not bounded by p anymore, and also there are “error terms” corresponding to certain assumptions we
need to make to effectively apply Theorem 3.1. Nonetheless, with various additional ideas, we can prove
a sufficiently strong recursive anticoncentration bound (see Theorem 2.2) for a certain more general class
of random matrices (which are allowed to contain some fixed deterministic rows in addition to their
random rows).

It is worth remarking that our proof is “purely combinatorial”; in particular, it features no geometry,
no linear algebra and no Fourier analysis.

1.4. Further directions. The most obvious direction for further research is to improve the bound in
Theorem 1.1, towards the super-exponential bound conjectured by Vu.

Also, it would be very interesting to generalise these ideas to symmetric random matrices. For a
random symmetric n × n matrix Sn with ±1 entries, the second and third author [15] proved that
P[per(Sn) = 0] ≤ n−c for some constant c, but this method cannot prove a bound stronger than 1/

√
n.

Even for the determinant, it is much more difficult to prove exponential bounds in the symmetric setting:
this was accomplished only recently by Campos, Jenssen, Michelen and Sahasrabudhe [5].

Another direction is to consider the “small-ball” setting: namely, instead of just studying the proba-
bility that per(An) is equal to a given point, we could study the probability that it lies in an interval
of given length. Actually, Tao and Vu [24] already considered this small-ball setting: their proof incor-
porates a “growth” step, which allows them to prove that P[|per(An) − x| ≤ n(1/2−ε)n] ≤ n−1/10 for
any x ∈ R and any constant ε > 0 (assuming n is sufficiently large). By incorporating this growth step
into our own proof scheme, one can prove the same result with an exponential probability bound. (This
introduces some additional technicalities, so in the interest of keeping the arguments simple, in this paper
we decided to restrict our attention to the point-probability setting.)

In the latter direction it is worth mentioning the permanent anticoncentration conjecture of Aaronson
and Arkhipov [1] (a key ingredient in the analysis of the hardness of the BosonSampling problem in
quantum computing). This is a precise conjecture about the typical size of the permanent of a Gaussian
random matrix, seemingly well outside the reach of current techniques. See [1] for some discussion of
the relevant obstacles; some of these obstacles can be overcome by ideas in this paper, but the critical
obstacle is that existing techniques are not sufficiently sensitive to small differences in the permanent.

1.5. Notation. Let N = {0, 1, 2, . . . } be the set of non-negative integers. We use asymptotic notation
throughout: for functions f = f(n) and g = g(n), we write f = O(g) or g = Ω(f) or f ≲ g to mean that
there is a constant C such that |f(n)| ≤ C|g(n)| for sufficiently large n, and we write f = o(g) to mean
that f/g → 0 as n → ∞. Subscripts on asymptotic notation indicate quantities that should be treated
as constants. Also, all random variables throughout this paper are assumed to be real-valued.

2. A recursive bound

We will actually prove a slight strengthening of Theorem 1.2, where we consider matrices which have
a random part and a fixed part. This is necessary for our recursive approach.

Definition 2.1. For 0 < p < 1 and n ∈ N, let fp(n) be the supremum of Q[per(A)], over all random
matrices A of the following form.
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• For some T ∈ N, let Afix ∈ RT×(n+T ) be a fixed T × (n+T ) matrix containing at least one T ×T
submatrix with nonzero permanent.

• Let Arand ∈ Rn×(n+T ) be a random matrix with independent entries, such that every entry ξ of
Arand satisfies Q[ξ] ≤ p.

• Let A ∈ R(n+T )×(n+T ) be the (n+T )× (n+T ) matrix obtained by concatenating Afix and Arand

(i.e., the first T rows are the rows of Afix, and the last n rows are the rows of Arand).

In Definition 2.1, we think of n as being the “size” of A (the random part Arand has n rows, and in
the proof of Theorem 1.2, we will only really use the randomness of n of its columns). We will prove a
recursive bound for fp(n), see Theorem 2.2 below. To state this bound, for any 0 < p < 1, let us define

τp = 1−
∞∏
s=1

(1− ps), (2.1)

and observe that τp < 1, no matter how close p is to 1. To see this, let Cp be sufficiently large in terms
of p such that exp(−Cpp) ≤ 1 − p, so for every 0 ≤ x ≤ p we have 1 − x ≥ exp(−Cpx), and hence
1− τp =

∏∞
s=1(1− ps) ≥

∏∞
s=1 exp(−Cpp

s) = exp
(
− Cp

∑∞
s=1 p

s
)
= exp(−Cpp/(1− p)) > 0.

Theorem 2.2. For any 0 < p < 1 and t ∈ N and ε > 0, there is δ > 0 and N ∈ N such that for all
n ≥ N we have

fp(n) ≤ exp(−δn) + ε

t∑
s=1

psfp(n− s) + (1 + ε)τp · fp(n− t) + (1 + ε)

n∑
s=t+1

psfp(n− s).

In the course of proving Theorem 2.2, we will also prove the following easier bound (which shall serve
as a base case when proving Theorem 1.2 by induction).

Proposition 2.3. For any p < 1 and n ∈ N, we have

fp(n) ≤ 1−
n∏

s=1

(1− ps) ≤ τp < 1.

Proof of Theorem 1.2 given Theorem 2.2 and Proposition 2.3. As in the theorem statement, fix 0 < p <
1. First, note that it suffices to prove that fp(n) ≤ exp(−cpn) for some cp > 0. Indeed, any random matrix
An as in Theorem 1.2 trivially satisfies the conditions in Definition 2.1 for T = 0, so Q[per(An)] ≤ fp(n).

Recalling that τp < 1, choose µ > 0 such that τp < 1−5µ. Then, choose ε > 0 such that ε < (1−√
p)µ

and (1 + ε)τp < (1 + ε)(1− 5µ) < 1− 4µ. Also, choose t ∈ N such that pt/2 < (1−√
p)µ. Now, let δ > 0

and N ∈ N be as in Theorem 2.2. By making N larger if needed, we may assume that exp(−δN/2) ≤ µ.
By Proposition 2.3 we have fp(n) < 1 for all n ∈ N. So, we can choose some cp > 0 such that fp(n) <

exp(−cpn) for n = 0, 1, . . . , N , and also cp < δ/2 and exp(cp) < p−1/2 and (1− 4µ) exp(cpt) < 1− 3µ.
Let us now prove by induction that fp(n) ≤ exp(−cpn) for all n ∈ N. For n ≤ N this is automatically

guaranteed by the choice of cp. So let us now consider n > N , and assume that we have already shown
fp(n

′) ≤ exp(−cpn
′) for all n′ < n. Then, using Theorem 2.2, we have

fp(n) ≤ exp(−δn) + ε

t∑
s=1

psfp(n− s) + (1 + ε)τp · fp(n− t) + (1 + ε)

n∑
s=t+1

psfp(n− s)

≤ exp(−δn) + ε

t∑
s=1

ps exp(−cp(n−s)) + (1− 4µ) exp(−cp(n−t)) + (1 + ε)

n∑
s=t+1

ps exp(−cp(n−s)).

This yields

fp(n) · exp(cpn) ≤ exp(−(δ − cp)n) + ε

t∑
s=1

ps exp(cps) + (1− 4µ) exp(cpt) + (1 + ε)

n∑
s=t+1

ps exp(cps)

≤ exp(−δn/2) + ε

t∑
s=1

psp−s/2 + (1− 3µ) + (1 + ε)

n∑
s=t+1

psp−s/2

≤ (1− 3µ) + exp(−δN/2) + ε

n∑
s=1

ps/2 +

n∑
s=t+1

ps/2

≤ (1− 3µ) + exp(−δN/2) +
ε

1−√
p
+

pt/2

1−√
p
≤ (1− 3µ) + µ+ µ+ µ = 1,
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as desired. □

3. A relative anticoncentration inequality

A key ingredient in the proof of Theorem 2.2 is the following “relative anticoncentration inequality”,
stating that under certain assumptions, a sum of independent random variables is more anticoncen-
trated than a “randomly thinned-out version of itself”. This is similar to [21, Lemma 7.14] and related
inequalities of Halász [8], used in previous work on the singularity probability of random matrices.

Theorem 3.1. Consider independent random variables X1, . . . , Xn, and for each i = 1, . . . , n, let X ′
i

be an independent copy of Xi. For some integer 1 ≤ k < n/4, let K ⊆ {1, . . . , n} be a uniformly
random subset of exactly k indices (independent from the variables X1, . . . , Xn, X

′
1, . . . , X

′
n). Now, define

X = X1 + · · ·+Xn and X∗
K =

∑
i∈K(Xi −X ′

i), and assume that P[X∗
K = 0] < 1− 4k/n. Then we have

Q[X] ≲

√
k

n
· P[X∗

K = 0]

1− P[X∗
K = 0]

.

The main ingredient to prove Theorem 3.1 is the following (special case of a) theorem of Kesten [11].

Theorem 3.2 ([11, Theorem 2]). Consider independent random variables X1, . . . , Xm and 0 < p < 1,
such that Q[Xi] ≤ p holds for each i = 1, . . . ,m. Then

Q[X1 + · · ·+Xm] ≲
p√

(1− p)m
.

We note that Theorem 3.2 is the only part of this paper that is not self-contained. It was proved
with a simple (but quite ingenious!) combinatorial argument, via an anticoncentration inequality of
Rogozin [19] (which, in this context, is essentially equivalent to the so-called Erdős–Littlewood–Offord
theorem [6]). See also [18] for an alternative Fourier-analytic proof.

In our proof of Theorem 3.1, we will actually need the following slight generalisation of Theorem 3.2,
which compares Q[X1+ · · ·+Xm] to probabilities that the random variables Xi are equal to independent
copies of themselves.

Corollary 3.3. Consider independent random variables X1, . . . , Xn and 0 < p < 1. For each i =
1, . . . , n, let X ′

i be an independent copy of Xi. Suppose that we have P[Xi = X ′
i] ≤ p for at least m ≥ 2

different indices i ∈ {1, . . . , n}. Then

Q[X1 + · · ·+Xn] ≲
p√

(1− p)m
.

To deduce Corollary 3.3 from Theorem 3.2 we will need a few more general inequalities. First, we
record the (near-trivial) fact that a sum of independent random variables is at least as anticoncentrated
as its summands.

Fact 3.4. For independent random variables X,Y we have Q[X + Y ] ≤ Q[X].

Proof. For any z ∈ R we have

P[X + Y = z] = P[X = z − Y ] = E
[
P[X = z − Y |Y ]

]
≤ E

[
Q[X]

]
= Q[X]. □

Next, we record a simple “duplication” inequality for a sum of independent random variables.

Lemma 3.5. Consider independent discrete random variables X1 and X2. Letting X ′
1 and X ′

2 be inde-
pendent copies of X1 and X2, we have

Q[X1 +X2] ≤ P[X1 = X ′
1]

1/2 · P[X2 = X ′
2]

1/2.

In particular (applying the above inequality to the case where X2 has the distribution of −X1), we have

Q[X1 −X ′
1] ≤ P[X1 = X ′

1].

Proof. We have

Q[X1 +X2] = sup
x

∑
z

P[X1 = z]P[z +X2 = x] ≤ sup
x

(∑
z

P[X1 = z]2

)1/2(∑
z

P[z +X2 = x]2

)1/2

by the Cauchy–Schwarz inequality. But note that (for any x ∈ R)∑
z

P[X1 = z]2 =
∑
z

P[X1 = z]P[X ′
1 = z] = P[X1 = X ′

1],
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∑
z

P[z +X2 = x]2 =
∑
z

P[X2 = x− z]P[X ′
2 = x− z] = P[X2 = X ′

2],

and the desired result follows. □

Now, we are ready to prove Corollary 3.3.

Proof of Corollary 3.3. We may assume that P[Xi = X ′
i] ≤ p for i = 1, . . . ,m. By Fact 3.4 we may

furthermore assume that n = m and that m ≥ 2 is even. Also, note that we may assume that X1, . . . , Xm

are discrete random variables2.
By the first part of Lemma 3.5, we see that Q[X1 + · · ·+Xm] is at most

P[(X1 + · · ·+Xm/2) = (X ′
1 + · · ·+X ′

m/2)]
1/2 · P[(Xm/2+1 + · · ·+Xm) = (X ′

m/2+1 + · · ·+X ′
m)]1/2.

Then, note that

P[(X1 + · · ·+Xm/2) = (X ′
1 + · · ·+X ′

m/2)] = P[(X1 −X ′
1) + · · ·+ (Xm/2 −X ′

m/2) = 0]

≤ Q[(X1 −X ′
1) + · · ·+ (Xm/2 −X ′

m/2)].

By the second part of Lemma 3.5, for each i = 1, . . . ,m, we have Q[Xi − X ′
i] ≤ P[Xi = X ′

i] ≤ p, so
Theorem 3.2 yields

P[(X1 + · · ·+Xm/2) = (X ′
1 + · · ·+X ′

m/2)] ≲
p√

(1− p)(m/2)
≲

p√
(1− p)m

.

By exactly the same argument, we obtain

P[(Xm/2+1 + · · ·+Xm) = (X ′
m/2+1 + · · ·+X ′

m)] ≲
p√

(1− p)m
,

and the desired result follows. □

Finally, we use Corollary 3.3 to prove Theorem 3.1.

Proof of Theorem 3.1. Let h = ⌊n/k⌋ and let I1, . . . , Ih ∈ {1, . . . , n} be uniformly random disjoint
subsets of exactly k indices (independent from all other random objects in the statement of Theorem 3.1).
For each j = 1, . . . , h, define

X∗
j =

∑
i∈Ij

(Xi −X ′
i), ρj = P[X∗

j = 0 | Ij ] = P
[∑
i∈Ij

Xi =
∑
i∈Ij

X ′
i

∣∣∣ Ij],
and let λ = 1−P[X∗

K = 0] > 4k/n > 2/h. Note that for each j = 1, . . . , h, the random variable X∗
j on its

own has exactly the same distribution as X∗
K . Thus, we have E[ρ1+ · · ·+ρh] = h ·P[X∗

K = 0] = (1−λ)h.
So, we can fix an outcome of I1, . . . , Ih satisfying ρ1 + · · ·+ ρh ≤ (1− λ)h.

Now, we can have at most (1 − λ/2)h indices j ∈ {1, . . . , h} with ρj ≥ (1 − λ)/(1 − λ/2). Thus,
there are at least (λ/2)h indices j ∈ {1, . . . , h} satisfying ρj < (1 − λ)/(1 − λ/2). Then, Fact 3.4 and
Corollary 3.3 (applied with m = ⌈(λ/2)h⌉ ≥ 2 and p = (1 − λ)/(1 − λ/2) < 1 − λ/2, with the random
variables

∑
i∈Ij

Xi and their independent copies
∑

i∈Ij
X ′

i for j = 1, . . . , h) give

Q[X] ≤ Q
[∑
i∈I1

Xi + · · ·+
∑
i∈Ih

Xi

]
≲

(1− λ)/(1− λ/2)√
(λ/2) · (λ/2)h

≲
1√
h
· 1− λ

λ
≲

√
k

n
· P[X∗

K = 0]

1− P[X∗
K = 0]

. □

Note that Theorem 3.1 only applies under the assumption that P[X∗
K = 0] is sufficiently far away from

1. We record a corollary with an additional condition that allows us to easily verify this assumption.

Corollary 3.6. Consider γ > 0 and 0 < p < 1, and in the setting of Theorem 3.1, assume that
2/γ ≤ k < (1 − p)n/8 and that we have Q[Xi] ≤ p for at least γn indices i ∈ {1, . . . , n}. Then
P[X∗

K = 0] ≤ (1 + p)/2 < 1− 4k/n and consequently

Q[X] ≲

√
k

n
· P[X∗

K = 0]

1− P[X∗
K = 0]

≲p

√
k

n
· P[X∗

K = 0].

2Formally: for each i, write Ai = {x : P[Xi = x] > 0} as the “atomic part” of Xi, and note that for any z we have
P[X1 + · · ·+Xn = z and Xi /∈ Ai for some i] = 0. So, if we alter the behaviour of Xi when Xi /∈ Ai (to make Xi discrete),
this cannot decrease Q[X1 + · · · + Xm]. We can make these alterations in a way that has an arbitrarily small impact on
probabilities of the form P[Xi = X′

i].
6



Proof. Let I be a set of ⌈γn⌉ indices i ∈ {1, . . . , n} satisfying Q[Xi] ≤ p. Then |K∩I| has a hypergeomet-
ric distribution, with mean E[|K ∩ I|] = |I| · k/n ≥ γk and variance Var[|K ∩ I|] ≤ |I| · k/n = E[|K ∩ I|].
So by Chebyshev’s inequality, we have P[K ∩ I = ∅] ≤ 1/E[|K ∩ I|] ≤ 1/(γk) ≤ 1/2. Thus, we have
K ∩ I ̸= ∅ with probability at least 1/2. For any such outcome of K we have P[X∗

K = 0 |K] ≤ p by
Fact 3.4. So, we can conclude that P[X∗

K = 0] ≤ (1 + p)/2. Using k < (1 − p)n/8, it is easy to check
that (1 + p)/2 < 1− 4k/n, and the rest of the statement is obtained by applying Theorem 3.1. □

4. Proof of the recursive bound

In this section we prove Theorem 2.2 (and along the way, Proposition 2.3). So, let 0 < p < 1, and let
A be as in Definition 2.1. Throughout, we will assume without loss of generality that the last T columns
of Afix induce a T × T submatrix with nonzero permanent. We will also use the following notation.

Definition 4.1. In the setting of Definition 2.1:
• For a set I ⊆ {1, . . . , n+ T}, let −I = {1, . . . , n+ T} \ I be the complement of I.
• For i ∈ I, let I − i = I \ {i}, and for i /∈ I, let I + i = I ∪ {i}.
• For a set J ⊆ {1, . . . , n + T}, let A[J ] be the |J | × |J | submatrix of A indexed by the first |J |

rows and the columns indexed by J .
• For s ∈ {1, . . . , n}, let A↑s be the (n + T − s) × (n + T ) submatrix of A consisting of the first

n+ T − s rows.
• For s ∈ {1, . . . , n}, z ∈ R and α > 0, let Ez(s, α) be the event that for more than α

(
n
s

)
of

the
(
n
s

)
size-s subsets I ⊆ {1, . . . , n}, we have per(A[−I]) ̸= z. We also use the shorthand

E(s, α) = E0(s, α) and Ez(s) = Ez(s, 0) and E(s) = E0(s, 0).

Note that the event E(s) precisely means that the (n + T − s) × (n + T ) matrix A↑s contains some
(n+T −s)× (n+T −s) submatrix with non-zero permanent. In particular, E(n) does not depend on the
randomness of Arand (since A↑n = Afix), and holds deterministically by the conditions in Definition 2.1.

The permanent enjoys an analogue of the minor expansion formula for the determinant, which we
record below. This fact allows us to study permanents recursively.

Fact 4.2. Fix a set J ⊆ {1, . . . , n} of size s. We have

per(A[−J ]) =
∑

i∈{1,...,n+T}
i/∈J

ξi per(A[−(J + i)]),

where ξ1, . . . , ξn+T are the entries of the (n+ T − s)-th row of A.

We collect various estimates on probabilities involving the events Ez(s, α). First, the following simple
lemma gives a bound on the probability that per(A[−J ]) = z for all size-(s− 1) subsets J ⊆ {1, . . . , n},
given that there is at least one size-s subset I ⊆ {1, . . . , n} with per(A[−I]) ̸= 0.

Lemma 4.3. For any s ∈ {1, . . . , n}, any z ∈ R and any outcome of A↑s satisfying E(s), we have

P
[
Ez(s− 1)

∣∣∣A↑s
]
≤ ps.

Proof. Conditioning on the given outcome of A↑s, there is some size-s subset I ⊆ {1, . . . , n} satisfying
per(A[−I]) ̸= 0. Write ξ1, . . . , ξn+T for the entries of the (n − s + 1)-th row of Arand, and reveal ξi for
all i ∈ {1, . . . , n+ T} \ I.

Now, consider all the s permanents of the form per(A[−(I − i)]) for i ∈ I. It suffices to show that
(conditioned on the revealed information, using only the randomness of ξi for i ∈ I), the probability that
all these permanents are equal to z is at most ps. This is a fairly immediate consequence of Fact 4.2,
using that Q[ξi] ≤ p for all i ∈ I. Indeed, in our conditional probability space, for each i ∈ I the random
variable per(A[−(I − i)]) only depends on the randomness of ξi, and at most one of the outcomes of ξi
will cause per(A[−(I − i)]) ̸= z (since per(A[−I]) ̸= 0). □

Note that Lemma 4.3 in particular implies P[Ez(s− 1) | E(s)] ≤ ps for any s ∈ {1, . . . , n} and any
z ∈ R. This is already enough to prove Proposition 2.3, as follows.

Proof of Proposition 2.3. Consider any z ∈ R. Recalling that the event E(n) always holds, we have

P[per(A) ̸= z] = P[Ez(0)] ≥ P

[
Ez(0) ∩

n⋂
s=1

E(s)

]
= P[Ez(0) | E(1)]

n∏
s=2

P[E(s− 1) | E(s)] ≥
n∏

s=1

(1− ps),

by Lemma 4.3. The desired result follows. □
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The next lemma is a simple application of Markov’s inequality.

Lemma 4.4. For any s ∈ {1, . . . , n} and 0 < α < 1/2, we have

P
[
E(s, α)

]
≤ fp(n− s)

1− α
≤ (1 + 2α)fp(n− s).

Proof. If E(s, α) holds, there must be at least (1−α)
(
n
s

)
size-s subsets I ⊆ {1, . . . , n} with per(A[−I]) = 0.

For each size-s subset I ⊆ {1, . . . , n}, the matrix A[−I] has the form in Definition 2.1 (with n−s random
rows), so the expected number of such subsets I ⊆ {1, . . . , n} satisfying per(A[−I]) = 0 is at most
fp(n− s)

(
n
s

)
. The desired result then follows from Markov’s inequality. □

Finally, the next lemma is where most of the difficulty lies. It combines the ideas from Lemmas 4.3
and 4.4, together with Theorem 3.1 (our relative anticoncentration inequality).

Lemma 4.5. Fix α > 0. For large n, any s ∈ {1, . . . , n}, and any z ∈ R, we have

P
[
Ez(s− 1) ∩ E(s, α)

]
≤ P

[
Ez(s− 1, α/(4s)) ∩ E(s, α)

]
≤ αpsfp(n− s) + exp(−Ωα,p(n)).

In our proof of Lemma 4.5 we will use the following simple fact about dense set families.

Lemma 4.6. For n ∈ N, s ∈ {1, . . . , n} and α > 0, let F be a collection of at least α
(
n
s

)
size-s subsets

of {1, . . . , n}. Then there is a collection H of |H| ≥ (α/2)s
(
n
s

)
pairs of the form (F,G) with F ∈ F and

G ⊆ F of size |G| = s− 1, such that for each (F,G) ∈ H, there are at least (α/2)(n− s+1) sets F ′ ∈ F
satisfying (F ′, G) ∈ H.

Proof. Consider the bipartite graph whose vertices on the left side correspond to the sets F ∈ F and
whose vertices on the right side correspond to the

(
n

s−1

)
different size-(s − 1) subsets G ⊆ {1, . . . , n}.

We draw an edge between a vertex F on the left and a vertex G on the right if and only if G ⊆ F .
Then the graph has s · |F| ≥ αs

(
n
s

)
edges. There can be at most

(
n

s−1

)
· (α/2)(n − s + 1) = (α/2)s

(
n
s

)
edges (F,G) with deg(G) ≤ (α/2)(n− s+ 1). Thus, the graph has at least (α/2)s

(
n
s

)
edges (F,G) with

deg(G) > (α/2)(n− s+ 1). We can now take H to be the set of these edges. □

Now we prove Lemma 4.5.

Proof of Lemma 4.5. Let Cp be a constant depending only on p such that in the conclusion of Corol-
lary 3.6 we always have Q[X] ≤ Cp ·

√
k/n ·P[X∗

K = 0]. Let us fix some small ν > 0 depending on α and
p such that ν < (1− p)/8 and

√
ν ≤ (α2/4) · (p/Cp).

The first inequality in the statement of Lemma 4.5 follows from the fact that the event Ez(s − 1) =
Ez(s− 1, 0) contains the event Ez(s− 1, α/(4s)). So it suffices to prove the second inequality. Due to the
asymptotic term exp(−Ωα,p(n)) in the statement, we may assume that n is large with respect to p, α, ν.

Let ξ1, . . . , ξn+T be the entries of the (n+T − s+1)-th row of A. Our strategy is to use Corollary 3.6
to estimate the probability of the event Ez(s− 1, α/(4s)), conditioned on an outcome of A↑s such that
E(s, α) holds (using the randomness of ξ1, . . . , ξn+T ). Then, we will sum this estimate over all outcomes
of A↑s satisfying E(s, α) to obtain a bound for the probability of Ez(s− 1, α/(4s)) ∩ E(s, α). In order to
bound the probability of the event Ez(s− 1, α/(4s)) conditioned on an outcome of A↑s, we will consider
the events per(A[−I]) ̸= 0 and per(A[−J ]) ̸= 0 for various choices of nested subsets J ⊆ I ⊆ {1, . . . , n}
of sizes |I| = s and |J | = s− 1. Let (I∗, J∗) be a uniformly random pair of subsets J∗ ⊆ I∗ ⊆ {1, . . . , n}
with |I∗| = s and |J∗| = s − 1, independent from the random matrix A (note that the total number of
such subset pairs is exactly s

(
n
s

)
).

Step 1: Reducing to a linear anticoncentration problem. Consider an outcome of A↑s such that
E(s, α) holds. Let F be the family of all size-s subsets I ⊆ {1, . . . , n} with per(A[−I]) ̸= 0 (note that
this family F is determined by the outcome of A↑s). By the definition of the event E(s, α) = E0(s, α), we
have |F| > α

(
n
s

)
. Thus, by Lemma 4.6 we can find a collection H of at least (α/2)s

(
n
s

)
pairs (I, J) with

I ∈ F and J ⊆ I of size |J | = s − 1, such that for each (I, J) ∈ H, there are at least (α/2)(n − s + 1)
sets I ′ ∈ F satisfying (I ′, J) ∈ H.

Let us say that a set I ∈ F is parental if it has a size-(s − 1) subset I ′ ⊆ I with per(A[−I ′]) ̸= z
(we can think of I ′ as a child of I). Note that for each size-(s − 1) subset I ′ ⊆ {1, . . . , n} there can be
at most n − s + 1 different sets I ∈ F with I ′ ⊆ I (so every child has at most n − s + 1 parents). In
particular, the number of size-(s− 1) subsets I ′ ⊆ {1, . . . , n} with per(A[−I ′]) ̸= z is at least

|{I ∈ F : I parental}|
n− s+ 1

≥ |{(I, J) ∈ H : I parental}|
s(n− s+ 1)

,
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observing that for every I ∈ F there can be at most s different sets J with (I, J) ∈ H.
Thus, if for more than half of the pairs (I, J) ∈ H the set I is parental, we have more than

|H|/2
s(n− s+ 1)

≥
(α/4)s

(
n
s

)
s(n− s+ 1)

=
(α/4)(n− s+ 1)

(
n

s−1

)
s(n− s+ 1)

=
α

4s
·
(

n

s− 1

)
different size-(s− 1) subsets I ′ ⊆ {1, . . . , n} with per(A[−I ′]) ̸= z, so the event Ez(s− 1, α/(4s)) holds.

Therefore, we can conclude

P
[
Ez(s− 1, α/(4s))

∣∣∣A↑s
]
≤ P

[
I is not parental for at least half of the pairs (I, J) ∈ H

∣∣∣A↑s
]

≤
E
[
|{(I, J) ∈ H : I not parental}|

∣∣A↑s]
|H|/2

=
2

|H|
∑

(I,J)∈H

P
[
I not parental

∣∣∣A↑s
]

= 2 · P
[
I∗ not parental

∣∣∣A↑s, EH
]
, (4.1)

where EH denotes the event that (I∗, J∗) ∈ H (noting that conditional on this event, the pair (I∗, J∗) is
a unformly random pair in H). Now, note that

P
[
I∗ not parental

∣∣∣A↑s, EH
]
≤ P

[
per(A[−J∗]) = z

∣∣∣A↑s, EH
]
· ps−1. (4.2)

The justification of (4.2) is very similar to the proof of Lemma 4.3 (recalling Fact 4.2). If we reveal A↑s

and an outcome (I∗, J∗) ∈ H, and we reveal ξi for i ∈ {1, . . . , n+ T} \ J∗, then this already determines
per(A[−J∗]). If per(A[−J∗]) ̸= z then I∗ is automatically parental. Furthermore, in the resulting
conditional probability space given this revealed information, for each i ∈ J∗ the random variable
per(A[−(I∗ − i)]) only depends on the randomness of ξi, and at most one of the possible outcomes
of ξi will cause per(A[−(I∗ − i)]) = z (here we are using that per(A[−I∗]) ̸= 0 as I∗ ∈ F). We need
per(A[−(I∗ − i)]) = z for all i ∈ J∗ for I∗ not to be parental, and we recall our assumption Q[ξi] ≤ p.

Combining (4.1) and (4.2) yields

P
[
Ez(s− 1, α/(4s))

∣∣∣A↑s
]
≤ 2ps−1 · P

[
per(A[−J∗]) = z

∣∣∣A↑s, EH
]

(4.3)

for any outcome of A↑s satisfying E(s, α).
Note that this in particular implies P[Ez(s− 1, α/(4s)) |A↑s] ≤ 2ps−1. If s ≥ n/2, then averaging this

over the possible outcomes of A↑s satisfying E(s, α) already yields the bound

P
[
Ez(s− 1, α/(4s)) ∩ E(s, α)

]
≤ P

[
Ez(s− 1, α/(4s))

∣∣∣ E(s, α)] ≤ 2ps−1 ≤ 2pn/2−1 = exp(−Ωp(n)).

Therefore for the rest of the proof we may assume s < n/2.
Now, note that if we reveal A↑s and (I∗, J∗), then in the resulting conditional probability space,

per(A[−J∗]) is a linear function of ξ1, . . . , ξn+T (by Fact 4.2). For every i ∈ {1, . . . , n + T} \ J∗,
the coefficient of ξi in this linear function is precisely per(A[−(J∗ + i)]). We will apply our relative
anticoncentration result in Corollary 3.6 to this linear function (or, more precisely, to the linear function
obtained by omitting the last T terms).

Step 2: Applying the relative anticoncentration inequality. Let k = ⌊ν(n− s+ 1)⌋, and let A∗

be a random matrix obtained from A[−J∗] as follows. First, for every entry ξi in the (n+ T − s+ 1)-th
row of A[−J∗], replace this entry with ξi − ξ′i, where ξ′i is an independent copy of ξi. Then, choose a
uniformly random subset K ⊆ {1, . . . , n}\J∗ of exactly k of the first n−s+1 column indices of A[−J∗],
and set all the entries in the (n− s+ 1)-th row to zero except those indexed by K.

Claim 4.7. For any fixed outcomes of A↑s and (I∗, J∗) ∈ H, we have

P
[
per(A[−J∗]) = z

∣∣∣A↑s, (I∗, J∗)
]
≤ Cp ·

√
ν · P

[
per(A∗) = 0

∣∣∣A↑s, (I∗, J∗)
]
.

Proof. As in the claim statement, let us fix outcomes of A↑s and (I∗, J∗) ∈ H, and consider the conditional
probability space obtained by conditioning on these outcomes. For a random variable Y , we write
Q[Y |A↑s, (I∗, J∗)] = supy P[Y = y |A↑s, (I∗, J∗)].

As (I∗, J∗) ∈ H, there are at least (α/2)(n− s+ 1) different sets I ′ ∈ F with (I ′, J∗) ∈ H. For all of
these sets I ′ we have J∗ ⊆ I ′ and per(A[−I ′]) ̸= 0. In other words, there are at least (α/2)(n − s + 1)
indices i ∈ {1, . . . , n} \ J∗ such that per(A[−(J∗ + i)]) ̸= 0.
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Now, let us define Xi = per(A[−(J∗ + i)]) · ξi for all i ∈ {1, . . . , n + T} \ J∗. Here, the coefficient
per(A[−(J∗ + j)]) is already determined by A↑s and (I∗, J∗), so after revealing A↑s and (I∗, J∗), the
random variable Xi is a rescaling of ξi. Thus, the random variables Xi for i ∈ {1, . . . , n + T} \ J∗

are independent in the conditional conditional probability space obtained by revealing A↑s and (I∗, J∗).
Furthermore, by Fact 4.2 we have per(A[−J∗]) =

∑
i∈{1,...,n+T}\J∗ Xi. We can now apply Corollary 3.6

with γ = α/2 and the random variables Xi for i ∈ {1, . . . , n} \ J∗. At least (α/2)(n − s + 1) of these
random variables satisfy Q[Xi |A↑s, (I∗, J∗)] ≤ p, since this holds for all indices i ∈ {1, . . . , n} \ J∗ such
that per(A[−(J∗ + i)]) ̸= 0 (also noting that k = ⌊ν(n− s+ 1)⌋ ≥ ⌊νn/2⌋ ≥ 4/α if n is sufficiently large
in terms of p, α and ν). This yields

Q
[
per(A[−J∗])

∣∣∣A↑s, (I∗, J∗)
]
= Q

[ ∑
i∈{1,...,n+T}\J∗

Xi

∣∣∣∣∣A↑s, (I∗, J∗)

]

≤ Q

[ ∑
i∈{1,...,n}\J∗

Xi

∣∣∣∣∣A↑s, (I∗, J∗)

]

≤ Cp ·
√

k

n− s+ 1
· P
[
per(A∗) = 0

∣∣∣A↑s, (I∗, J∗)
]
.

Here, for the first inequality we used Fact 3.4, and for the second inequality we used Corollary 3.6, noting
that per(A∗) =

∑
i∈K per(A[−(J∗+ i)])(ξi−ξ′i) =

∑
i∈K(Xi−X ′

i) if we define X ′
i = per(A[−(J∗+ i)]) ·ξ′i

for i ∈ {1, . . . , n} \ J∗ (then X ′
i is an independent copy of Xi in this conditional probability space).

Recalling k ≤ ν(n− s+ 1), we obtain the desired inequality. □

Averaging the inequality in Claim 4.7 over all possible outcomes of (I∗, J∗) ∈ H yields

P
[
per(A[−J∗]) = z

∣∣∣A↑s, EH
]
≤ Cp ·

√
ν · P

[
per(A∗) = 0

∣∣∣A↑s, EH
]
. (4.4)

Now, for every fixed outcome of A↑s satisfying E(s, α), recall that |H| ≥ (α/2)s
(
n
s

)
, and that (I∗, J∗) is

independent from A↑s. This implies

P
[
EH
∣∣∣A↑s

]
= P

[
(I∗, J∗) ∈ H

∣∣∣A↑s
]
=

|H|
s
(
n
s

) ≥ α/2.

Therefore we obtain

P
[
per(A∗) = 0

∣∣∣A↑s
]
≥ P

[
per(A∗) = 0 and EH

∣∣∣A↑s
]
≥ α

2
· P
[
per(A[−J∗]) = z

∣∣∣A↑s, EH
]
.

Combining this with (4.3) and (4.4) yields

P
[
Ez(s− 1, α/(4s))

∣∣∣A↑s
]
≤ 2Cp

√
νps−1 · P

[
per(A∗) = 0

∣∣∣A↑s, EH
]

≤ 4Cp
√
ν

α
ps−1 · P

[
per(A∗) = 0

∣∣∣A↑s
]
≤ αps · P

[
per(A∗) = 0

∣∣∣A↑s
]

for every outcome of A↑s satisfying E(s, α), where for the last inequality we used
√
ν ≤ (α2/4) · (p/Cp).

Summing over the possible outcomes of A↑s satisfying E(s, α), we deduce that

P
[
Ez(s− 1, α/(4s)) ∩ E(s, α)

]
≤ αps · P

[
per(A∗) = 0 ∩ E(s, α)

]
≤ αps · P

[
per(A∗) = 0

]
. (4.5)

Step 3: Recursion. Now, note that the permanent is unaffected by rearranging rows. Let A′ be
obtained from A∗ by moving row (n+ T − s+ 1) (the row we modified to get A∗ from A[−J∗]) directly
after row T , to become the new (T + 1)-th row. Note that the last T entries of the (n + T − s + 1)-th
row of A∗ are always zero, hence the last T entries of the (T + 1)-th row of A′ are always zero (and also
note that the T × T submatrix of A′ in the first T rows and last T columns has a non-zero permanent,
since this is precisely the submatrix in the last T columns of Afix).

Suppose we reveal an outcome of J∗ and an outcome of the (T +1)-th row of A′ which is not all zero.
Then, the first T + 1 rows of A′ contain a (T + 1)× (T + 1) submatrix with nonzero permanent (in the
last T columns, together with any column for which there is a nonzero entry in the (T + 1)-th row).
So, conditional on revealed information, A′ has the form in Definition 2.1, with n− s random rows (and
T + 1 fixed rows), so the conditional probability that per(A′) = 0 is at most fp(n− s). This shows

P
[
per(A∗) = 0

]
= P

[
per(A′) = 0

]
≤ P

[
the (T + 1)-th row of A′ is all-zero

]
+ fp(n− s).
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Now, note that the (T +1)-th row of A′ is all-zero if and only if all entries of the (n+T −s+1)-th row of
A∗ are zero. The probability of this is at most pk ≤ p⌊νn/2⌋ = exp(−Ωp,α(n)) (since Q[ξi−ξ′i] ≤ Q[ξi] ≤ p
for every i ∈ K). Thus, we obtain

P
[
per(A∗) = 0

]
≤ fp(n− s) + exp(−Ωp,α(n)),

and together with (4.5) we can conclude

P
[
Ez(s− 1, α/(4s)) ∩ E(s, α)

]
≤ αps ·

(
fp(n− s) + exp(−Ωα,p(n))

)
. □

Now, we deduce Theorem 2.2.

Proof of Theorem 2.2. Recalling that the event E(n) holds deterministically, we can observe that

P[per(A) = z] = P
[
Ez(0)

]
= P

[
Ez(0) ∩ E(n)

]
≤ P

[
Ez(0) ∩ E(t)

]
+

n∑
s=t+1

P
[
E(s− 1) ∩ E(s)

]
. (4.6)

We can further break down the above terms, as follows. Let α = αt = ε/3, and for all 1 ≤ s ≤ t let
αs−1 = αs/(4s). Then for s = t+ 1, . . . , n, we have

P
[
E(s− 1) ∩ E(s)

]
= P

[
E(s− 1) ∩ (E(s) \ E(s, α))

]
+ P

[
E(s− 1) ∩ E(s, α)

]
, (4.7)

and furthermore

P
[
Ez(0) ∩ E(t)

]
≤ P

[
Ez(0) ∩ (E(t)\E(t, α))

]
+ P

[
Ez(0) ∩ E(t, α)

]
≤ P

[
Ez(0) ∩ (E(t)\E(t, α))

]
+P
[
Ez(0) ∩ E(1, α1)

]
+

t∑
s=2

P
[
E(s−1, αs−1) ∩ E(s, αs)

]
(4.8)

holds. We can directly substitute Lemma 4.5 into some of the terms in (4.7) and (4.8). To bound the
other terms, let us write supE P[F |A↑s] and infE P[F |A↑s] to indicate a supremum or infimum over all
outcomes of A↑s satisfying an event E . Then, by Lemmas 4.3 and 4.4, for s = t+ 1, . . . , n we obtain

P
[
E(s− 1) ∩ (E(s) \ E(s, α))

]
≤ P

[
E(s, α)

]
· P
[
E(s− 1)

∣∣∣ E(s) \ E(s, α)]
≤ P

[
E(s, α)

]
· sup
E(s)

P
[
E(s− 1)

∣∣∣A↑s
]
≤ (1 + 2α)fp(n− s) · ps, (4.9)

as well as (recalling the definition of τp in (2.1))

P
[
Ez(0) ∩ (E(t)\E(t, α))

]
≤ P

[
E(t, α)

]
·

(
1− P

[
Ez(0)

∣∣∣ E(t) \ E(t, α)])

≤ P
[
E(t, α)

]
·

(
1− inf

E(1)
P
[
Ez(0)

∣∣∣A↑s
]
·

t∏
s=2

inf
E(s)

P
[
E(s− 1)

∣∣∣A↑s
])

≤ (1 + 2α)fp(n− t) ·

(
1−

t∏
s=1

(1− ps)

)
≤ (1 + 2α)τp · fp(n− t). (4.10)

Substituting Lemma 4.5 and (4.9) into (4.7), for s = t+ 1, . . . , n, we obtain

P
[
E(s− 1) ∩ E(s)

]
≤ (1 + 3α)psfp(n− s) + exp(−Ωε,p(n)),

and substituting Lemma 4.5 and (4.10) into (4.8), we obtain

P
[
Ez(0) ∩ E(t)

]
≤ (1 + 2α)τp · fp(n− t) +

t∑
s=1

αpsfp(n− s) + exp(−Ωε,p,t(n)).

Substituting the above two estimates into (4.6) yields

P[per(A) = z] ≤ (1 + 2α)τp · fp(n− t) + α

t∑
s=1

psfp(n− s) + (1 + 3α)

n∑
s=t+1

psfp(n− s) + exp(−Ωε,p,t(n)),

as desired (recalling α = ε/3). □
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