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Abstract. An ordered r-matching is an r-uniform hypergraph matching equipped with an ordering
on its vertices. These objects can be viewed as natural generalisations of r-dimensional orders. The
theory of ordered 2-matchings is well-developed and has connections and applications to extremal and
enumerative combinatorics, probability, and geometry. On the other hand, in the case r ≥ 3 much less is
known, largely due to a lack of powerful bijective tools. Recently, Dudek, Grytczuk and Ruciński made
some first steps towards a general theory of ordered r-matchings, and in this paper we substantially
improve several of their results and introduce some new directions of study. Many intriguing open
questions remain.

1. Introduction

A matching is a graph with the property that every vertex is incident to exactly one edge (equivalently,
a matching is a partition of the vertex set into pairs). Given a partition of the vertex set into two equal-
size parts V1, V2, we say that a matching is bipartite if every edge is between the two parts.

Matchings are fundamental objects in graph theory (and beyond), where one is usually interested in
the existence and identification of matchings inside larger graphs (see for example the monograph of
Lovász and Plummer [48]). However, matchings can be very interesting objects in their own right, if
one puts an ordering on the set of vertices (for example, we could restrict our attention to matchings on
vertex sets of the form {1, . . . , 2n}, and consider the natural ordering of the integers).

In particular, in an ordered matching there are three different ways that a pair of distinct edges e, e′

can “interact with each other”, as follows (write e[1] < e[2] for the two vertices of e, write e′[1] < e′[2] for
the two vertices of e′, and assume without loss of generality that e[1] < e′[1]).

• We could have e[1] < e[2] < e′[1] < e′[2] (that is to say, one edge fully comes before the other
one). This configuration is called an alignment.

• We could have e[1] < e′[1] < e[2] < e′[2] (that is to say, the two edges are interleaved with each
other). This configuration is called a crossing.
• We could have e[1] < e′[1] < e′[2] < e[2] (that is to say, one of the two edges is “within” the

other). This configuration is called a nesting.
It is a classical result (first proved by Errera [26]) that the crossing-free matchings on {1, . . . , 2n} are
enumerated by the Catalan numbers Cn, and an ingenious bijection (see [57]) shows that there are also
exactly Cn nesting-free matchings on {1, . . . , 2n}. Note that a matching M on {1, . . . , 2n} is alignment-
free if and only if every edge is between {1, . . . , n} and {n+ 1, . . . , 2n} (i.e., if M is a bipartite matching
with these two parts). Such matchings are in correspondence with permutations σ ∈ Sn, and there are
therefore n! of them.

Two of the most important parameters of a permutation σ ∈ Sn are the length L↗(σ) of its longest
increasing subsequence and the length L↘(σ) of its longest decreasing subsequence (see for example
[53, 56] for surveys on the study of these parameters). Two of the highlights in this area are the Erdős–
Szekeres theorem [25], which says that we always have L↗(σ) ≥

√
n or L↘(σ) ≥

√
n (i.e., it is not

possible to simultaneously avoid long decreasing subsequences and long increasing subsequences), and
the Robinson–Schensted–Knuth correspondence [19, 44, 54] between permutations and Young tableaux,
which can be used to enumerate permutations σ ∈ Sn by their values of L↗(σ) and L↘(σ) (and in
particular, to study the behaviour of L↗(σ) and L↘(σ) for a random permutation σ ∈ Sn).
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Recalling that permutations σ ∈ Sn are in correspondence with bipartite matchings between {1, . . . , n}
and {n + 1, . . . , 2n}, it turns out that increasing and decreasing subsequences can be described in the
language of configurations in matchings: an increasing subsequence corresponds to a set of edges which
are pairwise crossing (which we call a crossing-clique), and a decreasing subsequence corresponds to a
set of edges which are pairwise nesting (which we call a nesting-clique).

Extending the huge body of work on increasing and decreasing subsequences, there has been quite
some work (see for example [5,6,17,39,41,43,45,56]), studying nesting-cliques and crossing-cliques (and
alignment-cliques, which have the obvious definition) in general matchings. It turns out that many
of the techniques that are effective for permutations have natural analogues for general matchings (in
particular, there is a variant of the Robinson–Schensted–Knuth correspondence relating matchings to
oscillating tableaux ; see [56]).

Very recently, Dudek, Grytczuk and Ruciński [21, 22] made some first steps towards extending the
theory of ordered matchings to ordered hypergraph matchings (in an r-uniform hypergraph matching,
every edge contains exactly r vertices, and every vertex is incident to exactly one edge). The jump
from graphs to hypergraphs seems to introduce a number of serious difficulties, which should perhaps
not be surprising: in much the same way that an ordered matchings generalise permutations, ordered
r-uniform hypergraph matchings generalise (r − 1)-tuples of permutations (which are sometimes called
“r-dimensional orders”, as they can be described by sets of points in r-dimensional space). When r ≥ 3,
there is no known analogue of the Robinson–Schensted–Knuth correspondence for r-dimensional orders,
and there are a number of longstanding open problems (see for example the survey [12]).

In this paper we substantially extend and improve the results in [21,22], discovering some surprisingly
intricate phenomena and moving towards a more complete theory of ordered hypergraph matchings. We
also draw attention to a large number of compelling open problems.

1.1. Ordered hypergraph matchings: basic notions. We say that a (hyper)graph H is ordered if
its vertex set V (H) is equipped with a total order (one may think of graphs and hypergraphs which have
vertex set {1, . . . , N} for some N).

Definition 1.1. An ordered hypergraph is said to be an r-matching if every edge has exactly r vertices,
and every vertex is contained in exactly one edge. An r-matching is said to be r-partite if, when we
divide the vertex set into r contiguous intervals of equal length, every edge of the matching has exactly
one vertex in each interval. The size of a matching M is its number of edges.

Note that there are
(rn)!

(r!)nn!
(1.1)

different r-matchings on the vertex set {1, . . . , rn}. The r-partite r-matchings on {1, . . . , rn} are in
correspondence with (r−1)-tuples of permutations (σ1, . . . , σr−1) ∈ Sr−1

n , and there are therefore exactly
(n!)r−1 of them.

Definition 1.2. An r-pattern is an r-matching of size 2 (on the vertex set {1, . . . , 2r}, say). We can
represent an r-pattern by a string of “A”s and “B”s starting with “A” (where the vertices from one edge
are represented with “A”, and the vertices of the other edge are represented with “B”).

Note that there are exactly (2 · 2)!/(22 · 2) = 3 different 2-patterns: the alignment (represented by
AABB), the crossing (represented by ABAB) and the nesting (represented by ABBA). The crossing
and nesting are 2-partite, but the alignment is not (in fact, as we discussed earlier in the introduction,
avoidance of the alignment pattern is equivalent to 2-partiteness).

Definition 1.3. For an r-pattern P , an r-matching M is said to be a P -clique if every pair of edges
of M are order-isomorphic to P . For any r-pattern P and r-matching M , let LP (M) be the size of the
largest P -clique in M .

In total, there are (2r)!/(2(r!)2) different r-patterns, but there is a subtlety that occurs only for
uniformities r ≥ 3: for some r-patterns P it is simply not possible to have a large P -clique.

Definition 1.4. We say that an r-pattern P is collectable if there are arbitrarily large P -cliques.
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For example, it is easy to see that the 3-pattern AABABB is not collectable. In fact, Dudek, Grytczuk
and Ruciński [22] showed for every non-collectable pattern, the largest possible clique size is 2. To this
end, they gave a characterisation of the collectable patterns: they are precisely those patterns that are
splittable, as follows.

Definition 1.5. A run in a pattern P is a sequence of consecutive vertices in the same edge of P . A
pattern P is splittable if it can be partitioned into blocks of consecutive vertices, each consisting of two
runs of the same length coming from different edges of P . If P is splittable, then this partition is uniquely
determined; we call it the block partition of P .

For example, the pattern AABBABBA is splittable (the divisions between the blocks are described
by |AABB|AB|BA| and the block partition has parts {1, 2, 3, 4}, {5, 6} and {7, 8}). It is easy to check
that there are exactly 3r−1 different collectable r-patterns, exactly 2r−1 of which are r-partite (note that
the r-partite r-patterns are precisely the collectable r-patterns whose block partition has r blocks).

For every collectable r-pattern P , there is only one way to form a P -clique on a given set of vertices.
For example, in the case r = 2, the only way to form an alignment-clique on {1, . . . , 2n} is with the edges

{1, 2}, {3, 4}, . . . , {2n− 1, 2n},

the only way to form a crossing-clique is with the edges

{1, n+ 1}, {2, n+ 2}, . . . , {n, 2n},

and the only way to form a nesting-clique is with the edges

{1, 2n}, {2, 2n− 1}, . . . , {n, n+ 1}.

We are now ready to present the main results of the paper. To briefly summarise: in Section 1.2
we consider Ramsey–type questions (generalising the Erdős–Szekeres theorem), in Section 1.3 we study
the size of the largest P -clique in a random ordered matching, and in Section 1.4 we give estimates
for the number of ordered hypergraph matchings avoiding P -cliques of a given size. Throughout, we
discuss a number of auxiliary results we prove along the way; in particular, in Section 1.5 we discuss
some contributions to the extremal theory of ordered hypergraphs, which we believe to be of independent
interest. In Section 1.6 we present a large number of open problems and directions for further study.

1.2. Ramsey-type questions. Recall that the Erdős–Szekeres theorem says that every permutation
σ ∈ Sn has an increasing or decreasing subsequence of length at least

√
n (and it is easy to construct

a permutation showing that this is best-possible, by taking a certain type of “product” of an increasing
sequence of length

√
n with a decreasing sequence of length

√
n). The Erdős–Szekeres theorem falls

under the umbrella of Ramsey theory : no matter how “disordered” a permutation is, it must have a long
subsequence which is “completely homogeneous”.

In [21], Dudek, Grytczuk and Ruciński adapted the Erdős–Szekeres theorem to ordered (2-uniform)
matchings. They showed that in every 2-matching M of size n, one can find an alignment-clique,
a crossing-clique or a nesting-clique of size at least n1/3. They also showed that this result is best-
possible, with the same type of product construction used to demonstrate optimality of the Erdős–
Szekeres theorem.

To discuss the situation for higher-uniformity hypergraphs, we introduce some notation.

Definition 1.6. Let L(M) = maxP LP (M) be the size of the largest clique (of any pattern) in M , and
let Lr(n) be the minimum value of L(M) among all ordered r-matchings of size n.

In this notation, the aforementioned result of Dudek, Grytczuk and Ruciński [21] is L2(n) = dn1/3e.
As first observed by Burkill and Mirsky [15] and Kalmanson [40], it is actually very easy to iterate

the Erdős–Szekeres theorem to obtain an optimal bound for r-partite r-matchings: every r-partite r-
matching M of size n has L(M) ≥ n1/2r−1

, and a product construction shows that this is best possible1.
It is not quite so obvious how to prove a bound on Lr(n) by iterating the bound L2(n) ≥ n1/3, but in a
follow-up paper [22], Dudek, Grytczuk and Ruciński showed that this is indeed possible if one is willing

1In the language of permutations, this can be equivalently formulated as the fact that in any (r − 1)-tuple of length-n
permutations there is a set of at least n1/2r−1

indices in which each of our permutations is monotone. This is one of many
different ways to generalise the Erdős–Szekeres theorem to “higher dimensions”; for example, see also [13,14,28,33,46,59].
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to give up a constant factor: they proved the general lower bound Lr(n) ≥ crn
1/3r−1

(for some cr > 0

depending on r).
Naïvely, this seems to suggest that Lr(n) is of order n1/3r−1

(viewing r as a constant, while n is
large). However, it is not clear how to prove a corresponding upper bound using the usual “product-
type” constructions, because cliques can interact with each other in surprisingly intricate ways. Via
product-type constructions, Dudek, Grytczuk and Ruciński were only able to prove the upper bound
Lr(n) ≤ n1/(2r−1+2).

As our first result, we significantly improve both the lower and upper bounds for Lr(n), showing that
the exponent scales roughly like 1/2r.

Theorem 1.7. For r ≥ 2, we have
1

r − 1
· n1/((r+1)2r−2) ≤ Lr(n) ≤ dn1/(2r−1)e.

The upper bound in Theorem 1.7 comes from a product-like construction, and the lower bound in our
proof of Theorem 1.7 is proved via an argument that partitions the possible r-patterns into roughly 2r

subsets with “poset-like” structure. It is possible to push this method further, obtaining slightly stronger
lower bounds by considering more intricate partitions of the r-patterns, and we are actually not sure what
the limit of the method is. As an illustration, with some intricate combinatorial analysis we managed to
use our method to obtain the correct order of magnitude of L3(n) and L4(n).

Theorem 1.8. We have
1

2
· n1/7 ≤ L3(n) ≤ n1/7,

1

4
· n1/15 ≤ L4(n) ≤ n1/15.

In Section 3, we describe our strategy to prove lower bounds, and show how to use it to prove the
general lower bound on Lr(n) in Theorem 1.7 and the sharp lower bound on L3(n) in Theorem 1.8. The
proof of the sharp lower bound on L4(n) follows a similar approach but has much more complicated
casework; we defer it to Appendix A. In Section 4 we prove the upper bound in Theorem 1.7 (which also
implies the upper bounds in Theorem 1.8).

1.3. Random matchings. One of the most notorious problems in the theory of permutations is the
Ulam–Hammersley problem, to describe the distribution of the longest increasing permutation L↗(σ) in
a random permutation σ ∈ Sn. This problem was famously resolved by Baik, Deift and Johansson [4],
but one of the most important milestones along the way was a theorem of Logan and Shepp [47] and
Vershik and Kerov [61] (see also the alternative proofs [1,35,37,55]), establishing that the expected value
of L↗(σ) is asymptotically 2

√
n.

These results were extended to random matchings by Baik and Rains [6] (see also [5, 56]). Specif-
ically, they proved that in a random matching M on {1, . . . , 2n}, the expected values of Lcrossing(M)

and Lnesting(M) are both (
√

2 + o(1))
√
n (as part of a tour-de-force where they found the asymptotic

distribution of these quantities).
All this work uses variations on the Robinson–Schensted–Knuth correspondence (or related bijective

tools), and does not easily generalise to hypergraphs (or to higher dimensions). For example, if M is
a random r-partite r-matching, then for any r-partite r-pattern P , the random variable LP (M) has
the same distribution as the length of the longest common increasing subsequence in r − 1 independent
random permutations σ1, . . . , σr−1 ∈ Sn. This random variable is notoriously hard to study: Bollobás
and Winkler [7] proved that its expected value is asymptotic to crn1/r for some constant cr > 0, but the
value of cr is unknown for all r ≥ 3.

In [22] (improving their results in [21]), Dudek, Grytczuk and Ruciński proved that there are constants
c′r, c

′′
r ≥ 0 such that for any collectable r-pattern P , and a random r-matching M , we have c′rn1/r ≤

LP (M) ≤ c′′rn1/r whp2. They also conjectured that LP (M)/n1/r converges in probability, to a constant
that only depends on r. However, this conjecture is already false for r = 2: via analysis of a simple renewal
process, Justicz, Scheinerman and Winkler [39] proved that for a random matchingM on {1, . . . , 2n}, the
size of the largest alignment-clique is (2/

√
π+ o(1))

√
n whp, while the work of Baik and Rains described

2We say that an event holds with high probability, or whp for short, if it holds with probability 1− o(1). Here and for the
rest of the paper, asymptotics are as n→∞, unless explicitly stated otherwise.
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above implies that the largest crossing-clique and nesting-clique both have size (
√

2 + o(1))
√
n. (This

was likely missed by Dudek, Grytczuk and Ruciński on account of the result in [39] being stated in the
language of random interval graphs, but the equivalence to random matchings is straightforward).

Combining a subadditivity argument with Talagrand’s concentration inequality, we are able to show
that for a collectable pattern P and a random matching M , the random variable LP (M)/n1/r does
converge to a limit. This limit may depend on P , but only through the type of P , as follows.

Definition 1.9. Let P be an r-pattern with block partition J1 ∪ · · · ∪ J`. The type of P is the partition
|J1|/2 + · · ·+ |J`|/2 of r (in the number-theoretic sense).

For example, |AABB|AB|BA| and |AB|AABB|AB| both have type 2 + 1 + 1.

Theorem 1.10. Fix an r-pattern P , and let M be a random r-matching of size n. Then we have
LP (M)

n1/r

p→ bP

for some bP > 0 depending only on the type of P .

Actually determining the constants bP seems to be a hard problem (in particular, if P is an r-partite
pattern then our proof shows that bP can be expressed in terms of the constant cr in the Bollobás–
Winkler theorem described above). However, we are able to prove some bounds on the bP in some
special cases. In particular, we show that the conjecture of Dudek, Grytczuk and Ruciński is false for
all r ≥ 2. (Recall that the Γ function is the analytic continuation of the factorial function).

Proposition 1.11. Let the constants bP be as in Theorem 1.10.
(1) If P has type r (i.e., if the block partition of P has a single block), then bP = 1/Γ((r + 1)/r).
(2) If P has type 1 + · · ·+ 1 (i.e., if P is r-partite), then bP = cr(r!)

1/r/r > 1/Γ((r + 1)/r), where
cr is the constant from the Bollobás–Winkler theorem mentioned earlier in this section.

We prove Theorem 1.10 and Proposition 1.11 in Section 6, after proving a certain necessary generali-
sation of the Bollobás–Winkler theorem in Section 5.

1.4. Enumeration. For an r-pattern P , let NP (n) denote the number of ordered r-matchings on the
vertex set {1, . . . , rn} which are P -free (i.e., no two edges form P ). First notice that if P is not r-
partite then every r-partite matching is P -free. In particular, NP (n) is at least the number of r-partite
matchings of size n, which is exactly (n!)r−1. In combination with (1.1) (and Stirling’s approximation)
this is already enough to approximate NP (n) up to exponential factors (for constant r).

Proposition 1.12. Fix a constant r ∈ N. If P is not r-partite then

NP (n) = eOr(n)n(r−1)n.

(In this paper, subscripts on asymptotic notation indicate quantities that should be viewed as con-
stants: the constant factor implicit in “Or(n)” is allowed to depend on r).

The case where P is r-partite is more delicate (and the value of NP (n) is quite different), but we are
able to obtain estimates of similar quality, as follows.

Theorem 1.13. Fix a constant r ∈ N. If P is r-partite then

NP (n) = eOr(n)n(r−1−1/(r−1))n.

Remark 1.14. In the case r = 2 there are only two possibilities for an r-partite pattern P : a crossing
|AB|AB| or a nesting |AB|BA|. As discussed in the introduction, NP (n) is exactly the same in both
cases (in particular, there is a well-known bijection between crossing-free and nesting-free matchings of a
given size). However, this does not generalise straightforwardly to higher dimensions: a computer search
shows that if P is the 3-uniform pattern represented by |AB|AB|AB|, then NP (4) = 8626, whereas if P
is the 3-uniform pattern represented by |AB|BA|BA| we have NP (4) = 8630.

The lower bound in Theorem 1.13 is a direct consequence of a result due to Brightwell [11] on linear
extensions of r-dimensional posets, but the upper bound is new (it is obtained by a general connection
to extremal ordered hypergraph theory).

We are also interested in enumerating ordered matchings by the size of their largest P -clique. We
write NP,m(n) for the number of ordered r-matchings M on the vertex set {1, . . . , rn} which satisfy
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LP (M) < m (i.e., they do not contain a P -clique of size m). Note that if P is not r-partite, then the
same considerations as for Proposition 1.12 show that NP,m(n) = eOr(n)n(r−1)n for all m (i.e., varying m
can only affect NP,m(n) by a factor of eOr(n)). However, if P is r-partite, we get a significant dependence
on m, as per the following generalisation of Theorem 1.13 (note that Theorem 1.13 corresponds to the
case m = 2).

Theorem 1.15. Fix a constant r ∈ N. If P is r-partite then for any 2 ≤ m ≤ n1/r we have

NP,m(n) = eOr(n)(m− 1)(r/(r−1))nn(r−1−1/(r−1))n.

We remark that the condition m ≤ n1/r in Theorem 1.15 is not just an artifact of the proof: recall
from Section 1.3 that for almost every size-n ordered matching M we have LP = O(n1/r).

We prove the upper bound in Theorem 1.15 via a general lemma (Theorem 7.1) which estimates
NP,m(n) in terms of a certain extremal parameter (namely, the maximum number of edges in an ordered
r-uniform hypergraph on dn/2e vertices with LP (M) < m). This type of reduction goes back to Alon and
Friedgut [2] (see also [27,42]); in particular, we adapt a proof in a similar high-dimensional situation due
to Cibulka and Kyncl [18]. We believe that the relevant extremal parameter is of independent interest,
and we discuss it further in Section 1.5.

For the lower bound in Theorem 1.15, we obtain a new estimate on the number of (r − 1)-tuples of
length-n permutations which have no common increasing subsequence of length m (see Remark 7.6), by
“reverse-engineering” the techniques in the upper bound. This lower bound, and the ideas in its proof,
may be of independent interest (in particular, our approach is very different to the probabilistic approach
of Brightwell [11] for the case m = 2).

We prove Theorem 1.15 (which implies Theorem 1.13) in Section 7.

1.5. Extremal results. As briefly mentioned in Section 1.4, in our study of enumerative questions
for ordered matchings we encounter some extremal problems for ordered hypergraphs. We believe our
extremal results to be of independent interest so we take a moment to discuss them here. First, we define
ordered extremal numbers, which are variants of the classical extremal numbers (or Turán numbers) for
unordered graphs.

Definition 1.16. Let G,F be ordered r-uniform hypergraphs (ordered r-graphs, for short). We say G is
F -free if it contains no subgraph isomorphic to F (where the isomorphism must preserve the order of the
vertices). Let ex<(n, F ) denote the maximum number of edges in an F -free n-vertex ordered r-graph.

In the case r = 2 (i.e., the case of graphs), ordered extremal numbers have been extensively studied
(see the survey by Tardos [60] and the references within). For general r ≥ 2, much less is known,
though there is literature on similar problems for cyclically ordered hypergraphs, motivated by geometric
considerations (in particular, due to applications to convex geometric hypergraphs; see for example [3,8–
10,16,29,30,32,34,51]), and much of this work has implications for ordered extremal numbers ex<(n, F ).

Our first contribution in this direction is that we are able to nail down the exact value ex<(n, P ) for
any r-partite r-pattern P (this extremal parameter is relevant for Theorem 1.13). For convenience, we
define (x)+ := max(x, 0).

Theorem 1.17. Let r, n ≥ 1 and P be any r-partite r-pattern. Then,

ex<(n, P ) =

(
n

r

)
−
(

(n− r)+

r

)
.

We remark that in the case where P is the r-uniform “generalised crossing” pattern represented by
|AB|AB| · · · |AB|, the result of Theorem 1.17 was already known, thanks to recent work of Füredi, Jiang,
Kostochka, Mubayi and Verstraëte [30]. (It was also known in the case where P is a 2-uniform nesting,
as we will discuss after the next theorem).

For an r-pattern P and a positive integer m, we use P (m) to denote the P -clique of size m on the
vertex set [rm] (so P (2) = P ). We are not quite able to pin down the values of the ordered extremal
numbers ex<(n, P (m)), but we are able to obtain some quite strong bounds (which are an ingredient in
our proof of Theorem 1.15).

Theorem 1.18. Let r, n,m ≥ 1 and let P be an r-partite r-pattern.
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(1) In general, we have

ex<(n, P (m)) ≥
(
n

r

)
−
(

(n− r(m− 1))+

r

)
.

(2) If n is sufficiently large (in terms of r) then

ex<(n, P (m)) ≤ O
(
r2(m− 1)

(
n

r − 1

))
.

(3) If P is the "alternating" r-pattern represented by |AB|BA|AB|BA| · · · |, then

ex<(n, P (m)) =

(
n

r

)
−
(

(n− r(m− 1))+

r

)
.

Remark 1.19. If we view r as a constant, and assume m = or(n), then one can check that(
n

r

)
−
(

(n− r(m− 1))+

r

)
= (1 + o(1))r(m− 1)

(
n

r − 1

)
.

So, our upper and lower bounds in (1) and (2) differ by a factor of O(r).

The r = 2 case of Theorem 1.18(3) (i.e., an exact result in the case where P is the 2-unifom nesting
|AB|BA|) can be derived from the known results on graphs with bounded queue number due to Pem-
maraju [52] and Dujmović and Wood [23]. We also remark that Capoyleas and Pach [16] previously
studied the case where P = |AB|AB| is a 2-uniform crossing; in this case they obtained the exact result

ex<(n, P (m)) =

(
n

2

)
−
(

(n− 2(m− 1))+

2

)
.

For general r ≥ 2, Füredi, Jiang, Kostochka, Mubayi and Verstraëte [30] studied the case where P is the
r-uniform “generalised crossing” pattern represented by |AB|AB| · · · |AB|. We have already mentioned
their exact result in the case m = 2; for all m they proved

(1− or,m(1))r(m− 1)

(
n

r − 1

)
≤ ex<(n, P (m)) ≤ 2(r − 1)(m− 1)

(
n

r − 1

)
. (1.2)

(Recall that subscripts on asymptotic notation indicate quantities that should be viewed as constants,
so the “or,m(1)” term goes to zero as n→∞, holding r,m fixed). Their lower bound construction is the
same as our construction for (1) (in the case where P is a generalised crossing), but they only analysed
its number of edges asymptotically. Their upper bound for this specific case is stronger than our general
bound in (2).

A variety of techniques are involved in the proof of Theorem 1.17 and the various parts of Theorem 1.18.
In particular, for our proof of Theorem 1.18(2) we refine a partitioning lemma for ordered hypergraphs
due to Füredi, Jiang, Kostochka, Mubayi and Verstraëte [31]. We present this refinement, and discuss it
further, in Section 8.

The proofs of Theorems 1.17 and 1.18 appear in Section 9.

1.6. Further directions. There are a great number of compelling further directions for study.

1.6.1. Ramsey-type questions. The most obvious open question in this direction is to close the gap be-
tween the lower and upper bound in Theorem 1.7. It is tempting to guess that the upper bound is sharp,
and that Lr(n) has order of magnitude n1/(2r−1) for any constant r (this is true for r ∈ {2, 3, 4}). It
is even possible that such a bound can be proved via our “poset partititioning” method, with judicious
choice of the relevant partitions (perhaps for small r, appropriate partitions can be found via computer
search). However, our investigations do not suggest any general structural reason why a bound of this
form should hold.

Even in the cases r ∈ {2, 3, 4} where we know the order of magnitude of Lr(n), it would be interesting
to obtain the exact value (or at least an asymptotic estimate). Also, it is possible to consider “off-
diagonal” versions of the problem, where one treats different patterns differently. For example, fixing a
positive integer kP for each r-pattern P , what is the maximum possible size of an r-matching which has
no P -clique of size kP for any P? Actually, this general setting was considered in [21, 22], and optimal
bounds were obtained in the case r = 2. Our methods seem to be suitable for attacking the larger-r case
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as well, but the relevant casework seems likely to be even more fiddly than for Theorem 1.8 (one would
need to completely characterise how all the different subsets of patterns can interact with each other).

1.6.2. Random ordered matchings. The obvious open question in this direction is to determine the values
of the constants bP in Theorem 1.10. As we have discused, this is a difficult problem in the case where
P is r-partite (in which case it amounts to determination of the Bollobás–Winkler constant cr), but it
may be tractable for certain special P .

For example, in the case where P is a 3-pattern which has type 2 + 1, the problem of determining
b2+1 := bP seems like it might be of “intermediate difficulty” between the Ulam–Hammersley problem
(of determining c2 = 2) and the problem of determining the Bollobás–Winkler constant c3. For the
Ulam–Hammersley problem, there is a well-known interacting particle process (Hammersley’s interacting
particle process) which captures the limiting behaviour of the longest increasing subsequence of a random
permutation, and Aldous and Diaconis [1] managed to give a fairly “soft” proof that c2 = 2 by studying
this process. It seems that one can design a variant of Hammersley’s process which is suitable for studying
b2+1, though this process lacks certain symmetries that Aldous and Diaconis used in their analysis.

1.6.3. Enumeration. The results in Section 1.4 have exponential error terms, and of course it would be
interesting to sharpen these. However, there may be some limitations to what is possible to accomplish
without determining the limits bP in Theorem 1.10: in the regime where m is of order n1/r, studying
NP,m(n) amounts to studying the large deviations of LP (M) in a random r-matching M .

Even if exponential error terms cannot be eliminated, it might be interesting to determine their
dependence on r (recall that in Theorems 1.13 and 1.15 we treat r as a constant).

1.6.4. Extremal problems. Given the discussion in Section 1.5, it is natural to conjecture that the lower
bound in Theorem 1.18(1) is always sharp, as follows.

Conjecture 1.20. Let r, n,m ≥ 1 and P be an r-partite r-pattern. Then,

ex<(n, P (m)) =

(
n

r

)
−
(

(n− r(m− 1))+

r

)
.

In particular, given Theorem 1.18(3), an indirect route to prove Conjecture 1.20 would be to prove
that ex<(n, P (m)) is the same for every r-partite r-pattern P . In the case r = 2, there is a bijective
proof of (a vast generalisation of) this fact, due to Jonsson and Welker [38] (see also [20, Corollary 2.5]).
However, the considerations in Remark 1.14 suggest some difficulties in generalising such bijective proofs
to higher uniformities.

Also, although there is no obvious connection to enumeration, it may still be of interest to determine
ex<(n, P (m)) in the case where P is not r-partite. It is easy to show that ex<(n, P (m)) ≥ (n/r)r when
n is a multiple of r, but this does not seem to be best-possible.

1.7. Notation. We use standard asymptotic notation throughout, as follows. For functions f = f(n)

and g = g(n), we write f = O(g) to mean that there is a constant C such that |f(n)| ≤ C|g(n)| for
sufficiently large n. Similarly, we write f = Ω(g) to mean that there is a constant c > 0 such that
f(n) ≥ c|g(n)| for sufficiently large n. We write f = Θ(g) to mean that f = O(g) and f = Ω(g), and we
write f = o(g) or g = ω(f) to mean that f(n)/g(n)→ 0 as n→∞. Subscripts on asymptotic notation
indicate quantities that should be treated as constants.

For n, r ≥ 1, we use K(r)
n to indicate the ordered r-uniform clique on the vertex set {1, . . . , n}. For an

ordered hypergraph H, we write V (H) for its vertex set, E(H) for its edge set and e(H) = |E(H)| for
its number of edges. For e ∈ E(H), we write e[1], . . . , e[r] for the vertices of e (ordered according to the
vertex ordering of H). When we say that an ordered hypergraph H ′ is a subgraph of another ordered
hypergraph H, we mean that the order of the vertices is maintained. (We use the notation H ′ ⊆ H).

We also remind the reader that (x)+ is defined to be max(x, 0).

2. Preliminaries

We first recall the following corollary of Mirsky’s theorem [50], for our proof of Theorem 1.7.

Theorem 2.1. Suppose P is a partially ordered set (poset) with n elements, that contains no chain of
length x for some x ∈ R+. Then, P contains an antichain of size at least n/x.
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At several points in the paper (related to the directions introduced in Section 1.5) we will need the
following enumerative identity.

Lemma 2.2. Let n ≥ r ≥ 1 and δ1, . . . , δr−1 ∈ Z≥0. Then, the number of r-tuples (a1, . . . , ar) ∈
{1, . . . , n}r satisfying ai+1 − ai > δi for all 1 ≤ i ≤ r − 1 is exactly(

(n−
∑r−1
k=1 δk)+

r

)
.

Proof. We may assume n ≥
∑r−1
k=1 δk, or else the quantity under consideration is zero. For an r-tuple

(a1, . . . , ar) as in the lemma statement, let f(a1, . . . , ar) = (b1, . . . , br), where b1 = a1 and bi = ai − δi−1

for 2 ≤ i ≤ r. The desired result follows by noting that f is a bijection between the set of tuples under
consideration and the set of unordered r-tuples in {1, 2, . . . , n−

∑r−1
k=1 δk}. �

For Theorem 1.10 we need a number of probabilistic tools. First, we need a bounded-differences
concentration inequality for permutations.

Theorem 2.3. Let f : Sn → R be a function which has “bounded differences” in the sense that for any
σ ∈ Sn and any transposition τ ∈ Sn, we have |f(τ ◦ σ) − f(σ)| ≤ c. Then, if σ ∈ Sn be a uniformly
random permutation of length n, we have

Pr[|f(σ)− Ef(σ)| ≥ t] ≤ exp

(
− 2t2

c2n

)
.

This inequality seems to have first been proved by McDiarmid in the case where c = 1 (see [49, p. 18]3).

Remark 2.4. Note that one can obtain a random ordered r-matching on the vertex set 1, . . . , rn via a
random permutation σ ∈ Srn: simply take the matching whose edges are

{σ(1), . . . , σ(r)}, {σ(r + 1), . . . , σ(2r)}, . . . , {σ(rn− r + 1), . . . , σ(rn)}.

We also need a version of Talagrand’s concentration inequality (see for example [36, Theorem 2.29
and Equation (2.43)]

Theorem 2.5. Consider a function X = f(Z1, . . . , Zn) of independent random objects Z1 ∈ Λ1, . . . , Zn ∈
Λn. Suppose that the following conditions are satisfied.

• If z, z′ ∈
∏n
i=1 Λi differ only in the ith coordinate, then |f(z)− f(z′)| ≤ 1.

• For any z ∈
∏n
i=1 Λi, there is a subset of indices J ⊆ {1, . . . , n} with |J | ≤ f(z), such that for

any y ∈
∏n
i=1 Λi which agrees with z on the coordinates indexed by J , we have f(y) ≥ f(z).

Then, for some universal constant γ > 0, we have

Pr[|X − EX| ≥ t] ≤ 4 exp

(
− γt2

EX + t

)
for any t ≥ 0.

We will also need a version of Kingman’s subadditive ergodic theorem (see for example [53, Theo-
rem A.3]). We have “flipped” the conditions to make it apply under a superadditivity condition rather
than a subadditivity condition.

Theorem 2.6. Let (Xm,n)0≤m<n be a family of nonnegative random variables, defined on some common
probability space, such that the following conditions are satisfied.

• X0,n ≥ X0,m +Xm,n for all m < n.

• For any k ≥ 1, (Xnk,(n+1)k)∞n=0 is a sequence of i.i.d. random variables.

• For any m ≥ 1, we have (X0,k)∞k=0
d
= (Xm,m+k)∞k=0.

• There exists a constant M > 0 such that EX0,n ≤Mn for all n.
Then, EX0,n/n converges to a limit γ as n → ∞. Also, X0,n/n converges almost surely (therefore in
probability) to γ.

3There is a typo in this book; in the inequality we are citing, the exponent should really be 2t2/n, not 2t2/n2.
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3. Lower bounds on Ramsey parameters

In this section we will outline our general framework for proving lower bounds on Lr(n), and show
how to use it to prove the lower bounds in Theorem 1.7 and in the r = 3 case of Theorem 1.8. The r = 4

case of Theorem 1.8 follows a similar strategy but has some very complicated casework, so we defer it to
Appendix A.

The starting point is that patterns sometimes give rise to posets. For an r-matching M and an r-
pattern P , we define the relation �P on the edges of M by taking e � f if e[1] < f [1] and e, f form
pattern P (or if e = f). It is sometimes (but not always!) the case that �P is a partial order. The
interesting property here is transitivity : we need to know whether e �P f and f �P g implies f �P g.
For example, in the case r = 2, the only r-patterns are alignments, crossings and nestings. It is easy to
see that the alignment and nesting pattern always give rise to a poset, but the crossing pattern may not
(it is possible to have edges e, f, g with e[1] < f [1] < g[1] such that e and f form a crossing, and f and
g form a crossing, but e and g form an alignment). However, if we restrict ourselves to matchings that
are alignment-free, then the crossing pattern does give rise to a poset.

Now, if �P is a poset, then Mirsky’s theorem (Theorem 2.1) implies that there is a long chain (which
corresponds to a large P -clique) or a large antichain (which corresponds to a P -free sub-matching). One
can iterate this, in several different ways, to give a simple proof of the optimal bound L2(n) ≥ n1/3

(previously proved with a different method in [21]). For example, in a size-n matching M , first, we
look for an alignment-clique of size n1/3 or an alignment-free sub-matching M ′ of size n2/3, and in the
latter case, inside M ′ we look for a nesting-clique of size n1/3 or a nesting-free sub-matching (therefore
a crossing-clique) of size n1/3.

For general r, if one is careful about the order of operations, one can show Lr(n) ≥ Ωr(n
1/3r−1

) (as in
[22, Theorem 1.3]) by generalising the above proof, applying Mirsky’s theorem once for each of the 3r−1

collectable r-patterns (one also needs some separate arguments to handle the non-collectable patterns).
The authors of [22] did not manage to improve on the above bound, and they may have been tempted

to conjecture that the “1/3r−1” exponent is best-possible. However, they found some clues that the
situation is more intricate than it may first appear. For example, they observed that some patterns
“cannot interact with each other”: if P and P ′ are the collectable r-patterns represented by |AB|AABB|
and |AABB|AB|, and we have a matching M in which every pair of edges forms pattern P or P ′, then
in fact M must be a P -clique or a P ′-clique.

To leverage this type of observation, instead of using Mirsky’s theorem to process patterns one-by-one,
we partition the set of all r-patterns into subsets, and process patterns one subset at a time (defining a
poset in terms of the entire subset, instead of a single pattern). We need to choose the subsets in our
partition judiciously, such that the patterns in each subset “cannot interact much with each other”, and
such that each subset gives rise to a poset (after eliminating the patterns from previous subsets).

Both these properties are encapsulated in the following lemma, which is the key ingredient for the
lower bound in Theorem 1.7.

Definition 3.1. For a set of r-patterns P, say that a matching M is P-free if it is P -free for all P ∈ P.
Say that M is a P-clique if every pair of edges forms a pattern in P.

Also, for a matching M and a set of r-patterns P, define the relation �P on the edges of M by taking
e � f if e[1] < f [1] and e, f form a pattern in P (or if e = f).

Lemma 3.2. Let b = (r + 1)2r−2. There is a partition of the r-patterns into subsets P1, . . . ,Pb such
that the following properties hold for any i ∈ {1, . . . , b}.

(A) For any (P1 ∪ · · · ∪ Pi−1)-free matching M , the relation �Pi is a partial order on M .
(B) For any Pi-clique M of size n, we have L(M) ≥ n/(r − 1).

The proofs of the sharper lower bounds in Theorem 1.8 are a bit more delicate; they use the same idea,
with some extra twists. We will discuss them at the end of this section, after the proof of Lemma 3.2.

For Lemma 3.2, our partition into subsets will be defined in terms of weak patterns, which we define
and investigate next.

3.1. Weak patterns. Weak patterns measure the relationship between two edges e, f in a slightly
coarser way than ordinary patterns. Specifically, for weak patterns, we are only concerned with the
behaviour of pairs of consecutive vertices in e and in f .
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Definition 3.3. For an r-pattern P and some 1 ≤ i < j ≤ r let Pi:j be the (j − i + 1)-pattern formed
by {e[i], e[i+ 1], . . . , e[j]} and {f [i], f [i+ 1], . . . , f [j]}.

Then, define the weak r-pattern φ(P ) = (φ1(P ), . . . , φr−1(P )) ∈ {α, κ, ν}r−1 corresponding to P , by
taking

• φi(P ) = α if Pi:i+1 is the alignment 2-pattern,
• φi(P ) = κ if Pi:i+1 is the crossing 2-pattern,
• φi(P ) = ν if Pi:i+1 is the nesting 2-pattern.

In general, a sequence W = (W1, . . . ,Wr−1) ∈ {α, κ, ν}r−1 is called a weak r-pattern.

In Table 1, we list all the 3-patterns and their corresponding weak 3-patterns.

Pattern Weak pattern
|AAA|BBB| αα
AABABB αα
|AABB|BA| αν
|AABB|AB| ακ
|AB|BBAA| να

Pattern Weak pattern
|AB|BA|AB| νν
|AB|BA|BA| νκ
|AB|AABB| κα
|AB|AB|BA| κν
|AB|AB|AB| κκ

Table 1. All (3 ·2)!/(2 · (3!)2) = 10 different 3-patterns, together with their correspond-
ing weak pattern. Note that there are two different patterns corresponding to the weak
pattern αα (one collectable, and one not).

Definition 3.4. For a weak pattern W , say a pair of edges “form W ” if they form a pattern P with
φ(P ) = W . An ordered r-matching M is said to be a W -clique if every pair of edges form W .

In the proof of Lemma 3.2, we will define each of our subsets Pi to be a set of all patterns P such
that φ(P ) has a prescribed number of “α”s, and has its “ν”s in prescribed positions. To understand why
this works, we need quite a thorough study of weak patterns.

First, we collect a few basic properties of weak patterns. A “generalised alignment” is a pattern with
block representation AA · · ·ABB · · ·B (i.e., a collectable pattern with a single block).

Lemma 3.5. Fix an r-pattern P with edges e, f (and assume e[1] < f [1]).
(i) For each i ∈ [r], we have e[i] < f [i] if and only if there are an even number of “ν”s among

φ1(P ), . . . , φi−1(P ).
(ii) P is collectable if and only if:

(∗) for all 1 ≤ i < j ≤ r where

φ(Pi:j) = φi(P )φi+1(P ) . . . φj−1(P ) = αα . . . α,

Pi:j is a generalised alignment.
(iii) For each weak r-pattern W , there is exactly one collectable r-pattern P satisfying φ(P ) = W .

Proof sketch. For (i), it is a simple observation (immediate from the definitions of alignments, crossings
and nestings) that the relative order between e[i] and f [i] is different from the relative order between
e[i − 1] and f [i − 1] if and only if φ(P )i−1 = ν. The statement in (i) then follows by a straightforward
induction on i.

(ii) is a bit more involved. Recall from Definition 1.5 that P is collectable if and only if it is splittable
(i.e., it can be partitioned into blocks that have an A-run followed by a B-run of the same length, or vice
versa).

For the “only if” direction, it is easy to see that if P is collectable (splittable) then it satisfies (∗).
Indeed, note that if P is splittable then Pi:j is splittable for all 1 ≤ i < j ≤ r (this follows immediately
from the definition of splittability). In the block representation of Pi:j , each division between consecutive
blocks gives rise to a “ν” or “κ”, so if φ(Pi:j) = α . . . α then Pi:j must have a single block and is therefore
a generalised alignment, as desired.

For the “if” direction, suppose P is not collectable (splittable). We need to prove that (∗) is violated.
Let j be minimal such that P1:j is not splittable (note that every 2-pattern is splittable, so we have
j ≥ 3). Let |B1| . . . |Bk| be the block representation of P1:j−1. If we had φj−1(P ) ∈ {κ, ν}, then the
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block representation of P1:j would be |B1| . . . |Bk|AB| or |B1| . . . |Bk|BA| (depending on the parity of the
number of “ν”s among φ1(P ), . . . , φj−1(P )). In either case, P1:j would then be splittable (collectable), a
contradiction. So, we must have φj−1(P ) = α.

Now, let i be minimal such that φ(Pi:j) = α . . . α. We have i ≤ j − 1, since φj−1(P ) = α. In the
case i = 1, we know P1:j = Pi:j cannot be a generalised alignment because (by the choice of j) it is not
splittable. This means that P violates the condition in (∗). So, it remains to consider the case i ≥ 2.
By the definition of i, we know φi−1(P ) 6= α, which implies that both e[i − 1] and f [i − 1] precede
e[i] and f [i]. If Pi:j were to form a generalised alignment, the block representation of P1:j would be
|B′1| . . . |B

′
k|AA · · ·ABB · · ·B| or |B′1| . . . |B

′
k|BB · · ·BAA · · ·A| (depending on the parity of the number

of “ν”s among φ1(P ), . . . , φi−1(P )), where |B′1| . . . |B
′
k| is the block representation of P1:i. In either case,

P1:j would be splittable, a contradiction. So, Pi:j cannot be a generalised alignment, meaning that (∗)
is violated. This completes the proof for (ii).

For (iii), fix a weak r-pattern W = (W1, . . . ,Wr−1) ∈ {α, κ, ν}r−1. We can use properties (i) and
(ii) to construct and force the structure of the collectable r-pattern P with φ(P ) = W . Specifically, let
1 ≤ i1 < · · · < im < r be the indices i with Wi ∈ {ν, κ}. Set i0 = 0 and im+1 = r for convenience.
For 1 ≤ ` ≤ m + 1, let B` be a sequence of (i` − i`−1) “A”s followed by a sequence of (i` − i`−1)

“B”s if the number of “ν”s among Wi1 ,Wi2 , . . . ,Wi`−1
is even; let B` be a sequence of (i` − i`−1) “B”s

followed by a sequence of (i`− i`−1) “A”s otherwise. Then, it is not hard to deduce from (i) and (ii) that
Q = B1B2 · · ·Bm+1 is a collectable r-pattern with φ(Q) = W , and the block representation of P must
be precisely the concatenation |B1|B2| · · · |Bm+1|. �

Given Lemma 3.5(iii), it makes sense to introduce some notation for the unique collectable pattern
corresponding to a particular weak pattern.

Definition 3.6. For each weak r-pattern W , let ψ(W ) be the unique collectable r-pattern satisfying
φ(ψ(W )) = W .

Now, one advantage of considering weak patterns is that we can get a handle on how they can interact
with each other by considering how their constituent alignments, crossings and nestings can interact with
each other.

Lemma 3.7. Suppose e, f, g are three edges in some ordered r-matching such that e[1] < f [1] < g[1].
Let W e,f ,W f,g,W e,g be the weak r-patterns formed by pairs {e, f}, {f, g}, {e, g}, respectively. If the “ν”s
occur in the same positions in W e,f and in W f,g, then, for 1 ≤ i ≤ r − 1,

(i) if W e,f
i = W f,g

i = ν, then W e,g
i = ν;

(ii) if W e,f
i = α or W f,g

i = α, then W e,g
i = α;

(iii) if W e,f
i = W f,g

i = κ, then W e,g
i ∈ {α, κ}.

Also, combining (ii) and (iii), we get:
(iv) if W e,f

i 6= ν and W f,g
i 6= ν, then W e,g

i 6= ν.

Proof. By assumption, the number of “ν”s amongW e,f
1 ,W e,f

2 , . . . ,W e,f
i−1 and amongW f,g

1 ,W f,g
2 , . . . ,W f,g

i−1

are the same. We assume that this number is even (the odd case is similar). By Lemma 3.5(i), we have
e[i] < f [i] < g[i].

If W e,f
i = W f,g

i = ν, then e[i] < f [i] < f [i+ 1] < e[i+ 1] and f [i] < g[i] < g[i+ 1] < f [i+ 1], implying
that e[i] < g[i] < g[i + 1] < e[i + 1]. This means {e[i], e[i + 1]} and {g[i], g[i + 1]} form a nesting, i.e.,
W e,g
i = ν. This proves (i).
If W e,f

i ,W f,g
i 6= ν, we know that W e,f

i ,W f,g
i ∈ {α, κ}. This implies

e[i] < min(e[i+ 1], f [i]) < max(e[i+ 1], f [i]) < f [i+ 1] and

f [i] < min(f [i+ 1], g[i]) < max(f [i+ 1], g[i]) < g[i+ 1],

which in turn imply
e[i] < min(e[i+ 1], g[i]) < max(e[i+ 1], g[i]) < g[i+ 1].

That is to say, W e,g
i ∈ {κ, α}, proving (iii). If we furthermore have W e,f

i = α or W f,g
i = α, then we

know e[i] < e[i+ 1] < g[i] < g[i+ 1], i.e., W e,g
i = α, proving (ii). �

Now, the following lemma will be used to handle non-collectable patterns: if we manage to find a
large W -clique (for some weak pattern W ), we can very efficiently drop to a ψ(W )-clique. A similar
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fact (with a slightly worse constant) can actually be deduced from the main result of [21], but here we
provide a self-contained proof.

Lemma 3.8. Let W be a weak r-pattern, and let M be a W -clique of size n. Then, M contains a
ψ(W )-clique of size at least n/max(1, δ(W )), where δ(W ) is the length of the longest run of “α”s in W .

Proof. By Lemma 3.5(ii), if δ(W ) = 0 then there is no non-collectable r-pattern P with φ(P ) = W .
Thus, M itself is a ψ(W )-clique. So, we may assume δ := δ(W ) ≥ 1.

Let e1, e2, . . . , en be the edges in M , ordered such that e1[1] < e2[1] < · · · < en[1]. We claim that for
any s, t with t− s ≥ δ, the edges es, et form ψ(W ). This suffices to prove the lemma: we can simply take
every δ-th edge as our ψ(M)-clique.

For 1 ≤ a < b ≤ n let P a,b be the pattern formed by ea, eb. Fix s, t with t− s ≥ δ. We wish to show
that P s,t is collectable (which will imply P s,t = ψ(W ) by Lemma 3.5(iii)). By Lemma 3.5(ii), it suffices
to show that for any 1 ≤ i < j ≤ r with Wi = Wi+1 = · · · = Wj−1 = α (i.e., φ(P s,ti:j ) = α . . . α), the
(j − i+ 1)-pattern P s,ti:j is a generalised alignment.

Suppose there are an even number of “ν”s among W1,W2, . . . ,Wi−1 (the odd case is similar). For
q ∈ {s, s + 1, . . . , t − 1} and k ∈ {i, i + 1, . . . , j − 1}, we have eq[k] < eq[k + 1] < eq+1[k] < eq+1[k + 1]

(since Wk = α). This means we have

es[j] < es+1[j − 1] < · · · < es+j−i[i] ≤ et[i],

where the last inequality holds because s+ j− i ≤ s+ δ ≤ t and there are an even number of “ν”s among
W1, . . . ,Wi−1. In other words, P s,ti:j is a generalised alignment, as desired. �

Remark 3.9. It is not hard to see that the constant factor 1/max(1, δ(M)) cannot be improved.

3.2. Proof of the key lemma. Now, we have all the preparations in place to prove Lemma 3.2. The
subsets of patterns Pi will be defined in terms of signatures, as follows.

Definition 3.10. For each weak r-pattern W ∈ {α, κ, ν}r−1, the signature of W is defined to be

σ(W ) :=
(
|{i : Wi = α}|, {i : Wi = ν}

)
.

That is to say, the signature specifies the number of “α”s and the positions of the “ν”s. We define the
weight of σ(W ) to be the number of “α”s in W .

The total number of signatures is∑
S⊆{1,...,r−1}

(r − |S|) =

r−1∑
i=0

(
r − 1

i

)
(r − i) = (r + 1)2r−2 =: b.

Let σ1, . . . , σb be an ordering of the signatures in descending weight (breaking ties arbitrarily). Let Pi
be the set of all patterns P such that σ(φ(P )) = σi.

Proof of Lemma 3.2(A). With P1, . . . ,Pb as defined above (in terms of signatures σ1, . . . , σb), we wish
to show that for each i, the relation �Pi

is a partial order on any (P1 ∪ · · · ∪ Pi−1)-free matching M .
It suffices to show the transitivity of �Pi

. Fix a (P1 ∪ · · · ∪ Pi−1)-free matching M and consider any
edges e, f, g with e[1] < f [1] < g[1]. Let P e,f , P f,g, P e,g be the patterns formed by the pairs {e, f}, {f, g}
and {e, g} respectively, and suppose that P e,f , P f,g ∈ Pi. Our objective is to show that Pe,g ∈ Pi. We
know that φ(P e,f ) and φ(P f,g) have their “ν”s in the same positions (as recorded by the signature σi),
so by Lemma 3.7(i,iv), the “ν”s in φ(Pe,g) must be in exactly these same positions.

Then, let w be the weight of σi (i.e., the number of “α”s in the weak patterns associated with σi). We
know that φ(P e,f ) and φ(P f,g) have exactly w “α”s. Also, since M is (P1 ∪ · · · ∪ Pi−1)-free (and higher-
weight signatures come earlier in our ordering), we know that φ(P e,f ) has at most w “α”s. However,
by Lemma 3.7(ii), in every position where φ(P e,f ) or φ(P f,g) have a “α”, there is also a “α” in φ(Pe,g).
The only way this can happen is if φ(P e,f ), φ(P f,g) and φ(P e,g) each have exactly w “α”s, in exactly
the same positions. We have proved that Pe,g ∈ Pi, as desired. �

Proof of Lemma 3.2(B). Suppose M is a Pi-clique of size n. We wish to show that L(M) ≥ n/(r − 1).
Consider any three edges e, f, g with e[1] < f [1] < g[1]. Let P e,f , P f,g, P e,g be the patterns formed

by the pairs {e, f}, {f, g} and {e, g} respectively, so P e,f , P f,g, P e,g ∈ Pi. By the considerations in
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the above proof of Lemma 3.2(A), each of φ(P e,f ), φ(P f,g), φ(P e,g) must have their “ν”s and “α”s (and
therefore their “κ”s) in exactly the same positions, which means that e, f, g actually form a W -clique for
some weak patternW . But if every three edges form aW -clique, then the whole ofM must be aW -clique
for some weak r-pattern W with signature σi. By Lemma 3.8, we have Lψ(W )(M) ≥ n/(r − 1). �

3.3. Proof of the lower bound in Theorem 1.7. Now, it is easy to derive the lower bound in
Theorem 1.7 by iteratively applying Lemma 3.2 and Mirsky’s theorem.

Proof of the lower bound in Theorem 1.7. Let M be a size-n matching, and recall the subsets of pat-
terns P1, . . . ,Pb in the proof of Lemma 3.2. First, combining Mirsky’s theorem (Theorem 2.1) and
Lemma 3.2(A), it is easy to prove by induction that for each i < b:

(∗) Either for some j ≤ i we can find a Pj-clique of size at least n1/b, or we can find a (P1∪· · ·∪Pi)-
free sub-matching of size at least n1−i/b.

A (P1∪· · ·∪Pb−1)-free matching is nothing more than a Pb-clique, so (∗) with i = b−1 actually implies
that we can always find a Pj-clique M ′ of size at least n1/b, for some j ≤ b. Then, by Lemma 3.2(B),
we have L(M) ≥ L(M ′) ≥ n1/b/(r − 1), as desired. �

3.4. Further improvements. Weak r-patterns are very convenient to work with, due to the fact
that we can separately study how their constituent alignments, crossings and matchings interact (with
Lemma 3.7). However, by directly considering how patterns can interact with each other, one can prove
stronger bounds (specifically, one can prove an analogue of Lemma 3.2 with a smaller value of b). In
this subsection, we show how to do this to prove the essentially optimal lower bound L3(n) ≥ n1/7/2

featuring in Theorem 1.8. Note that Theorem 1.7 only gives the non-optimal bound L3(n) ≥ n1/8/2.
The considerations in this r = 3 proof can be generalised to larger r. For example, with some more

sophisticated case analysis we can prove the optimal lower bound L4(n) ≥ Ω(n1/15). As the proof is
quite technical, we refer the interested reader to Appendix A.

Proof of the lower bound on L3(n) in Theorem 1.8. We use the notions of weak patterns and signatures
introduced in Sections 3.1 and 3.2. Referring to Table 1, we see that there are ten different 3-patterns,
including one non-collectable pattern (which we call P ∗; note that φ(P ∗) = αα). Define

P1 = {ψ(αα), P ∗}, P2 = {ψ(ακ), ψ(κα)}, P3 = {ψ(αν), ψ(να)}.

We observe that these subsets can be used to define posets (we write �i instead of �Pi
):

• By the proof of Lemma 3.2(A), for any matching M , the relation �1 is a partial order. (Note
that P1 corresponds to the signature (2, ∅)).

• Similarly, by the proof of Lemma 3.2(A), for any P1-free matchingM , the relation �2 is a partial
order. (Note that P2 corresponds to the signature (1, ∅)).

• One can also see that the relation �3 is always a partial order (despite P3 containing the
patterns for two different signatures (1, {1}) and (1, {2})). Observe that the two patterns
ψ(αν), ψ(να) ∈ P3 have block representations |AABB|BA| and |AB|BBAA|; informally speak-
ing, these patterns are “generalised nestings”, where all vertices of one edge are fully contained
between two consecutive vertices of the other edge, and it is not hard to see that �3 is therefore
a partial order. In detail: note that it suffices to show transitivity. Suppose e, f, g are three
edges in a matching M with e[1] < f [1] < g[1] such that e, f form pattern ψ(αν) and f, g form
pattern ψ(αν) or ψ(να). Then, e[2] < f [1] < f [3] < e[3] (as e, f form pattern ψ(αν)) and
f [1] < g[1] < g[3] < f [3] (as f, g form pattern ψ(αν) or ψ(να)). So e[2] < g[1] < g[3] < e[3],
i.e., e, g form pattern ψ(αν). Similarly, if e, f form pattern ψ(να) and f, g form pattern ψ(αν)

or ψ(να), then e, g form pattern ψ(να).
• By the proof of Lemma 3.2(A), for any (P1∪P2∪P3)-free matchingM , the relation �P is a poset

when P is any of the four 3-partite patterns ψ(νν), ψ(νκ), ψ(κν), ψ(κκ). (These correspond to
the signatures (0, S), for S ⊆ {1, 2}).

Proceeding in the same way as the proof of the lower bound in Theorem 1.7, we can therefore find a
Pi-clique of size at least n1/7, for some i ∈ {1, 2, 3}, or we can find a P -clique of size at least n1/7 for P
being one of the four 3-partite patterns ψ(νν), ψ(νκ), ψ(κν), ψ(κκ).

By the proof of Lemma 3.2(B), if we found a P1-clique or a P2-clique M ′ of size at least n1/7, then
L(M ′) ≥ n1/7/2.

14



Finally, it suffices to consider the case where we found a P3-clique M ′ with at least n1/7 edges. Let
e1, . . . , em be the edges in M ′ (with m ≥ n1/7, and e1[1] < · · · < em[1]). As discussed in the third bullet
point above, we see that for any 1 ≤ i < j < k ≤ m, the edges ei, ek always form the same 3-pattern
as the edges ei, ej . So, every index i is of one of two types: we say it is of “type ψ(αν)” if ei, ej form
ψ(αν) for each i < j, and we say it is of “type ψ(να)” if ei, ej form ψ(να) for each i < j. By the
pigeonhole principle, at least half of the indices have the same type, and the corresponding edges give us
a ψ(αν)-clique or a ψ(να)-clique of size n1/7/2. �

4. Upper bounds on Ramsey parameters

In this section we prove the upper bound in Theorem 1.7 (which also implies the upper bounds in
Theorem 1.8). We consider the following notion of “blow-up” introduced by by Dudek, Grytczuk and
Ruciński [22].

Definition 4.1. Suppose M,M ′ are ordered r-matchings, and let t be the size of M ′. The M ′-blow-up
of M , denoted byM [M ′], is an ordered r-matching obtained from M as follows. We replace every vertex
i ∈ V (M) by an ordered set Ui of t contiguous vertices. Then, for each edge e ∈ E(M) we place on the
vertex set Ue[1] ∪ · · · ∪ Ue[r] a copy M ′e of the matching M ′. Note that there are two kinds of pairs of
edges (f1, f2) in M [M ′]:

• If f1, f2 both lie in the sameM ′e (for some e ∈ E(M)), then we say f1 and f2 comprise anM ′-pair.
• If f1, f2 lie in different M ′e, then we say f1 and f2 comprise an M -pair.

The above definition is useful typically when M ′ is r-partite. In this case, one can check that if
two edges f1, f2 comprise an M -pair (say f1 lie in M ′e1 and f2 lie in M ′e2), then f1, f2 form the same
r-pattern as e1, e2 do (in M). Therefore, if M contains no r-partite r-pattern and M ′ is r-partite, then
LP (M [M ′]) = LP (M ′) if P is r-partite and LP (M [M ′]) = LP (M ′) otherwise, and thus L(M [M ′]) =

max(L(M), L(M ′)). This fact will be used in the proof of the upper bound in Theorem 1.7 momentarily.
For r-partite r-patterns, Dudek, Grytczuk and Ruciński [22] used a blow-up construction to prove the

following tight upper bound (which is actually equivalent to the result of Burkill and Mirsky [15] and
Kalmanson [40] mentioned in the introduction, on (r − 1)-tuples of permutations).

Theorem 4.2 (Dudek, Grytczuk and Ruciński [22]). For r ≥ 2, and n ≥ 1, there exists an r-partite
ordered r-matching M of size n2r−1

such that for all (r-partite) r-patterns P , the largest P -clique is of
size n.

We are now ready to prove that Lr(n) ≤ dn1/(2r−1)e.

Proof of the upper bound in Theorem 1.7. Fix r ≥ 2 and n ≥ 1. We are going to construct an ordered
r-matching M of size n2r−1 such that any pair of edges form a collectable r-pattern, and such that the
largest clique has size n. We will do this by induction on r.

The base case r = 2 already appears in [21, 22]. Indeed, consider M := M1[M2], where M1 is an
alignment-clique of size n and M2 is the 2-partite ordered 2-matching from Theorem 4.2. Then, M has
size n3. A pair of distinct edges f1, f2 ∈ E(M) form an alignment if (f1, f2) is an M1-pair, and they
form a nesting or a crossing if (f1, f2) is an M2-pair. It is easy to check that there is no clique of size
larger than n.

For the inductive step, suppose we have constructed an ordered (r − 1)-matching M1 of size n2r−1−1

in which every pair of edges forms a collectable (r − 1)-pattern, such that the largest clique has size n.
For each edge e ∈ E(M1), we add a new vertex ve just to the right of e[r − 1], and extend e to an edge
e′ of uniformity r by adding ve to e. Let the resulting ordered r-matching be M2.

Now, we claim that M2 is free of r-partite r-patterns, and its largest clique has size n. To see this,
note that if e, f ∈ E(M1) form a pattern with block representation |B1| . . . |Bk|, then e′, f ′ ∈ E(M2)

form the pattern whose block representation is |B1| . . . |Bk−1|B′k|, where B
′
k is obtained by extending the

“A-run” and the “B-run” in Bk by one. (For example, if e, f form a pattern with block representation
|AABB|AB|BA|, then e′, f ′ form a pattern with block representation |AABB|AB|BBAA|). This latter
pattern is never r-partite, because it has at most r − 1 blocks.

Now, let M3 be the r-partite ordered r-matching given by Theorem 4.2 (with size n2r−1

, and whose
largest clique has size n). Every pair of edges in M3 form an r-partite r-pattern. Then, we take M to be
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the blow-up M2[M3], which has size n2r−1−1 · n2r−1

= n2r−1. For any distinct f1, f2 ∈ E(M), the edges
f1, f2 form an r-partite r-pattern if and only if (f1, f2) is an M3-pair. This means a clique in M comes
either from M2 or from some copy of M3. So, the largest clique in M has size n, proving the induction
step. �

5. Variants on the longest increasing subsequence problem

The famous Ulam–Hammersley problem (see [53] for a book-length treatment) asks for the expected
length of the longest monotone subsequence in a random set of n points in a box [0, 1]2. This was
generalised to higher dimensions by Steele [58] (and studied further by Bollobás and Winkler [7]). In
order to prove Theorem 1.10, we will need a further generalisation.

Definition 5.1. Fix a partition A of {1, . . . , r} into disjoint parts I1, . . . , I`. Then, for any vectors
(x1, . . . , xr), (y1, . . . , yr) ∈ Rr, write (x1, . . . , xr) �A (y1, . . . , yr) if max{xi : i ∈ Ij} ≤ min{yi : i ∈ Ij}
for all j ∈ {1, . . . , `}. Note that �A is a partial order on Rr.

For a set of points S ⊆ Rd, write LA(S) for the longest chain in S with respect to �A.

We will be interested in LA(Sn), for a set Sn of n independent uniformly random points in [0, 1]r.

Theorem 5.2. Fix a partition A of {1, . . . , r}. For m ∈ N, let Tm ⊆ [0,m]r be a set of points obtained
by a Poisson process of rate 1 in [0,m]r, and let L = LA(Tm). Then, as m→∞,

(1)
EL
m
→ aA, and

(2)
L

m

p→ aA,

for some aA > 0 only depending on A. (By symmetry, in fact aA only depends on the multiset of sizes
of the parts in A).

Proof. Let T ⊆ Rr be a Poisson process with rate 1 in Rr. Let Lm,n = L(T ∩ [m,n]r) be the longest
chain in T ∩ [m,n]r with respect to P(A). Noting that T ∩ [0,m]r

d
= Tm, it suffices to prove that the

conditions of Kingman’s subadditive ergodic theorem (Theorem 2.6) are satisfied, as follows.
• For 0 ≤ m ≤ n we have L0,n ≥ L0,m + Lm,n, because if we have a chain in T ∩ [0,m]r and a

chain in T ∩ [m,n]r, their union is always a chain in T ∩ [0, n]r.
• For any k ≥ 1, (Lnk,(n+1)k)∞n=0 is a sequence of i.i.d. random variables.

• For any m ≥ 1, we have (L0,k)∞k=0
d
= (Lm,m+k)∞k=0.

• There exists a constant M > 0 such that EL0,m ≤Mm for all m. To see this, we first note that
if SN is a set of N independent uniformly random points in [0,m]r, then we have ELA(SN ) ≤
ELBW(SN ), where BW is the partition of {1, . . . , r} into r singleton sets. Bollobás andWinkler [7]
proved that ELBW(SN ) ≤ (1 + o(1))eN1/r, so

EL0,m = ELA(Tm) = E
[
E
[
LA(Tm)

∣∣∣ |Tm|]] = E
[
E
[
LA(S|Tm|)

∣∣∣ |Tm|]]
≤ E

[
(1 + o(1))e |Tm|1/r

]
= (1 + o(1))em,

where the last equation holds as |Tm| has distribution Poisson(mr).
�

Theorem 5.3. Fix a partition A of {1, . . . , r}. Consider a set Sn of n independent uniformly random
points in [0, 1]r, and let L = LA(Sn). Let aA be as in Theorem 5.2. Then, the following hold.

(1) Pr[|L− EL| ≥ t] ≤ 4 exp

(
− γt2

EL+ t

)
for some universal constant γ > 0.

(2)
L

n1/r

p→ aA.

(3)
EL
n1/r

→ aA.

Proof. First, (1) follows directly from Talagrand’s inequality (Theorem 2.5):
• If we change a single point of Sn, we change L by at most 1.
• Whenever L ≥ r then there is a set of r points which certifies that L ≥ r.
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Then, for (2), recall the random set Tm from Theorem 5.2. Note that |Tm| has a Poisson(mr) distribution,
so by Chebyshev’s inequality we can choose m1,m2 ∈ N, both of the form (1 + o(1))n1/r, such that
|Tm1 | ≤ n whp and n ≤ |Tm2 | whp.

Note that if we condition on |Tm|, then Tm is conditionally a set of that many independent uniformly
random points in [0,m]r (which is equivalent to taking random points in [0, 1]r and rescaling them by a
factor of m). So, there is a coupling of Sn, Tm1

, Tm2
for which L(Tm1

) ≤ L ≤ L(Tm2
) whp. Then, (2)

follows from Theorem 5.2(2).
Finally, (3) follows from (1) and (2). �

Proposition 5.4. Fix a partition A of {1, . . . , r}, and define the constant aA as in Theorem 5.2.

(1) If A has a single part of size r, then we have aA =
r

Γ(1/r)

(2) If A has r parts of size 1, then we have aA >
r2

(r!)1/rΓ(1/r)
.

Proof. For (1), we use the algorithmic approach of Justicz, Scheinerman and Winkler [39]: we can build
a longest chain ~x(1), ~x(2), . . . , ~x(L) by first taking the point ~x(1) = (x

(1)
1 , . . . , x

(1)
r ) ∈ Tm with the smallest

value of maxi x
(1)
i , then throwing out all other points ~y ∈ Tm which do not satisfy ~x � ~y, and taking the

point ~x(2) = (x
(2)
1 , . . . , x

(2)
r ) with the next smallest value of maxi x

(2)
i , and so on.

If we let T be the set of points corresponding to a Poisson process of rate 1 in the semi-infinite
box [0,∞)r (instead of a finite box [0,m)r) then we obtain an infinite sequence of points (~x(k))∞k=1

as above. Then, (~x(k))∞k=1 has the following two properties. First, for every j ≥ 1 the sequence of
points ~x(1), ~x(2), . . . , ~x(j) is a longest chain of points in T ∩ [0,maxi x

(j)
i ]r, and second, the increments

maxi x
(k+1)
i − maxi x

(k)
i are independent and identically distributed (let Z be a random variable with

this common distribution). We have Pr[Z > z] = Pr[T ∩ [0, z]r = ∅] = exp(−zr) so the density of Z is
d

dz
(1− exp(−zr)) = rzr−1 exp(−zr)

and
EZ =

∫ ∞
0

z · rzr−1 exp(−zr) dz =
Γ(1/r)

r
.

So, for any ε > 0, taking L1 ≤ (r/Γ(1/r) − ε)m and L2 ≥ (r/Γ(1/r) + ε)m, we have maxi x
(L1)
i ≤

m ≤ maxi x
(L2)
i whp, by the law of large numbers. Since ε was arbitrary, it follows that whp L =

(r/Γ(1/r)− o(1))m; that is, a = r/Γ(1/r).
For (2), we recall the algorithmic lower bound of Bollobás and Winkler [7]. They build a chain

~x(1), ~x(2), . . . , ~x(Q) by first taking the point ~x(1) = (x
(1)
1 , . . . , x

(1)
r ) ∈ Tm such that

∑
i x

(1)
i is minimal,

then throwing out all other points ~y ∈ Tm which do not satisfy ~x � ~y, and taking the point ~x(2) =

(x
(2)
1 , . . . , x

(2)
r ) with the next smallest value of

∑
i x

(2)
i , and so on. It is proved in [7], by a very similar

method as above, that this algorithm produces a chain of length r2/(r!)1/rΓ(1/r).
We then just need to observe that this algorithm is not optimal: for example, instead of finding

our chain point-by-point, we can build our chain two points at a time, at step k choosing two points
~x(2k−1), ~x(2k) such that ~x(2k−1) � ~x(2k) and such that max

(∑
i x

(2k−1)
i ,

∑
i x

(2k)
i

)
is minimized. It is not

hard to see that the expected “distance travelled” in one such step is strictly less than two times the
distance travelled in a step of the Bollobás–Winkler algorithm. �

6. Cliques in random ordered matchings

In this section we prove Theorem 1.10 and Proposition 1.11, using the results in Section 5. To give a
brief overview, the key insight is that every P -clique in an ordered matching M can be interpreted as a
chain in a certain point set (defined in terms of a partition of the vertices ofM), with respect to a certain
partial order �A (as in Definition 5.1). Taking advantage of the strong concentration in Theorem 5.3(1),
we can take the union bound over all appropriate vertex partitions of a random matching M , giving us
control over the longest chains in the corresponding point sets.

Proof of Theorem 1.10. Suppose P has block partition given by J1∪· · ·∪J` = {1, . . . , 2r}. Let A be the
partition of {1, . . . , r} with parts Ii = {j : 2j ∈ Ji} for 1 ≤ i ≤ `. Note that one can uniquely recover
I1, . . . , I` from J1, . . . , J`; we have Ji =

⋃
j∈Ii{2j − 1, 2j} for all i ≤ `.
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Observe that for every P -clique C in M , there is some partition Q1 ∪ · · · ∪Q` of V (M) = {1, . . . , rn}
into contiguous intervals, such that for every edge e ∈ C and every i ∈ {1, . . . , `}, we have |e∩Qi| = |Ii|.
Say that C is consistent with Q1, . . . , Q` if this is the case.

Fix a partition B of {1, . . . , rn} into contiguous intervals Q1, . . . , Q`; we will only consider cliques
consistent with B (at the end we will take a union bound over all partitions).

Let MB be the sub-matching of M containing the edges of M which are consistent with B. Condition
on some outcome N for the number of edges in MB.

We will realise the conditional distribution of MB via an alternative construction, as follows.
(1) Let V = [0, `] ⊆ R and for each i ∈ {1, . . . , `}, let Vi = [i− 1, i], so V1 ∪ · · · ∪ V` = [0, `].
(2) For each j ∈ {1, . . . , r}, let i(j) be such that j ∈ Ii(j).
(3) Let R be a set of N independent uniformly random points in

∏r
j=1 Vi(j).

(4) For each ~v ∈ R, let e(~v) be the set of coordinates of ~v (so |e(~v) ∩ Vi| = |Ii| for each i).
(5) Let M∗ be the hypergraph on the vertex set

⋃
~v∈R e(~v) whose edges are the sets e(~v) for ~v ∈ R.

Note that with probability 1, M∗ is a matching, and the distribution of (the order-isomorphism class of)
M∗ is the same as the conditional distribution of (the order-isomorphism class of) MB, by symmetry.

Our next goal is to realise the distribution of our random point set R ⊆
∏r
j=1 Vi(j) in terms of a

set SN of N independent uniformly random points in [0, 1]r, in such a way that the size of the largest
P -clique LP (M∗) in M∗ corresponds precisely to the length of the longest chain LA(SN ) in SN with
respect to the partial order � PA defined in Definition 5.1.

Recall that in the block representation (Definition 1.5) of P , the incident vertices of one edge are
assigned with label “A” while those of the other edge are assigned with label “B”. Now, consider an
isometry φ : [0, 1]r →

∏r
j=1 Vi(j) defined as follows.

(1) For each i ∈ {1, . . . , r}, define the function σi : R→ R by taking σi(x) = x if the block Ii consists
of an A-run followed by a B-run, and taking σi(x) = 1 − x if the block Ii consists of a B-run
followed by an A-run.

(2) Let φ0 : [0, 1]r → [0, 1]r be the isometry (x1, . . . , xr) 7→ (σ1(x1), . . . , σr(xr)).
(3) Let ~t be such that [0, 1]r + ~t =

∏r
j=1 Vi(j), and let φ1 : [0, 1]r →

∏r
j=1 Vi(j) be the translation

~x 7→ ~x+ ~t.
(4) Let φ = φ1 ◦ φ0.

It is easy to check that LP (M∗) = LI1,...,I`(SN ). So, still conditioning on an outcome |MB| = N , by
Theorem 5.3, with conditional probability 1 − N−ω(1) we have that the random variable LP (MB) is of
the form (aA + o(1))N1/r.

Also, by the concentration inequality Theorem 2.3 (see Remark 2.4), with probability at least 1−n−ω(1)

we have
|MB| =

(
fP

(
|Q1|
rn

, . . . ,
|Q`|
rn

)
+ o(1)

)
n,

where fP (q1, . . . , q`) is the probability that for a set of r independent uniformly random points in
[0, 1], exactly Ii of them fall between qi−1 and qi−1 + qi (here we take q0 = 0 for convenience). Note that
fP (q1, . . . , q`) is a homogeneous polynomial of degree r in the variables q1, . . . , q`.

Let αP be the maximum value of fP (q1, . . . , q`) over all q1, . . . , q` ≥ 0 summing to 1. Then, taking a
union bound over all possible partitions B (of which there are at most n`−1), we see that

L(Q)

n1/r

p→ aAα
1/r
P .

So, the desired result follows with bP = aAα
1/r
P . �

Proof of Proposition 1.11. Recall the definitions of fP and αP from the proof of Theorem 1.10, and recall
the estimates in that proof.

(1) Suppose P has type r. As in the proof of Theorem 1.10, let A be the trivial partition of
{1, . . . , r} into one part. Note that αP = fP (1) = 1, and by Proposition 5.4, aA = r/Γ(1/r) =

1/Γ((r + 1)/r). So, bP = aAα
1/r
P = 1/Γ((r + 1)/r).

(2) Suppose P has type 1 + · · · + 1. As in the proof of Theorem 1.10, let A be the partition of
{1, . . . , r} into r singleton parts. Note that αP = fP (1/r, . . . , 1/r) = r!/rr, and note that aA
is precisely the Bollobás–Winkler constant cr, which by Proposition 5.4 is strictly larger than

r2

(r!)1/rΓ(1/r)
. Therefore we have bP = cr(r!/r

r)1/r = cr(r!)
1/r/r > r/Γ(1/r) = 1/Γ((r+1)/r). �
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7. Enumeration

In this section we estimate NP,m(n) up to an exponential factor, proving Theorem 1.15 and therefore
Theorem 1.13. The upper bound and the lower bound in Theorem 1.15 are proved separately. Despite
Theorem 1.15 being about ordered matchings, both the upper and lower bound require the consideration
of general ordered r-graphs; in particular, the upper bound requires the extremal results introduced in
Section 1.5 (proved in Section 9).

For the upper bound, we prove the following general estimate on the number of ordered matchings M
avoiding a particular sub-matching Q.

Theorem 7.1. Let r ≥ 2 and Q be an ordered r-matching with at least two edges. Suppose there exists
some nQ > 0 such that ex<(n,Q) ≤ αnr−1 for n ≥ nQ. Then, if n is sufficiently large in terms of r and
nQ, the number of Q-free ordered r-matchings of size n is at most

e40n(αrrnr−2)(r/(r−1))n.

In the above statement, we allow α to depend on n. To obtain the upper bound in Theorem 1.15, we
can simply apply Theorem 7.1 with Q = P (m) and the estimate in Theorem 1.18(2).

In order to prove the general statement in Theorem 7.1, we need a few basic facts about extremal
numbers of general ordered r-matchings. First, we need the fact that extremal numbers always have
order of magnitude at least nr−1. (This is not hard to prove; in particular it follows from the m = 2 case
of Theorem 9.1, which we prove in Section 9).

Proposition 7.2. Let r ≥ 2, and let Q be any r-matching with at least two edges. Then

ex<(n,Q) ≥
(
n

r

)
−
(

(n− r)+

r

)
.

We also need a basic monotonicity property of extremal numbers of ordered matchings.

Proposition 7.3. Let r, n ≥ 2 and let Q be an ordered r-matching with more than one edge. Then,

ex<(n,Q) ≥ 2 ex<(dn/2e, Q).

Proof. Write the edges of Q as e1, . . . , em, with e1[1] < · · · < em[1]. Say that Q splits into sub-matchings
if there is an index ` ∈ {1, . . . ,m − 1} such that ei[r] < ej [1] for any 1 ≤ i ≤ ` < j ≤ m (i.e., Q
consists of two matchings placed side-by-side). We proceed differently depending on whether Q splits
into sub-matchings.

If Q does not split into sub-matchings, then given any Q-free ordered r-graph G, we can “glue together
two copies of G” to make a larger Q-free ordered r-graph G′. Specifically, we can take two copies of G,
and identify the last vertex of the first copy with the first vertex of the second copy (so except for the
single identified vertex, all vertices of the first copy come before all vertices of the second copy). Clearly,
if the resulting graph G′ were to contain some copy of Q, then this copy must completely lie in one of
the two copies of G. But G is Q-free, meaning that G′ is also Q-free. In addition, if G had exactly
dn/2e vertices and ex<(dn/2e, Q) edges, then G′ has 2dn/2e − 1 ≤ n vertices and 2 ex<(dn/2e, Q) edges,
proving the desired inequality.

On the other hand, if Q does split into sub-matchings, then we can consider the r-graph G on the
vertex set {1, . . . , n} containing all possible edges e ∈ E(K

(r)
n ) with e[1] ≤ dn/2e < e[r]. Note that G is

Q-free. We deduce

ex<(n,Q) ≥ e(G) ≥
(
n

r

)
−
(
dn/2e
r

)
−
(
bn/2c
r

)
≥ 2

(
dn/2e
r

)
≥ 2 ex<(dn/2e, Q),

as desired. �

Now, our proof of Theorem 7.1 proceeds by a “contraction” argument, similar to an argument for
r-dimensional orders by Cibulka and Kyncl [18]. We execute this argument in two steps: first we use an
inductive contraction argument to estimate the number of Q-free graphs on n vertices, then we use this
bound and a different contraction argument to upper bound the number of Q-free ordered matchings of
size n. The first of these steps is encapsulated in the following lemma.
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Lemma 7.4. Fix a constant r ≥ 2, and suppose n is sufficiently large in terms of r. For any ordered
r-matching Q with more than one edge, the number of ordered Q-free r-graphs on the vertex set {1, . . . , n}
is at most

exp
(

2r+2 ex<(dn/2e, Q)
)
.

Note that if ex<(n,Q) ≤ αnr−1 for n ≥ nQ (as in the statement of Theorem 7.1), the bound in
Lemma 7.4 is at most exp(O(αnr−1)) for n ≥ 2nQ.

Proof. For any n ∈ N, let Gn be the set of all r-graphs on the vertex set {1, . . . , n} which are Q-free.
First, we describe how to “contract pairs of vertices” to transform an n-vertex ordered graph G ∈ Gn

into an dn/2e-vertex ordered graph φ(G) ∈ Gdn/2e. For G ∈ Gn, partition its vertex set {1, . . . , n} into
dn/2e contiguous intervals I1, . . . , Idn/2e, where each Ii has size 2 except possibly Idn/2e (which has size
1 if n is odd). Then, φ(G) is obtained by “contracting” each Ii to a single vertex. Specifically, we include
e ∈ E(K

(r)
dn/2e) as an edge of φ(G) if and only if {i1, . . . , ir} ∈ E(G) for some i1 ∈ Ie[1], i2 ∈ Ie[2], . . . , ir ∈

Ie[r]. Note that this contraction operation cannot create copies of Q.
Now, fixing G′ ∈ Gdn/2e, we are going to estimate the number of G ∈ Gn such that φ(G) = G′. For all

possible edges e ∈ E(K
(r)
n ) of G, say that e is contractible if de[1]/2e < · · · < de[r]/2e (i.e., if the vertices

of e lie in different Ii, in the definition of φ(G)).
First, every edge e ∈ E(G′) arose by contracting some edge fe ∈ E(G). There are 2r possibilities

for fe, and at least one must have been present in G, so given that φ(G) = G′ there are at most
(22r − 1)e(G

′) < 22r ex<(n′,Q) ways to choose the contractible edges in G.
On the other hand, if e ∈ E(G) is not contractible, then e[k] + 1 = e[k + 1] for some 1 ≤ k < r. By

Lemma 2.2 and Proposition 7.2, the number of e ∈ E(K
(r)
n ) which have this property is(

n

r

)
−
(

(n− r)+

r

)
< 2r

((
dn/2e
r

)
−
(

(dn/2e − r)+

r

))
≤ 2r ex<(dn/2e, Q),

assuming that n is sufficiently large in terms of r (say, n ≥ nr). So, the total number of ways to choose
the non-contractible edges in G is at most 22r ex<(dn/2e,Q). An r-graph G is specified by its contractible
and non-contractible edges, so we have

|Gn| ≤
∣∣Gdn/2e∣∣ · 22r ex<(dn/2e,Q) · 22r ex<(dn/2e,Q) ≤

∣∣Gdn/2e∣∣ · exp
(

2r+1 ex<(dn/2e, Q)
)
.

Iterating this inequality, and using that ex<(dn/2ke, Q) ≤ 2−(k−1) ex<(dn/2e, Q) (by Proposition 7.2),
we have

|Gn| ≤ |Gnr |
dlog2(n/nr)e∏

k=1

exp
(

2r+1 ex<(dn/2ke, Q)
)
≤ |Gnr | · exp

(
(2r+2 − 1) ex<(dn/2e, Q)

)
.

When n is sufficiently large in terms of r, Proposition 7.2 implies |Gnr | ≤ 2(nr
r ) ≤ exp(ex<(dn/2e, Q)).

Then, |Gn| < exp
(
2r+2 ex<(dn/2e, Q)

)
, as desired. �

We are now ready to complete the proof of Theorem 7.1.

Proof of Theorem 7.1. LetMn be the set of ordered r-matchings on the vertex set {1, . . . , rn} that are
Q-free, and for any n′ let Gn′ be the set of r-graphs on the vertex set {1, . . . , n′} that are Q-free.

As in the proof of Lemma 7.4, we will define a “contraction” operation (though this time we will
contract larger intervals, and we will not need to iterate our operation). For some B, whose value we will
specify shortly, let n′ = drn/Be and partition {1, . . . , rn} into n′ contiguous intervals I1, . . . , In′ , where
each Ii has size B except possibly In′ (which is smaller if n is not divisible by B). For M ∈ Mn let
ψ(M) ∈ Gn′ be the graph on the vertex set {1, . . . , n′} obtained by contracting each interval Ii to a single
vertex (specifically, we include e ∈ E(K

(r)
n′ ) as an edge of ψ(G) if and only if (i1, . . . , ir) ∈ E(M) for

some i1 ∈ Ie[1], . . . , ir ∈ Ie[r]). Now, we specify B to be the largest integer such that Br−1 ≤ αrrn(r−2).
Note that Br−1 ≥ αrrnr−2/2 and (n′)r−1 ≤ 2(rn/B)r−1 = 2rr−1nr−1/Br−1 ≤ 4n/(rα); and (n′)r−1 ≥
(rn/B)r−1 = rr−1nr−1/Br−1 ≥ n/(rα). By Lemma 7.4 we have

|Gn′ | ≤ exp
(

2r+2 ex<(dn′/2e, Q)
)
≤ exp

(
2r+3α(n′/2)r−1

)
≤ exp

(
16α(n′)r−1

)
≤ e64n/r ≤ e32n,
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assuming n is sufficiently large with respect to r. (In this deduction we assumed that α ≤ 4n3/4/r and n is
sufficiently large with respect to nQ so that (n/(rα))1/(r−1)/2 ≥ nQ, thus dn′/2e ≥ (n/(rα))1/(r−1)/2 ≥
nQ. Note that if α > 4n3/4/r then (n′)r−1 ≤ 4n/rα < n1/4, hence |Gn′ | ≤ 2(n′

r ) ≤ 2(n′)r < e32n). Now,
fixing G ∈ Gn′ , let us estimate the number of M ∈ Mn with ψ(M) = G. Viewing each edge e ∈ E(G)

as an ordered r-tuple (e[1], . . . , e[r]), let

T = E(G) ∪ {(t1, . . . , tr) ∈ [n′]r : t1 ≤ t2 ≤ · · · ≤ tr and there exists k such that tk = tk+1}.

The idea is that T specifies the “possible places where edges of M can lie”: if ψ(M) = G then for each
edge e ∈ M there must be some tuple (t1, . . . , tr) ∈ T such that e[1] ∈ It1 , . . . , e[r] ∈ Itr (say that e is
consistent with ~t). Then,

|T | = |E(G)|+
(
n′ + r − 1

r

)
−
(
n′

r

)
≤ ex<(n′, Q) + 2

(
n′

r

)
− 2

(
(n′ − r)+

r

)
≤ 3 ex<(n′, Q) ≤ 3α(n′)r−1 ≤ 12n

r
≤ 6n.

(In the deduction above we assumed that α ≤ 4n3/4/r and n is sufficiently large with respect to nQ and
r so that the first inequality holds, and n′ ≥ (n/(rα))1/(r−1) ≥ nQ so that the third inequality holds. In
the second inequality we used Proposition 7.2. Also note that the inequality |T | ≤ 6n holds trivially if
α > 4n3/4/r as this implies that n′ < n1/(4(r−1)) and thus |T | ≤ (n′)r < n.)

Now, for every M ∈ Mn with ψ(M) = G, we consider the number a~t of edges e ∈ M which are
consistent with ~t. Since

∑
~t∈T a~t = n, the number of possibilities for (a~t : ~t ∈ T ) is at most(

n+ |T | − 1

n

)
<

(
n+ 6n

n

)
≤ 27n ≤ e5n.

Then, given any choice of (a~t : ~t ∈ T ), the number of ways to choose the edges of M is at most∏
~t∈T

(Br)a~t ≤ Brn.

Thus,
|Mn| ≤ |Gn′ | · e5n ·Brn ≤ e37n

(
αrrnr−2

)(r/(r−1))n
,

as desired. �

Now, we turn our attention to the lower bound in Theorem 1.15. Actually, we are able to prove the
desired bound even when restricting our attention to r-partite r-matchings (i.e., r-dimensional orders).
Let Npart

P,m (n) be the number of r-partite r-matchings M on the vertex set {1, . . . , rn} with LP (M) < m.

Theorem 7.5. Let r ≥ 2 and P be an r-partite r-pattern. Also consider any m ≥ 2 such that m− 1 is
divisible by r − 1, and consider any integer b ≥ r(m− 1)/(r − 1). Then, defining

n =

(
b+ r − (m− 1)/(r − 1)

r

)
−
(
b+ r − r(m− 1)/(r − 1)

r

)
,

we have
Npart
P,m (n) ≥ e−rn(r!)−(r/(r−1))n(m− 1)(r/(r−1))nn(r−1−1/(r−1))n.

Remark 7.6. If P is an r-partite r-pattern with block representation |B1|B2| . . . |Br|, andM is an r-partite
r-matching (with edges viewed as r-tuples in {1, . . . , n}), then the condition LP (M) < m is equivalent
to the condition that there is no sequence of edges e1, . . . , em which is increasing in all coordinates i with
Bi = AB, and decreasing in all coordinates i with Bi = BA. So, Npart

P,m (n) does not actually depend on
P , and is precisely equal to the number of (r− 1)-tuples of permutations of {1, . . . , n} which contain no
common increasing subsequence of length m.

Remark 7.7. The bound in Theorem 7.5 is only for n of a certain form, but it’s easy to deduce almost
as strong of a bound for all n (if we view r as a constant).

Indeed, first note that if (say) b ≥ 2m, the resulting value of n scales like mbr−1. So, for any desired
order of magnitude (greater than mr) we can choose b such that n has our desired order of magnitude.

Then, note that Npart
P,m (n + 1) ≥ Npart

P,m (n) for all n (i.e., Npart
P,m (n) is monotone increasing in n).

This is because for any (r − 1)-tuple of permutations of {1, . . . , n} which contain no common increasing
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subsequence of length m, we can simply prepend each permutation with “n+1” to obtain an (r−1)-tuple
of permutations of {1, . . . , n+ 1} which still contain no common increasing subsequence of length m.

Proof of Theorem 7.5. As we have just discussed (in Remark 7.6), it suffices to consider the case where P
has representation |AB|AB| . . . |AB|, in which case the condition LP (M) < m is equivalent to the condi-
tion that there is no sequence of m edges that is increasing in every coordinate.

We start by constructing an r-partite ordered r-graph G, which we will “uncontract” to obtain our
desired matchings M (by analogy with the contraction operation in the proof of Theorem 7.1 earlier
in this section). Let a = (m − 1)/(r − 1), and let U1, . . . , Ur be disjoint sets of size b − a + 1 (we
write Ui = {uia, . . . , uib}). Define G to be the graph on the vertex set U1 ∪ · · · ∪ Ur (ordered such that
U1 < U2 < · · · < Ur), where {u1

j1
, u2
j2
, . . . , urjr} is included as an edge if and only if

b+ 1 ≤ j1 + · · ·+ jr ≤ b+m− 1.

By symmetry, for any j ∈ {a, . . . , b}, the vertices u1
j , . . . , u

r
j have the same degree, which we denote as dj .

Note that each dj ≥ 1, since for any integer k in the range [a, b] = [(m − 1)/(r − 1), b], there is always
some way to add r−1 more integers in this range to k, to obtain a number in the range [b+1, b+m−1].
Also, observe that b ≥ r(m− 1)/(r − 1) = ra. Writing n = da + · · ·+ db = e(G), we have

n = #
(

(j1, . . . , jr) ∈ {a, . . . , b}r : b+ 1 ≤ j1 + · · ·+ jr ≤ b+ (m− 1)
)

= #
(

(x1, . . . , xr) ∈ {0, . . . , b− a}r : b+ 1− ra ≤ x1 + · · ·+ xr ≤ b+ (m− 1)− ra = b− a
)

= #
(

(x1, . . . , xr) ∈ Zr≥0 : x1 + · · ·+ xr ≤ b− a
)

−#
(

(x1, . . . , xr) ∈ Zr≥0 : x1 + · · ·+ xr ≤ b− ra
)

=

(
b+ r − (m− 1)/(r − 1)

r

)
−
(
b+ r − r(m− 1)/(r − 1)

r

)
. (7.1)

Starting from the vertex set U1 ∪ · · · ∪Ur of G, “uncontract” each vertex uij into an interval Iij of length
dj , to obtain an ordered set V of rn vertices such that I1

a < · · · < I1
b < I2

a < · · · < Ir−1
b < Ira < · · · < Irb .

Then, we consider each matching on the vertex set V which “yields G after contracting the intervals Iij
to single vertices”. Specifically, we consider each matching M on V with the property that for e ∈ E(M)

there is a unique edge f ∈ E(G) with e[1] ∈ I1
f [1], e[2] ∈ I2

f [2], . . . , e[r] ∈ Irf [r] (and every f ∈ E(G)

corresponds to precisely one e ∈ E(M)).
It is not hard to see there are exactly

∏
v∈V (G) dG(v) =

(∏
j dj !

)r
ways to choose ordered r-matchings

M as above. Note that each such matching M satisfies LP (M) < m. To see this, recall that every edge
of G (and therefore every edge of M) can be identified by a unique r-tuple (j1, . . . , jr) with b + 1 ≤
j1 + · · ·+ jr ≤ b+m− 1. For two edges e, e′ ∈ E(M) (corresponding to two different r-tuples (j1, . . . , jr)

and (j′1, . . . , j
′
r)), we can only have e[i] > e′[i] when ji ≥ j′i. In particular, if e[i] > e′[i] for all i, then

j1 + · · ·+jr > j′1 + · · ·+j′r (note that (j1, . . . , jr) 6= (j′1, . . . , j
′
r) when e 6= e′). For our r-tuples (j1, . . . , jr)

under consideration, j1 + · · ·+ jr is constrained to an interval of m− 1 integers, so there cannot be any
sequence of m edges which is increasing in every coordinate (i.e., LP (M) < m).

It remains to lower-bound
(∏

j dj !
)r

in terms of n,m, r. Recall that the Gamma function Γ is log-
convex and satisfies Γ(x) ≥ (x/e)x−1. Using that da + · · ·+ db = n, we have b∏

j=a

dj !

r

=

 b∏
j=a

Γ(dj + 1)

r

≥
(

Γ

(
n

b− a+ 1
+ 1

))(b−a+1)r

>

((
n

e(b− a+ 1)

)n/(b−a+1)
)(b−a+1)r

= e−rnnrn
(
b− m− 1

r − 1
+ 1

)−rn
. (7.2)
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On the other hand, recalling (7.1),

n =

(
b+ r − (m− 1)/(r − 1)

r

)
−
(
b+ r − r(m− 1)/(r − 1)

r

)
=

1

r!

[
r∏
i=1

(
b− m− 1

r − 1
+ i

)
−

r∏
i=1

(
b− r(m− 1)

r − 1
+ i

)]

>
1

r!
· (m− 1)

r−1∏
i=1

(
b− m− 1

r − 1
+ i

)

>
m− 1

r!

(
b− m− 1

r − 1
+ 1

)r−1

.

In other words, b− (m− 1)/(r − 1) + 1 < (r!n/(m− 1))1/(r−1). Plugging this into (7.2), we have

Npart
P,m (n) ≥

r∏
i=1

b∏
j=a

dj ! ≥ e−rnnrn
(

r!n

m− 1

)−(rn)/(r−1)

= e−rn(r!)−(r/(r−1))n(m− 1)(r/(r−1))nn(r−1−1/(r−1))n,

as desired. �

8. Partitioning ordered hypergraphs

A well-known result of Erdős and Kleitman [24] says that every r-graph with m edges has an r-partite
subgraph with at least (r!/rr)m edges (here “r-partite” means that we can divide the vertex set into r
parts such that every edge has exactly one vertex in each part). This theorem is enormously useful in
extremal hypergraph theory, as it allows one to prove a result about r-partite r-graphs and “transfer” it
to general r-graphs.

It would be very useful if the same would be possible in the setting of ordered hypergraphs (where
our notion of r-partiteness should impose that the r parts are each intervals according to our ordering).
Although it is not possible to prove a direct analogue of the Erdős–Kleitman theorem, Füredi, Jiang,
Kostochka, Mubayi and Verstraëte [31] managed to prove a result that is almost as good: in a certain
sense every ordered r-graph G has a subgraph G′ which is “nearly” r-partite, in such a way that the
“relative density” of G′ is not too much less than the relative density of G.

In this section we prove a refinement of the Füredi–Jiang–Kostochka–Mubayi–Verstraëte theorem,
with essentially optimal dependence on r, which might be of independent interest. This will be used in
our proof of Theorem 1.18(2). To state our theorem we need some definitions.

Definition 8.1. Let 1 ≤ k ≤ r and ~a be a positive integer-valued vector of length k with sum of entries
‖~a‖1 = r. We say an ordered r-graph G is ~a-equipartite if the following holds.

(1) G must have exactly kn vertices.
(2) Partition the vertex set of G into contiguous intervals I1, . . . , Ik of size n. For each i ∈ {1, . . . , k}

and each edge e of G, we must have |e ∩ Ii| = ai.
If G is ~a-equipartite with order n, then we define its `-density to be its number of edges divided by
n`/

∏
i ai! (this is a twisted notion of density, which can take values between 0 and nr−`).

Moreover, say that G is k-equipartite if it is ~a-equipartite for some ~a with ‖~a‖0 = k, and say that G
is (≥ t)-equipartite if it is k-equipartite for some k ≥ t.

Note in particular that there is only one possible ~a with ‖~a‖0 = r: namely, the all-ones vector of
length r. There are r − 1 essentially equivalent ~a with ‖~a‖0 = r − 1: namely, the the vectors of length
r − 1, whose all entries are “1” except one “2”. So, being (≥ r − 1)-equipartite corresponds to being
~a-equipartite for one of the above two types of ~a.

Now, our refinement of the Füredi–Jiang–Kostochka–Mubayi–Verstraëte theorem is as follows.

Theorem 8.2. Fix r ∈ N and ε > 0, and suppose n is sufficiently large in terms of r and ε. Let p ≥ ε

and let G be an ordered r-graph with of n vertices and at least (p/n)
(
n
r

)
edges. Then, G contains a

(≥ r − 1)-equipartite subgraph G′ of order nΩr(1) with (r − 1)-density at least Ω(p/r2).
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We also show that the multiplicative factor O(r−2) in the “loss of density” in Theorem 8.2 is essentially
best possible.

Theorem 8.3. Fix a constant r ∈ N. There exists an ordered r-graph G with (1 + o(1))r(r − 1)nr−1/r!

edges such that any order-m (≥ r − 1)-equipartite subgraph G′ ⊆ G has (r − 1)-density at most 2 +

om→∞(1).

Remark 8.4. Instead of making an (r− 1)-density assumption, one could make an `-density assumption
for any ` ≤ r. In general, such an assumption would allow one to prove an analogue of Theorem 8.2
in which we guarantee a (≥ `)-equipartite subgraph with reasonably large `-density. (Such a result was
previously proved in [31], and our proof approach can always attain a better dependence on r). However,
since (r−1)-density is the relevant parameter in most applications, we prefer to keep our proof as simple
as possible, and only treat the case ` = r − 1.

To prove Theorem 8.2, the following lemma turns out to be crucial. Roughly speaking, given any
~a-equipartite G (for some ~a), we can either obtain a subgraph of G with more parts or a subgraph of G
with the same number of parts but higher density.

Lemma 8.5. Suppose 1 ≤ k ≤ r and ~a is a positive integer-valued vector of length k with ‖~a‖1 = r.
Let G be an ~a-equipartite ordered r-graph with (r − 1)-density p, and consider any R ∈ N. Suppose that
n is sufficiently large in terms of r,R. Then, for some t ∈ N satisfying ‖~a‖0 ≤ t ≤ r, we can find a
t-equipartite subgraph of order bn/Rc in G, with (r − 1)-density at least

p

4R

(
R

(r − k + 1)2

)r−t
.

We remark that in practice we will apply Lemma 8.5 with R a large constant.

Proof. Write I1, . . . , Ik for the k parts of G. First, it is convenient to reduce to a subgraph whose order
is divisible by R. So, let n′ = Rbn/Rc. By averaging, there’s a way to delete n − n′ < R vertices from
each Ii to obtain an ~a-equipartite subgraph G′, such that at most (rR/n)e(G) edges are deleted. So, the
(r − 1)-density of G′ is at least p(1− rR/n) ≥ p/2 for n ≥ 2rR.

Now, we divide each Ii into R contiguous intervals Ii,1, . . . , Ii,R of the same length n/R. Write 1 ∈ RR
be the all-ones vector of length R, and for every t ∈ {k, k + 1, . . . , r}, define BR~a,t to be the set of k × R
matrices b ∈ Zk×R≥0 with ‖b‖0 = t nonzero entries, satisfying b1 = ~a. Then, for each b ∈ BR~a,t, we define a
t-equipartite subgraph Gb of order bn/Rc, as follows. The vertex set of Gb is obtained by including part
Ii,j whenever bij 6= 0, and the edge set is obtained by including each e ∈ G′ if |e ∩ Ii,j | = bij for all i, j.
Note that the subgraphs Gb (as b varies in BR~a,t, while t varies in {k, . . . , r}) partition the edges of G′.

Now, if none of the subgraphs Gb satisfied the conclusion of the lemma, the total number of edges in
G′ would be

e(G′) <

r∑
t=k

∑
b∈BR

~a,t

p

4R

(
R

(r − k + 1)2

)r−t
(n/R)r−1∏

i,j bij !
=

r∑
t=k

p ·R−t

4(r − k + 1)2(r−t)
nr−1∏
i ai!

∑
b∈BR

~a,t

∏
i ai!∏
i,j bij !

.

To show that this leads to contradiction, we need the following combinatorial inequality.

Claim 8.6. For every k ≤ t ≤ r, we have
∑
b∈BR

~a,t

(∏
i ai!/

∏
i,j bi,j !

)
≤ Rt

(
(r − k + 1)2/2

)r−t
.

We will prove Claim 8.6 momentarily, but first we see how to use it to conclude the proof of Lemma 8.5:
recalling our estimate for e(G′) above, we have

e(G′) <

r∑
t=k

p ·R−t

4(r − k + 1)2(r−t)
nr−1∏
i ai!
·Rt

(
(r − k + 1)2

2

)r−t
=

r∑
t=k

p

4
· 2−(r−t) · n

r−1∏
i ai!

<
(p/2)nr−1∏

i ai!
,

contradicting the fact that G′ has (r − 1)-density at least p/2. �

Now we prove Claim 8.6.

Proof of Claim 8.6. We prove this inequality combinatorially, relating both sides of the inequality to
certain counts of tuples of set partitions.

In this proof we write [n] = {1, . . . , n}, and write ‖f‖0 for the number of elements in the image of a
function f . For 1 ≤ q ≤ n, let Pn,q be the collection of (unlabelled) partitions of [n] into q nonempty
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subsets (so |Pn,q| =
{
n
q

}
is a Stirling number of the second kind). Let Pn =

⋃n
q=1 Pn,q be the collection of

partitions of [n] into any number of subsets, and let ‖P‖0 be the number of parts of a partition P ∈ Pn.
Then, define

P~a,t =

{
(P1, . . . , Pk) ∈ Pa1 × · · · × Pak

∣∣∣∣∣
k∑
i=1

‖Pi‖0 = t

}
.

Note that ∑
b∈BR

~a,t

∏
i ai!∏

i,j bi,j !
=
∑
b∈BR

~a,t

∏
i

(
ai

bi,1 . . . bi,R

)
≤ Rt|P~a,t|. (8.1)

(To see this, observe that the right-hand side of (8.1) can be interpreted as the number of ways to choose
a tuple of partitions (P1, . . . , Pk) ∈ P~a,t together with a labelling of the parts in these partitions, in such
a way that for each 1 ≤ i ≤ k, each of the parts in Pi is assigned a distinct label from [R]).

Now, note that every (P1, . . . , Pk) ∈ P~a,t gives rise to a partition P ∈ Pr,t: first, P1 describes a
partition of {1, . . . , a1}, then P2 describes a partition of {a1 +1, . . . , a1 +a2}, and P3 describes a partition
of {a1 +a2 +1, . . . , a1 +a2 +a3}, and so on. We can then “collapse” P into a partition P ′ ∈ Pr−k+1,t−k+1,
by sequentially merging the parts containing a1 and a1 + 1, then merging the parts containing a1 + a2

and a1 + a2 + 1, and so on. Since this mapping from (P1, . . . , Pk) to P ′ is injective, we deduce that

|P~a,t| ≤ |Pr−k+1,t−k+1| =
{
r − k + 1

t− k + 1

}
.

Then, note that for all 1 ≤ q ≤ n we have{
n

q

}
≤
n−q−1∏
i=0

(
n− i

2

)
≤
(
n

2

)n−q
,

because we can generate a partition P ∈ Pn,q by starting with the trivial partition P0 ∈ Pn,n into n
parts, and iteratively merging pairs of parts (n− q times). We deduce that

|P~a,t| ≤
(
r − k + 1

2

)r−t
<

(
(r − k + 1)2

2

)r−t
.

Combining this with (8.1), the desired result follows. �

Proof of Theorem 8.2. Let C be a large constant (C = 200 will do). Let R(k) = C · (r − k + 1)2.
The plan is to repeatedly apply Lemma 8.5 until we find the desired subgraph. First, let G0 = G,

p0 = p/2, n0 = n and k0 = 1. Observe that G0 (like any ordered r-graph) is ~a-equipartite for ~a = (r)

(i.e., 1-equipartite). It has order n and (r− 1)-density at least (p/n)
(
n
r

)
/(nr−1/r!) > p/2 (assuming n is

sufficiently large in terms of r). Then, for each i ≥ 1 (“at step i”), we take the ki−1-equipartite subgraph
Gi−1 with (r − 1)-density pi−1, and apply Lemma 8.5 with R = R(ki−1) to obtain a ki-equipartite
subgraph Gi with order ni = bni−1/Rc and with (r − 1)-density at least

pi =
pi−1

4R

(
R

(r − ki−1 + 1)2

)r−ki
=

pi−1

4(r − ki−1 + 1)2
Cr−ki−1, (8.2)

for some ki ≥ ki−1. We stop when ki ≥ r−1 (i.e., when we have found a (≥ r−1)-equipartite subgraph),
and we also abort the process if at any point Gi−1 has too few vertices to apply Lemma 8.5 with the
desired R. Let τ be the total number of steps taken.

We first prove that pj ≥ p/(8Cr2) for j ≤ τ . In fact, we prove, by reverse induction, the stronger
statement that for each step i < j we have

pj ≥
pi

4C(r − ki + 1)2
.

The base case (where i = j−1) follows from (8.2), so consider some i < j−1 and suppose as our induction
hypothesis that the statement is true for i+ 1. Since i+ 1 ≤ j− 1 ≤ τ − 1, we have ki+1 ≤ r− 2. Hence,

pj ≥
pi+1

4C(r − ki+1 + 1)2
=

pi
(4C)2(r − ki+1 + 1)2(r − ki + 1)2

Cr−ki+1 ≥ pi
(4C)(r − ki + 1)2

,

using the induction hypothesis and (8.2) (for i + 1), and the fact that Cr−k/(4C(r − k + 1)2) ≥ 1 for
k ≤ r − 2 and C ≥ 36.
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It now suffices to show that this process cannot continue for too many steps (in particular, we want
to make sure that the graphs Gi never get too small). For each 1 ≤ k ≤ r− 2, let i(k) be the first step i
such that ki ≥ k, and let N(k) be the number of steps i > i(k) such that ki = k. Note that for each step
i(k) < i ≤ i(k)+N(k) we have pi ≥ (C/40)pi−1 by (8.2) (because Cr−k(r−k+1)−2 ≥ C2/10 for k ≤ r−2)
and ni ≤ ni−1/R(k). This gives pi(k)+N(k) ≥ (C/40)N(k)pi(k) and ni(k)+N(k) ≤ ni(k)/R(k)N(k). But then,
due to Definition 8.1, the (r − 1)-density of Gi(k)+N(k) is at most ni(k)+N(k), so pi(k)+N(k) ≤ ni(k)+N(k).
This, plus the fact that pj ≥ p/(8Cr2) ≥ ε/(8Cr2) for j ≤ τ , implies

(C/40)N(k) · ε/(8Cr2) ≤ (C/40)N(k)pi(k) ≤ pi(k)+N(k) ≤ ni(k)+N(k) ≤ ni(k)/R(k)N(k).

So we must have N(k) ≤ log
(
8Cr2ni(k)/ε

)
/ log(R(k)C/40) ≤ log(ni(k))/ log(4R(k)), where in the latter

inequality we assume ni(k) is sufficiently large in terms of r and ε and C is a large constant. Consequently,
ni(k)+N(k) ≥ (2R(k))−N(k) · ni(k) ≥ n

α(k)
i(k) , where α(k) = 1 − log(2R(k))/ log(4R(k)) > 0, and ni(k+1) =

ni(k)+N(k)+1 ≥ ni(k)+N(k)/(2R(k)) ≥ nα(k)
i(k) /(2R(k)).

So, ni is at least nα(1)...α(r−2)/(2r−2R(1) . . . R(r − 2)) for each i. Note that α(1) . . . α(r − 2) > 0 and
R(1) . . . R(r − 2) only depend on r, so if n is sufficiently large in terms of r then we can guarantee that
each ni is always large enough (in terms of r and R(ki)) to apply Lemma 8.5 (i.e., the process never
aborts). The process therefore terminates with the (≥ r−1)-equipartite subgraph Gτ with (r−1)-density
pτ ≥ p/(8Cr2). This concludes the proof. �

Now we prove Theorem 8.3.

Proof of Theorem 8.3. Let G be the ordered r-graph on the vertex set {1, . . . , n}, with every possible
edge that contains two consecutive vertices. By Lemma 2.2, the number of edges in G is(

n

r

)
−
(

(n− r + 1)+

r

)
= (1 + o(1))r(r − 1)

nr−1

r!
.

(1) If G′ is an r-equipartite subgraph with parts I1 < · · · < Ir of size m, then for every edge e
there must be some pair of parts Ii, Ii+1 such that e contains the last element of Ii and the first
element of Ii+1 (and these two elements must be consecutive). So, the number of edges in G′ is
at most (r − 1)mr−2, meaning that G′ has (r − 1) density at most (r − 1)/m = om→∞(1).

(2) If ~a satisfies ‖~a‖0 = r − 1 and G′ is an ~a-equipartite subgraph with parts I1 < · · · < Ir−1 of size
m, then we can divide the edges of G′ into two types.
• First, we could have some edges e containing the last element of some Ii and the first element

of Ii+1, as in (1). The number of such edges is at most (r − 2)mr−2.
• Second, writing j for the single index with aj = 2, we could have some edges e containing

two consecutive vertices in Ij . The number of such edges is at most (m− 1)mr−2.
All in all, the number of edges in G′ is at most (1 + om→∞(1))mr−1, meaning that G′ has
(r − 1)-density at most 2 + om→∞(1). �

9. Extremal numbers for P -cliques

In this section, we prove Theorems 1.17 and 1.18. First, the following theorem is a generalisation of
Theorem 1.18(1). It will also be used for the lower bound in Theorem 1.17.

Theorem 9.1. Let r, n ≥ 1, let P be an r-pattern, and let m ≥ 1. If P is collectable or m ∈ {1, 2} then

ex<(n, P (m)) ≥
(
n

r

)
−
(

(n− r(m− 1))+

r

)
.

(Note that Theorem 9.1 allows P to be non-collectable if m ∈ {1, 2}. We do not need to worry
about non-collectable patterns in our proofs of Theorems 1.17 and 1.18 the extra generality is so that
Proposition 7.2 (which we stated without proof in Section 7) is a direct corollary.

Proof. Note that ex<(n, P (1)) = 0 and ex<(n, P (m)) =
(
n
r

)
if rm > n. We may assume 2 ≤ m ≤ n/r for

the rest of the proof.
Write f1, f2 for the two edges of P , with f1[1] < f2[1]. For each 1 ≤ i < r, let si = #(j ∈ [r] : f1[i] <

f2[j] < f1[i + 1]) be the number of vertices of f2 lying between the i-th and (i + 1)-th vertices of f1.
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Let sr = #(j ∈ [r] : f2[j] > f1[r]) be the number of vertices of f2 after all the vertices of f1. Clearly,
s1 + · · ·+ sr = r.

Let G be the ordered r-graph with vertex set {1, 2, . . . , n}, where we include an edge e whenever
e[i + 1] − e[i] ≤ si · (m − 1) for some 1 ≤ i < r or e[r] ≥ n − sr · (m − 1) + 1. We first claim that
G is P (m)-free. Indeed, suppose for the purpose of contradiction that the edges e1, . . . , em in G form
P (m), with e1[1] < · · · < em[1]. Fix 2 ≤ j ≤ m. As e1, ej form the pattern P , we know that for all
1 ≤ i < r, there are si vertices of ej lying between e1[i], e1[i+ 1], and that there are sr incident vertices
of ej lying after e1[r]. By considering all j, it holds that e1[i+ 1]− e1[i] > si · (m− 1) for 1 ≤ i < r and
e1[r] ≤ n− sr · (m− 1). But then, e1 should not have been put into G, a contradiction.

Now, it suffices to count the number of edges in G. It is convenient to instead count non-edges: an
r-subset e of {1, . . . , n} is a non-edge of G if and only if e[i+ 1]− e[i] > si · (m− 1) for all 1 ≤ i < r and
e[r] ≤ n− sr · (m− 1). By Lemma 2.2, the number of such e is exactly(

n− sr(m− 1)−
∑r−1
i=1 si(m− 1)

r

)
=

(
n− r(m− 1)

r

)
.

Thus, the number of edges in G is (
n

r

)
−
(
n− r(m− 1)

r

)
,

so this is a lower bound on ex<(n, P (m)), as desired. �

Remark 9.2. In fact, the above lower bound works in a stronger setting: given any r-pattern P and any
r-matching Q with edges e1, . . . , em (ordered such that e1[1] < e2[1] < · · · < em[1]), such that e1, ei form
the pattern P for all 2 ≤ i ≤ m, we have

ex<(n,Q) ≥
(
n

r

)
−
(

(n− r(m− 1))+

r

)
.

We next prove Theorem 1.18(3).

Proof of Theorem 1.18(3). Without loss of generality, we may assume that m ≤ n/r, as otherwise
ex<(n, P (m)) =

(
n
r

)
, as desired. Let P be the “alternating pattern” represented by |AB|BA|AB|BA| · · · |,

and let G̃ be the ordered r-graph in the proof of Theorem 1.18(1) above, i.e., e is an edge of G if
e[2i]− e[2i− 1] ≤ 2(m− 1) for some 1 ≤ i ≤ r/2 or if e[r] ≥ n− (m− 1) + 1 and r is odd. The number
of edges in G̃ is (

n

r

)
−
(
n− r(m− 1)

r

)
.

Consider any n-vertex P (m)-free ordered r graph G. We are going to show that e(G) ≤ e(G̃). Our
strategy is to partition the collection of all possible edges into subsets, and to separately show that in
each subset the number of edges of G is at most the number of edges of G̃.

Let E(K
(r)
n ) be the collection of all subsets of {1, . . . , n} (i.e., all edges of the complete r-graph). We

define an equivalence relation ∼ on E(K
(r)
n ): for e, f ∈ E(K

(r)
n ), we write e ∼ f if there is ` ∈ Z such

that f [i] = e[i] + ` whenever i is odd, and f [i] = e[i]− ` whenever i is even. Fix an equivalence class A
of ∼. It is easy to see that any two edges in A form the pattern P , and thus all the edges (in K(r)

n ) in
A form a P -clique4.

Now, it suffices to show that |E(G) ∩A| ≤ |E(G̃) ∩A| for every equivalence class A of ∼. Suppose
there exists some e ∈ A ∩ (E(G) \ E(G̃)) (otherwise |E(G) ∩A| ≤ |E(G̃) ∩A| holds trivially). Since
e /∈ E(G̃), we have e[2i]− e[2i− 1] > 2(m− 1) for all 1 ≤ i ≤ r/2, and e[r] ≤ n− (m− 1) if r is odd. For
` ∈ N, let

f`(e) := {e[1] + `, e[2]− `, e[3] + `, e[4]− `, . . . }.
As we increase `, we are “pushing each e[2i− 1] and e[2i] towards each other”, and “pushing e[r] towards
n” (if r is odd). At some point, there will be a “collision”: let `? be the “time just before this collision”,
i.e., the largest ` for which e[r] + (−1)r+1` ≤ n and e[2i− 1] + ` < e[2i]− ` for all 1 ≤ i ≤ r/2. Note that
`? ≥ m− 1 (since e /∈ E(G̃)) and that f`(e) ∈ E(G̃) for all ` ∈ {`? − (m− 2), . . . , `?} (the condition for
f to be an edge of G̃ is the condition that f is “within m− 1 steps of a collision”). Note that f`(e) ∼ e

4This is the crucial fact we are using about the alternating pattern (for all other patterns P , one can define similar
equivalence classes, but it is not true that all equivalence classes are P -cliques).
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for each ` ≤ `?, so |E(G̃) ∩A| ≥ m − 1. On the other hand, E(G) ∩ A is a P -clique as every two
edges in A form the pattern P . Since G is P (m)-free, we have |E(G) ∩A| ≤ m − 1. This proves that
|E(G) ∩A| ≤ |E(G̃) ∩A|, as desired. �

Now, we prove Theorem 1.17 (giving the exact extremal numbers for all r-partite r-patterns P ).

Proof of Theorem 1.17. We only need to prove the upper bound, as the lower bound is given by the
m = 2 case of Theorem 1.18(1).

We proceed by induction on r (the base case r = 1 is trivial). Fix an r-partite r-pattern P , and write
|B1| · · · |Br| for its block representation, where B1 = AB and Bi ∈ {AB,BA} for 2 ≤ i ≤ r. Let G be an
n-vertex P -free ordered r-graph. We may assume that n ≥ r; our goal is to prove that

e(G) ≤
(
n

r

)
−
(
n− r
r

)
.

Let P̂ be the pattern with block representation |B1|B2| · · · |Br−1|, and for an edge e = {e[1], . . . , e[r]} ∈
E(K

(r)
n ), let ê = {e[1], . . . , e[r − 1]} ∈ E(K

(r−1)
n−1 ). Let G′ be obtained from G as follows. For each

f ∈ E(K
(r−1)
n−1 ), consider all edges e ∈ E(G) with ê = f . If there are any such edges, then delete the one

with the largest value of e[r]. Note that e(G′) ≥ e(G)−
(
n−1
r−1

)
.

Then, for v ∈ {1, . . . , n}, let Ĝv be the graph with vertex set {1, . . . , v − 1} and edge set

{ê : e ∈ E(G′), e[r] = v}.

We claim that Ĝv is P̂ -free. To see this, suppose for the purpose of contradiction that ê1, ê2 ∈ E(Ĝv)

form pattern P ′ with e1[1] < e2[1]. By the definition of G′, there are x, y ∈ {v + 1, . . . , n} such that
{e1[1], . . . , e1[r − 1], x}, {e2[1], . . . , e2[r − 1], y} ∈ E(G). But note that

• if Br = AB then {e1[1], . . . , e1[r − 1], v}, {e2[1], . . . , e2[r − 1], y} form pattern P ;
• if Br = BA then {e1[1], . . . , e1[r − 1], x}, {e2[1], . . . , e2[r − 1], v} form pattern P .

In either case, we have found P in G, which is a contradiction. So, each Ĝv is P̂ -free and by induction
we have

e(Ĝv) ≤
(
v − 1

r − 1

)
−
(

(v − 1− (r − 1))+

r − 1

)
=

(
v − 1

r − 1

)
−
(

(v − r)+

r − 1

)
.

Also, note that e(Ĝn) = 0, because any e ∈ E(G) with e[r] = nmust have been deleted in the construction
of G′. Consequently,

e(G) ≤
(
n− 1

r − 1

)
+ e(G′) =

(
n− 1

r − 1

)
+

n−1∑
v=1

e(Ĝv)

≤
(
n− 1

r − 1

)
+

n−1∑
v=1

[(
v − 1

r − 1

)
−
(

(v − r)+

r − 1

)]

≤
(
n− 1

r − 1

)
+

n−2∑
k=0

(
k

r − 1

)
−
n−r−1∑
k=0

(
k

r − 1

)
=

(
n− 1

r − 1

)
+

(
n− 1

r

)
−
(
n− r
r

)
=

(
n

r

)
−
(
n− r
r

)
,

as desired. �

The last result we prove in this section is Theorem 1.18(2). Starting from a P (m)-free r-graph G, we
will apply Theorem 8.2 to pass to a (≥ r− 1)-equipartite subgraph (whose (r− 1)-density is comparably
large, and which is still P (m)-free). To this end, we need a generalisation of ex<(n, F ).

Definition 9.3. Let r ≥ 1 and ~a be a positive integer-valued vector with sum of entries ‖~a‖1 = r. For
an ordered r-graph H, we write ex~a<(n,H) for the maximum number of edges in an H-free ~a-equipartite
r-graph of order n.

We separately consider the r-equipartite (‖~a‖0 = r) and (r−1)-equipartite (‖~a‖0 = r−1) cases. First,
we consider the r-equipartite case.
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Lemma 9.4. Let n,m, r ≥ 1. Let ~a = (1, 1, . . . , 1) be the all-one vector of length r, and P be an r-partite
r-pattern. Then,

ex~a<(n, P (m)) = nr −
(
(n−m+ 1)+

)r ≤ r(m− 1)nr−1.

Proof. Let V1, . . . , Vr be disjoint copies of {1, . . . , n}, and let V = V1×· · ·×Vr. Note that an ~a-equipartite
r-graph G can be viewed as a set of tuples e ∈ V. From this perspective, a copy of P (m) (where P has
block representation |B1|B2| · · · |Br|) corresponds to a sequence of edges e1, . . . , em ∈ E(G) which is
increasing in all coordinates i with Bi = AB, and decreasing in all coordinates i with Bi = BA. By
symmetry, ex~a<(n, P (m)) depends only on n and m (i.e., it does not depend on P ). Therefore, it suffices
to consider the case where P has representation |AB|AB| · · · |AB| (i.e., P is a “generalised crossing”).

For the lower bound, we simply consider the ~a-equipartite r-graph G̃ consisting of all possible edges
e ∈ V such that some e[i] < m. By the above discussion, any copy of P (m) must contain an edge with
all coordinates at least m. Thus, G̃ is P (m)-free, and it has the desired number of edges.

For the upper bound, consider a P (m)-free n-vertex graph G with parts V1, . . . , Vr. Define an equiv-
alence relation ∼ on V by taking e ∼ f when there is some ` ∈ Z such that each e[i] = f [i] + `. We
proceed very similarly to the proof of Theorem 1.18(3), showing that |A ∩ E(G)| ≤ |A ∩ E(G̃)| for each
equivalence class A of ∼.

Consider some equivalence class A, and suppose there is e ∈ A ∩ (E(G) \ E(G̃)) (otherwise trivially
|A ∩ E(G)| ≤ |A ∩ E(G̃)|). Since e /∈ E(G̃), each e[i] ≥ m. Define f`(e) = (e[1] − `, . . . , e[r] − `), and
let `? = mini e[i]− 1 ≥ m− 1. Note that f`(e) ∈ E(G̃) for all ` ∈ {`? − (m− 2), . . . , `?}, and note that
f`(e) ∼ e for each ` ≤ `?. So, |A∩E(G̃)| ≥ m− 1. On the other hand, note that A∩E(G) is a P -clique
so |A ∩ E(G)| ≤ m− 1. This proves that |A ∩ E(G)| ≤ |A ∩ E(G̃)|, as desired. �

For the (r − 1)-partite case, we will make a reduction to the setting where r = 2. As mentioned in
the introduction, in this setting the extremal number is known exactly, as follows.

Theorem 9.5. Let n,m ≥ 1 and let P be the crossing 2-pattern or the nesting 2-pattern. Then,

ex<(n, P (m)) =

(
n

2

)
−
(

(n− 2(m− 1))+

2

)
≤ 2(m− 1)n.

The crossing case (|AB|AB|) of Theorem 9.5 is due to Capoyleas and Pach [16] while the nesting case
(|AB|BA|) is a special case of Theorem 1.18(3). (The nesting case also follows from results on queue-
numbers of graphs due to Pemmaraju [52] and to Dujmović and Wood [23]; see [23, Lemma 8]). Now,
our result in the (r − 1)-partite setting is as follows.

Lemma 9.6. Let n,m, r ≥ 1. Let ~a = {1, 2}r−1 be a vector with exactly one “2” (so all other entries are
“1”). Let P be an r-partite r-pattern. Then,

ex~a<(n, P (m)) ≤ 4r(m− 1)nr−1.

Proof. Fix an r-partite r-pattern P , and write |B1| · · · |Br| for its block representation. Let V1, . . . , Vr−1

be disjoint copies of {1, . . . , n}, and let i? be the unique index such that ai? = 2. Note that an ~a-
equipartite r-graph G can be viewed as a set of tuples

e ∈ V1 × · · · × Vi?−1 × E(Kn)× Vi?+1 × · · · × Vr−1,

whereKn is the complete 2-graph on the vertex set Vi? . From this perspective, a copy of P (m) corresponds
to a sequence of edges e1, . . . , em ∈ E(G) which is increasing in all coordinates i 6= i? with Bi = AB,
and decreasing in all coordinates i 6= i? with Bi = BA, and in coordinate i?, the corresponding 2-edges
have a consistent 2-partite pattern (the possibilities can be represented as ABAB, BABA, ABBA and
BAAB, i.e., a crossing-clique going left, a crossing-clique going right, a nesting-clique going inwards, or
a nesting-clique going outwards).

By symmetry, we may assume that i? = r−1. In addition, by exchanging the “A”s and the “B”s in each
Bi, if necessary, we may assume that |Br−1|Br| = |AB|AB| or |AB|BA|, and finally (as in Lemma 9.4) we
may assume that Bi = AB for i ≤ r−2. In other words, P has block representation |AB|AB| . . . |AB|AB|
or |AB|AB| . . . |AB|BA|.

Now, we want to reduce the upper bound of ex~a<(n, P (m)) to the graph (r = 2) case and apply
Theorem 9.5. Fix an ~a-equipartite P (m)-free r-graph G with parts V1, . . . , Vr−1. Write Q for the 2-
partite 2-pattern with block representation |Br−1|Br|. Observe that if G has two edges e, f such that
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e[i]− e[r − 1] = f [i]− f [r − 1] for all i ∈ {1, . . . , r − 2}, and such that the last two coordinates of e and
the last two coordinates of f (both are viewed as edges in Kn) form pattern Q, then e, f form pattern P .

Now, for each ~x = (x1, . . . , xr−2) ∈ {1 − n, 2 − n, . . . , n − 1}r−2, we define G~x to be the subgraph
of G consisting of all edges e ∈ E(G) such that e[i] − e[r − 1] = xi for all i ∈ {1, . . . , r − 2} (i.e., the
edges of the form (x1 + u, x2 + u, . . . , xr−2 + u, uv) with u < v). Write G(2)

~x for the 2-graph consisting
of all uv such that uv appears as the last coordinate of some edge in G~x. Note that there is a natural
bijection between edges in G~x and edges in G

(2)
~x , and by the above discussion, any Q-clique in G

(2)
~x

corresponds to a P -clique in G~x of the same size. Thus, G(2)
~x is Q(m)-free. Also, as G =

⋃
~xG~x, we know

e(G) ≤
∑
~x e(G~x) =

∑
~x e(G~x(2)).

Then, Theorem 9.5 implies e(G~x) = e(G
(2)
~x ) ≤ 2(m − 1)n for all possible ~x. Naïvely, there are

(2n − 1)r−2 possible choices for ~x, but we can do better. Note that for each edge uv ∈ G(2)
~x , we must

have maxi xi+u ≤ n and mini xi+u ≥ 1. So, for G~x to be nonempty, we must have maxi xi−mini xi < n.
The number of choices of ~x which satisfy this inequality is at most (2n−1)rnr−3 < 2rnr−2 (enumerating
over all choices of mini xi, and all choices of an i for which xi is minimal). So,

e(G) ≤ 2rnr−2 · 2(m− 1)n = 4r(m− 1)nr−1,

and the desired result follows. �

Remark 9.7. Let i? be the only i ∈ [r−1] with ai = 2 and let |B1|B2| · · · |Br| be the block representation
of P . Similarly to the proof of Theorem 1.18(3), one can show that if Bi? 6= Bi?+1, then

ex~a<(n, P (m)) = nr−2

(
n

2

)
− (n− (m− 1))r−2

(
(n− 2(m− 1))+

2

)
.

We wonder if a more general statement is true. Let n,m, r ≥ 1, let P be an r-partite r-pattern, and let
~a be a vector of positive integers with sum of entries ‖~a‖1 = r. Then, is it always the case that

ex~a<(n, P (m)) =

k∏
i=1

(
n

ai

)
−

k∏
i=1

(
(n− (m− 1)ai)+

ai

)
?

(Cf. Conjecture 1.20).

We are finally ready to prove Theorem 1.18(2) (giving a general upper bound on ex<(n, P (m)) using
Theorem 8.2 to reduce to the (≥ r − 1)-equipartite case).

Proof of Theorem 1.18(2). Let G be an n-vertex P (m)-free ordered r-graph, with (p/n)
(
n
r

)
edges. Our

goal is to prove that p = O(r3(m− 1)).
By Theorem 8.2, we can find a (≥ r − 1)-equipartite subgraph G′ ⊆ G, of order n′ = nΩr(1), which

has (r − 1)-density at least Ω(p/r2). Note that G′ is still P (m)-free.
• If G′ is r-partite, then by Lemma 9.4, we have e(G′) ≤ r(m − 1)nr−1. That is to say, G′ has

(r − 1)-density at most r(m− 1).
• If G′ is (r − 1)-partite, then by Lemma 9.6, we have e(G′) ≤ 4r(m− 1)nr−1. That is to say, G′

has (r − 1)-density at most 8r(m− 1).
In both cases, G′ has (r − 1)-density O(r(m− 1)); the desired result follows. �
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Appendix A. Further lower bounds on Ramsey parameters

In this appendix we prove that L4(n) ≥ n1/15/4, completing the proof of Theorem 1.8. It is convenient
to introduce some notation.

Definition A.1. For a pair of r-patterns P,Q, we write P ◦Q for the set of all r-patterns that can be
obtained as a “composition” of P and Q. Specifically, we put R ∈ P ◦ Q if it is possible to have three
edges e, f, g (with e[1] < f [1] < g[1]) in an ordered r-matching such that e, f form P , f, g form Q and
e, g form R.

For example, in the case r = 2, writing α for the alignment pattern AABB, we clearly have α◦α = {α}.
As a few more examples, writing ν for the nesting pattern ABBA and κ for the crossing pattern ABAB,
it is not hard to see that α ◦ ν = {α} and ν ◦ α = {α, ν, κ}.

Definition A.2. Say that a collection of r-patterns P is left-dominated if (P ◦ Q) ∩ P ⊆ {P} for all
P,Q ∈ P. Say that P is right-dominated if (P ◦Q) ∩ P ⊆ {Q} for all P,Q ∈ P.

Roughly speaking, the idea is that, if P is left-dominated, then in a P-clique, if we compose a pattern P
with any pattern we always get P . (Similarly, if P is right-dominated, then when we compose any pattern
with P we always get P ). For example, as implicitly observed in the proof of the lower bound on L3(n)

in Section 3.4, the set {ψ(αν), ψ(να)} is left-dominated. The key property of a left- or right-dominated
set P (which also implicitly appeared in the proof of the lower bound on L3(n)) is that every P-clique
always contains a very large P -clique for some P ∈ P, as follows.

Lemma A.3. If P is left-dominated or right-dominated, then for every P-clique M of size n we have
L(M) ≥ n/|P|.

Proof. Suppose P is left-dominated (the right-dominated case is similar), and let M be a P-clique of
size n. Write the edges of M as e1, . . . , en with e1[1] < · · · < en[1]. Now, for every index i, there is
a single pattern P ∈ P such that ei and ej form P for each j > i; say that i is of “type P ”. By the
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Pattern name Representation
ψ(ααα) |AAAA|BBBB|
P ∗ααα AAABABBB
P ∗∗ααα AAABBABB
P ∗∗∗ααα AABAABBB
P ∗∗∗∗ααα AABABABB
ψ(ααν) |AAABBB|BA|
P ∗ααν AABABBBA
ψ(αακ) |AAABBB|AB|
P ∗αακ AABABBAB
ψ(ανα) |AABB|BBAA|
ψ(ανν) |AABB|BA|AB|
ψ(ανκ) |AABB|BA|BA|
ψ(ακα) |AABB|AABB|
ψ(ακν) |AABB|AB|BA|
ψ(ακκ) |AABB|AB|AB|
ψ(ναα) |AB|BBBAAA|
P ∗ναα ABBBABAA
ψ(ναν) |AB|BBAA|AB|

Pattern name Representation
ψ(νακ) |AB|BBAA|BA|
ψ(ννα) |AB|BA|AABB|
ψ(ννν) |AB|BA|AB|BA|
ψ(ννκ) |AB|BA|AB|AB|
ψ(νκα) |AB|BA|BBAA|
ψ(νκν) |AB|BA|BA|AB|
ψ(νκκ) |AB|BA|BA|BA|
ψ(καα) |AB|AAABBB|
P ∗καα ABAABABB
ψ(καν) |AB|AABB|BA|
ψ(κακ) |AB|AABB|AB|
ψ(κνα) |AB|AB|BBAA|
ψ(κνν) |AB|AB|BA|AB|
ψ(κνκ) |AB|AB|BA|BA|
ψ(κκα) |AB|AB|AABB|
ψ(κκν) |AB|AB|AB|BA|
ψ(κκκ) |AB|AB|AB|AB|

Table 2. All 35 different 4-patterns. The collectable patterns are named as ψ(W ) for
their corresponding weak pattern W (as in Section 3). The non-collectable patterns are
given ad-hoc names with superscript “∗”s.

pigeonhole principle, at least n/|P| of the indices have the same type (say, P ); the corresponding edges
form a P -clique. �

We also need to introduce a new notion of “one-sided” P -freeness.

Definition A.4. Given an r-matching M and an r-pattern P , say that an edge e ∈ E(M) is left-P -free
if there is no f ∈ E(M) with f [1] < e[1] such that f and e form pattern P . Similarly, say that e is
right-P -free if there is no f ∈ E(M) with f [1] > e[1] such that e and f form pattern P .

Note that if we have a matchingM whose every edge is left-P -free, or whose every edge is right-P -free,
then M itself is P -free.

Now we are ready to complete the proof of Theorem 1.8.

Proof of the lower bound on L4(n) in Theorem 1.8. We use the notions of weak patterns and signatures
introduced in Section 3. There are 35 different 4-patterns, including eight non-collectable patterns (which
are all given names in Table 2).

Define

P1 = φ−1(ααα) = {ψ(ααα), P ∗ααα, P
∗∗
ααα, P

∗∗∗
ααα, P

∗∗∗∗
ααα }, P2 = {ψ(αακ), P ∗αακ, ψ(ακα), ψ(καα), P ∗καα},

P3 = {ψ(ααν), ψ(ανα), ψ(ναα)}, P4 = {P ∗ααν , P ∗ναα}, P5 = {ψ(ακκ), ψ(κακ), ψ(κκα)},
P6 = {ψ(ανν), ψ(ναν), ψ(ννα)}, P7 = {ψ(ακν), ψ(ανκ), ψ(νακ), ψ(νκα), ψ(καν), ψ(κνα)}.

For each i ∈ {1, . . . , 7} we write �i to denote the relation �Pi
(see Definition 3.1 for the definition of

�P). Some of these relations give rise to posets, as follows.
(1) Consider any matching M . By the proof of Lemma 3.2(A):

• �1 is always a partial order (with corresponding signature (3, ∅));
• �2 is a partial order if M is P1-free (with corresponding signature (2, ∅));
• �5 is a partial order if M is P1 ∪ P2-free (with corresponding signature (1, ∅)).

(2) In any matching, �3 is a partial order (this can be observed by direct case-checking, analogous
to P3 in the proof for r = 3 case of Theorem 1.8; the patterns in P3 can be interpreted as
“generalised nestings” where one of the two edges of the pattern is fully contained between two
consecutive vertices of the other edge).

Also, according to Lemma 3.8,
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(3) for i ∈ {1, 2, 5} (which each correspond to specific signatures), every Pi-clique M of size n has
L(M) ≥ n/3.

Now, consider any matching M = M1 of size n. We show how to find a P -clique of size at least n1/15/4,
proceeding in stages.

Stage 1. By Mirsky’s theorem applied to �1 on M1 (recalling (1)), there is either a P1-clique of size at
least n1/15, or a P1-free submatching M2 of size at least n14/15. In the former case, we are done by (3);
in the latter case move on to Stage 2.

Stage 2. By Mirsky’s theorem applied to �2 on M2 (recalling (1)), there is either a P2-clique of size at
least n1/15, or a (P1 ∪ P2)-free submatching M3 of size at least n13/15. In the former case, we are done
by (3); in the latter case move on to Stage 3.

Stage 3. By Mirsky’s theorem applied to �3 on M3 (recalling (2)), there is either a P3-clique of size
at least n1/15, or a (P1 ∪ P2 ∪ P3)-free submatching M4 of size at least n12/15. In the former case, we
observe that P3 is left-dominated, so we are done by Lemma A.3; in the latter case move on to stage 4.

Stage 4. In this stage we wish to eliminate the non-collectable patterns P ∗ααν and P ∗ναα in P4 without
seriously decreasing the size of our matching. List all the edges of M4 as e1, . . . , em with m = |M4| ≥
n12/15 and e1[1] < · · · < em[1]. We claim that for any 1 ≤ i < j < k ≤ m, at most one of the pairs
(ei, ej) (ej , ek) can form P ∗ααν . Indeed, if both pairs were to form P ∗ααν , then (ei, ek) would also form
P ∗ααν by Lemma 3.7 (recalling that M4 is ψ(ααν)-free). But then, ei, ej , ek would form a P ∗ααν-clique,
which is impossible as P ∗ααν is not collectable.

By the above claim, every edge of M4 is left-P ∗ααν-free or right-P ∗ααν-free. So, by the pigeonhole
principle we can find a submatching M ′5 of at least n12/15/2 edges which are either all left-P ∗ααν-free, or
all right-P ∗ααν-free, meaning that M ′5 itself is P ∗ααν-free.

Repeating all this analysis with the pattern P ∗ναα, we can find a matching M5 of size at least n12/15/4

that is (P1 ∪ · · · ∪ P4)-free.
We have now eliminated all non-collectable patterns, so we will refer to each pattern by its corre-

sponding weak pattern (e.g., we simply write ανν instead of ψ(ανν)). Move on to stage 5.

Stage 5. By Mirsky’s theorem applied to �5 on M5 (recalling (1)), there is either a P5-clique of size at
least n1/15, or a (P1 ∪ · · · ∪P5)-free submatching M6 of size at least n11/15/4. In the former case, we are
done by (3); in the latter case move on to Stage 6.

Stage 6. The analysis now starts to get a bit more intricate, and more tedious casework becomes
necessary. Recall that P6 = {ανν, ναν, ννα}. It is not necessarily the case that �6 is a poset; in Table 3
we tabulate the possible compositions of patterns in P6 (among patterns that can be present in M6).
These can all be determined by direct case-checking. Crucially, we have

(ανν ◦ ννα) \ (P1 ∪ · · · ∪ P5) = ∅.

That is to say, every edge in M6 is left-ανν-free or right-ννα-free. So, by the pigeonhole principle we
can find a submatching M ′6 of size at least n11/15/8 which is ανν-free or ννα-free.

Suppose that M ′6 is ανν-free (the ννα-free case is handled basically symmetrically), and let P ′6 =

{ναν, ννα}. Table 3 shows that �P′6 is a poset on M ′6 (consider the sub-table induced by ναν and ννα).
So, by Mirsky’s theorem we can find a P ′6-clique of size n1/15 or a (P1 ∪ · · · ∪ P6)-free submatching M7

of size at least n10/15/8. In the former case, Table 3 shows that P ′6 is right-dominated and we are done
by Lemma A.3. In the latter case, move on to stage 7.

Stage 7. Recall that P7 = {ακν, ανκ, νακ, νκα, καν, κνα}. We tabulate in Table 4 the possible compo-
sitions of patterns in P7 (among patterns that can be present in M7). Note in particular that �P is a
partial order for each P ∈ P7.

Note that there are ten different pairs of patterns P,Q ∈ P7 such that

(P ◦Q) \ (P1 ∪ · · · ∪ P6) = ∅.

(Call such pairs “special pairs”). For each special pair (P,Q), we know that every edge in M7 is either
left-P -free or right-Q free. By the pigeonhole principle, we can find a submatching M ′7 of size at least
(n10/15/8)/210 such that for each special pair (P,Q), our submatching M ′7 is either P -free or Q-free. Let
P ′7 be the collection of all patterns present in M ′7. By carefully considering all cases, we can check that
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P
Q

ανν ναν ννα

ανν ανν ανν ∅
ναν ναν ναν ννα
ννα ? ναν ννα

Table 3. Possible compositions of the patterns in P6. The cell indexed by (P,Q)
indicates the patterns in P ◦ Q, apart from the patterns in P1 ∪ · · · ∪ P5. For each
P,Q ∈ P6, there is only a single pattern in (P ◦ Q) \ (P1 ∪ · · · ∪ P5), unless (P,Q) =
(ανν, ννα) or (P,Q) = (ννα, ανν). (In the former case there are no valid possibilities,
and in the latter case there are several (including some not in P6), which we do not need
to carefully enumerate.

P
Q

ανκ ακν νακ νκα καν κνα

ανκ ανκ ανκ, ακν ανκ ∅ ανκ, ακν ∅
ακν ανκ, ακν ακν ανκ ανκ, ακν ∅ ανκ, ακν
νακ νακ ? νακ ∅ ? ∅
νκα νκα, κνα νκα, κνα ∅ νκα κνα νκα, κνα
καν ∅ ∅ ? ? καν καν
κνα ∅ ∅ νκα, κνα νκα, κνα κνα κνα

Table 4. Possible compositions of the patterns in P7. The cell indexed by (P,Q)
indicates the patterns in P ◦Q, apart from the patterns in P1 ∪ · · · ∪ P6. There are ten
pairs (P,Q) for which there are no valid compositions, and four cells in which there are
many valid compositions (which we do not need to carefully enumerate).

either |P ′7| ≤ 2, or P ′7 = {ανκ, ακν, νακ}, or P ′7 = {νκα, κνα, καν}. The second and third cases are
basically symmetric to each other, so we just describe how to handle the first two cases.

• If |P ′7| ≤ 2, then we can apply Mirsky’s theorem once or twice to obtain a P -clique of size at least
n1/15/4 (for some P ∈ P ′7) or a (P1 ∪ · · · ∪ P7)-free submatching M8 of size at least n8/15/29. In
the former case we are done; in the latter case move on to stage 8.

• If P ′7 = {ανκ, ακν, νακ}, then let P ′′7 = {ανκ, νακ}. Observe from Table 4 that P ′′7 is left-
dominating and that �P′′7 is a partial order. Applying Mirsky’s theorem twice, M ′7 has a ακν-
clique of size at least n1/15/4 or a P ′′7 -clique of size at least n1/15/2 or a (P1 ∪ · · · ∪ P7)-free
submatching M8 of size at least n8/15/210. In the first case we are immediately done, in the
second case we are done by Lemma A.3, and in the third case we move on to stage 8.

Stage 8. Now, we have a matching M8 of size at least n8/15/210 ≥ n8/15/48 which contains only the
eight 4-partite 4-patterns. By the proof of Lemma 3.2(A), for each 4-partite 4-pattern P , the relation
�P is a partial order (each pattern corresponds to a signature of the form (0, S) for S ⊆ {1, 2, 3}). So,
by Mirsky’s theorem we have L(M8) ≥ n1/15/4, and we are done. �

Institute of Science and Technology Austria (ISTA).
Email address: michael.anastos@ist.ac.at

ETH Zürich
Email address: zhihan.jin@math.ethz.ch

Institute of Science and Technology Austria (ISTA).
Email address: matthew.kwan@ist.ac.at

ETH Zürich
Email address: benjamin.sudakov@math.ethz.ch

35


	1. Introduction
	1.1. Ordered hypergraph matchings: basic notions
	1.2. Ramsey-type questions
	1.3. Random matchings
	1.4. Enumeration
	1.5. Extremal results
	1.6. Further directions
	1.7. Notation

	2. Preliminaries
	3. Lower bounds on Ramsey parameters
	3.1. Weak patterns
	3.2. Proof of the key lemma
	3.3. Proof of the lower bound in thm:ES
	3.4. Further improvements

	4. Upper bounds on Ramsey parameters
	5. Variants on the longest increasing subsequence problem
	6. Cliques in random ordered matchings
	7. Enumeration
	8. Partitioning ordered hypergraphs
	9. Extremal numbers for -cliques
	References
	Appendix A. Further lower bounds on Ramsey parameters 

