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Abstract. As a discrete analogue of Kac’s celebrated question on “hearing the shape of a drum”, and
towards a practical graph isomorphism test, it is of interest to understand which graphs are determined

up to isomorphism by their spectrum (of their adjacency matrix). A striking conjecture in this area,

due to van Dam and Haemers, is that “almost all graphs are determined by their spectrum”, meaning
that the fraction of unlabelled n-vertex graphs which are determined by their spectrum converges to 1

as n → ∞.

In this paper we make a step towards this conjecture, showing that there are exponentially many
n-vertex graphs which are determined by their spectrum. This improves on previous bounds (of shape

ec
√

n). We also propose a number of further directions of research.

1. Introduction

A classical question, popularised in 1966 by Kac [26], is whether one can “hear the shape of a drum”:
if we know the “spectrum” of a planar domain D ⊆ R2 (formally, the eigenfrequencies of the wave
equation on D, with Dirichlet boundary conditions), is this enough information to reconstruct D up to
isometry? Famously (and perhaps surprisingly), this answer to this question is “no”: in 1992, Gordon,
Webb and Wolpert [17] managed to construct two different “drums” with the same spectrum.

A much shorter version of this story also took place in graph theory. In 1956, in a paper studying
connections between graph theory and chemistry, Günthard and Primas [18] asked whether one can
reconstruct a graph up to isomorphism given the eigenvalues of its adjacency matrix1. Due to the
discrete nature of this question, the search for counterexamples is much easier than for Kac’s question:
only one year later, Collatz and Sinogowitz [8] exhibited a pair of graphs with the same spectrum. This
has some rather important practical consequences: if it were the case that all graphs were determined
by their spectrum, this would give rise to a very simple graph isomorphism test. It is an open problem
to find a provably efficient graph isomorphism test, and spectral information is often used to distinguish
graphs in practice.

A striking conjecture due to van Dam and Haemers [19, 33, 34] (also suggested somewhat later and
seemingly independently by Vu [35]) is that graphs which cannot be uniquely identified by their spectrum
are extremely rare, in the following natural asymptotic sense.

Definition 1.1. The spectrum of a graph is the multiset of eigenvalues of its adjacency matrix. A graph
G is determined by its spectrum (DS for short) if there is no other graph (non-isomorphic to G) which
has the same spectrum as G.

Conjecture 1.2. The fraction of unlabelled n-vertex graphs which are determined by their spectrum
converges to 1 as n→ ∞. Equivalently2, the number of (unlabelled) n-vertex graphs determined by their
spectrum is

(1− o(1))
2n(n−1)/2

n!
.

Remark 1.3. To elaborate on the attribution here: for a very long time, it has been an important question
in spectral graph theory to understand the asymptotic proportion of graphs which are DS (for example,
Schwenk [30] conjectured the opposite of Conjecture 1.2 in 1973, and Godsil and McKay [15] described
this general question as “one of the outstanding unsolved problems in the theory of graph spectra”).
The possibility that Conjecture 1.2 might hold (supported by mounting computational evidence) was
first suggested by van Dam and Haemers [33] in 2003 (also later in [34]), though they did not explicitly

Matthew Kwan was supported by ERC Starting Grant “RANDSTRUCT” No. 101076777.
1The adjacency matrix of a (simple) graph G, with vertices v1, . . . , vn, is the zero-one matrix A(G) ∈ {0, 1}n×n whose

(i, j)-entry is 1 if and only if G has an edge between vi and vj .
2The number of labelled graphs on a particular set of n vertices is 2n(n−1)/2, and it is well-known (see for example

[16, Lemma 2.3.2]) that all but a vanishingly small fraction of these have a trivial automorphism group.
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make a conjecture. It seems that Conjecture 1.2 first appeared explicitly in a paper of Haemers [19].
Vu seems to have arrived at Conjecture 1.2 via quite a different pathway: in [35] he presents it as a
graph-theoretic variant of a similar conjecture in random matrix theory. We also remark that Garijo,
Goodall and Nešetřil [14] and Noy [28] situated Conjecture 1.2 in (different) general frameworks which
include a number of other questions about reconstructing graphs from various types of information.

Conjecture 1.2 is rather bold, on account of the fact that there are very few known examples of DS
graphs. Indeed, to show that a graph G is DS (without exhaustively computing the spectra of all other
graphs on the same number of vertices), it seems necessary to somehow translate information about the
spectrum of G into information about the combinatorial structure of G. Spectral graph theory has a
number of different tools along these lines, but all of them are rather crude, and essentially all known
examples of DS graphs have very special structure. (For example, to prove that complete graphs are DS,
one uses the fact that the n-vertex complete graph is the only n-vertex graph with exactly

(
n
2

)
edges).

To the best of our knowledge, the best lower bounds on the number of DS graphs are all of the
form ec

√
n for some constant c > 0. Such a bound was first observed by van Dam and Haemers [33,

Proposition 6], who proved that G is DS whenever every connected component of G is a complete
subgraph (the number of graphs of this form is precisely the number of integer partitions of n, which is

approximately ec
√
n for c = π

√
2/3 by the Hardy–Ramanujan theorem [23]). Several other families of

graphs, similarly enumerated by integer partitions, have since been discovered (see for example [32,38]).
On the other hand, there has been much more progress in the opposite direction to Conjecture 1.2,
proving lower bounds on the number of graphs which are not DS. For example, a famous result of
Schwenk [30] says that only a vanishingly small fraction of trees are DS (meaning that almost all of the
exponentially many unlabelled n-vertex trees are non-DS), and, using an operation that is now known
as Godsil–McKay switching, Godsil and McKay [15] (see also [20]) proved that the number of n-vertex
graphs which are not DS is at least

(1− o(1))
n2

12 · 2n
· 2

(n2)

n!
.

In this paper we prove the first exponential lower bound on the number of DS graphs, finally breaking
the “ec

√
n barrier” (and thereby answering a question of van Dam and Haemers [33]).

Theorem 1.4. The number of (unlabelled) n-vertex graphs determined by their spectrum is at least ecn

for some constant c > 0.

Remark 1.5. Our proof shows that we can take c = 0.01 for large n, but we made no serious attempt to
optimise this.

We will outline our proof strategy in Section 2, but to give a quick impression: we consider an explicit
family of “nice graphs”, each consisting of a long cycle with leaves attached in various carefully-chosen
ways. Then, we consider a family of n-vertex graphs Qn obtained by combining complete graphs with
line graphs3 of nice graphs, in such a way that certain inequalities and number-theoretic properties are
satisfied. We then prove that there are exponentially many graphs in Qn, and that all graphs in Qn

are determined by their spectrum. We remark that there is an essential tension in the choice of Qn: in
order to prove a strong lower bound we would like our families of graphs to be as “rich” as possible,
containing graphs with a wide variety of structure, but in order to reconstruct a graph using the limited
information that is (legibly) available in its spectrum, we can only work with graphs with very special
structure.

1.1. Further directions. It seems that significant new ideas would be required to go beyond the expo-
nential bound in Theorem 1.4. Indeed, if we consider all the known combinatorial parameters that can
be extracted from the spectrum of an n-vertex graph, then we end up with a list of about 2n integers
(most notably, the first n spectral moments describe the number of closed walks of each length, and the
n non-leading coefficients of the characteristic polynomial can be interpreted as certain weighted sums of
subgraph counts). In order to use this combinatorial information to reconstruct say exp(n1+ε) different
graphs, we would need to use a huge amount of information from each of the integers in our list: roughly
speaking, the variation in each integer must correspond to about exp(nε) different graphs. It is hard to
imagine a natural combinatorial argument that could reconstruct so many different graphs from a single
integer of information.

3The line graph line(G) of a graph G has a vertex for each edge of G, and two vertices in line(G) are adjacent if the
corresponding edges of G share a vertex.
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Instead, it seems that non-constructive methods may be necessary in order to prove Conjecture 1.2,
or even to make much progress beyond Theorem 1.4. Is there some algebraic criterion which describes
whether a graph is DS, without necessarily providing a combinatorial procedure to reconstruct the
graph4? Can one somehow show that the DS property is “generic” without describing which graphs are
DS?

We would also like to propose a number of other questions related to Conjecture 1.2.

• Consider two different n-vertex graphs G,G′, chosen uniformly at random, and let Qn be the
probability that G and G′ have the same spectrum. How large is this probability? It seems one
can obtain an exponential upper bound

Qn ≤ P[det(G) = det(G′)] ≤ sup
d∈R

P[det(G) = d] ≤ e−cn

for some c > 0, using powerful techniques in random matrix theory (see [7]).

• Conjecture 1.2 is equivalent to the statement that among all n-vertex graphs, there are

(1− o(1))
2(

n
2)

n!

different spectra. What lower bounds can we prove on the number of different spectra realisable
by n-vertex graphs? There are several different ways to prove an exponential lower bound: in
particular, such a bound follows from Theorem 1.4, from the above bound Qn ≤ e−cn, or from
results on the range of possible determinants of n× n binary matrices (see [31]).

• Although it is known [30] that almost all trees are not DS, it would still be interesting to prove
lower bounds on the number of DS trees. Could it be that there are exponentially many?

• In the continuous setting (“hearing the shape of a drum”), the spectral rigidity conjecture of
Sarnak (see [29]) suggests that despite the fact that there are drums with the same spectrum,
such drums are always “isolated” from each other: for any drum, making a sufficiently small
change to the shape of the drum always changes its spectrum. One can also ask similar questions
for graphs. For example, as a weakening of Conjecture 1.2, we conjecture that for a (1− o(1))-
fraction of labelled graphs on n vertices, any nontrivial addition/deletion of at most (1/2− ε)n
edges (for any constant ε > 0) results in a graph with a different spectrum. If this were true
it would be best-possible: for almost all n-vertex graphs G, one can exchange the roles of two
vertices by adding and removing about n/2 edges (obtaining a graph which is isomorphic to G
and therefore has the same spectrum).

• Apart from the adjacency matrix, there are several other matrices which can be associated with
a graph. Perhaps the best-known examples are the Laplacian matrix and the signless Laplacian
matrix (which are both actually used in this paper; see Definition 2.1). Such matrices give
us different notions of graph spectra, with which we can ask variations on all the questions
discussed so far. Actually, the Laplacian analogue of Theorem 1.4 has already been proved,
taking advantage of the fact that the Laplacian spectrum is much better-behaved with respect
to complements: Hammer and Kelmans [21] showed that all 2n of the threshold graphs on n
vertices (i.e., all n-vertex graphs which can be constructed from the empty graph by iteratively
adding isolated vertices and taking complements) are determined by their Laplacian spectrum.
In the course of proving Theorem 1.4, we actually end up giving new proofs of the analogous
result for Laplacian and signless Laplacian spectra. It is still open (and not obviously easier or
harder than for the adjacency spectrum) to prove better-than-exponential lower bounds on the
number of n-vertex graphs determined by their Laplacian or signless Laplacian spectrum.

2. Proof overview

We start by defining the Laplacian matrix and the signless Laplacian matrix, two variations on the
adjacency matrix.

Definition 2.1. Consider a (simple) graph G with vertices v1, . . . , vn. Let D(G) be the diagonal matrix
whose (i, i)-entry is the degree of vi, and recall the adjacency matrix A(G) of G.

• The Laplacian matrix is defined as L(G) = D(G)−A(G).

4Some progress in this direction was made by Wang [36], who found an arithmetic criterion for a graph to be determined
by its so-called “generalised spectrum”.
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• The signless Laplacian matrix is defined as |L(G)| = D(G) + A(G).

We sometimes refer to the spectra of A(G), L(G) and |L(G)| as the adjacency spectrum, Laplacian
spectrum and signless Laplacian spectrum of G, respectively. We say that a graph G is determined by
its Laplacian spectrum (respectively, determined by its signless Laplacian spectrum) if there is no other
graph (non-isomorphic to G) which has the same Laplacian spectrum (respectively, signless Laplacian
spectrum) as G.

While the adjacency matrix is the simplest and most natural way to associate a matrix to a graph,
all three of the above notions of spectrum contain slightly different information about G, which can
be useful for different purposes. For this paper, the crucial fact about the Laplacian spectrum is that
it determines the number of spanning trees of a graph, via Kirchhoff’s celebrated matrix-tree theorem
(Theorem 3.13). In particular, the Laplacian spectrum tells us whether a graph is connected or not.

Fortunately, there are some connections between the above three notions of spectrum, which we will
heavily rely on in this paper. For example, two simple observations are that:

• if a graph is bipartite, then its signless Laplacian spectrum is the same as its Laplacian spectrum
(Fact 3.1);

• if two graphs have the same signless Laplacian spectrum, then their line graphs have the same
adjacency spectrum (Proposition 3.15).

Unfortunately, there are some limitations to these connections. In general, neither the Laplacian spec-
trum nor the signless Laplacian spectrum of a graph contain enough information to actually determine
whether the graph is bipartite (and it is not true that for a bipartite graph to be determined by its
Laplacian spectrum is the same as for it to be determined by its signless Laplacian spectrum). Also, if
a graph Q has the same adjacency spectrum as the line graph of some graph G, it does not necessarily
follow that Q is the line graph of some graph with the same signless Laplacian spectrum as G (it does
not even follow that Q is a line graph at all, though a deep structure theorem of Cameron, Goethals,
Seidel and Shult [6], building on a previous slightly weaker theorem of Hoffman [25], shows that every
connected graph which has the same adjacency spectrum as a line graph must be a so-called generalised
line graph, with finitely many exceptions).

Despite these limitations, in our proof of Theorem 1.4 it is nonetheless extremely useful to move
between the three different notions of graph spectra. Roughly speaking, our proof of Theorem 1.4 can be
broken down into three parts. First, we describe an explicit family of graphs (“nice graphs”), and prove
that they are determined by their Laplacian spectrum (making crucial use of the matrix-tree theorem).
Second, we prove that any graph which has the same signless Laplacian spectrum as a bipartite nice graph
must be bipartite (from which we can deduce that in fact every bipartite nice graph is determined by
its signless Laplacian spectrum). Finally, we define a family Qn of exponentially many n-vertex graphs
(which are essentially line graphs of bipartite nice graphs, with some small adjustments for number-
theoretic reasons), and use the Cameron–Goethals–Seidel–Shult theorem to show that if a graph has the
same adjacency spectrum as a graph in Qn, then both graphs must have been constructed from line
graphs with the same signless Laplacian spectrum. Putting everything together, we see that all of the
exponentially many graphs in Qn are determined by their adjacency spectrum.

We next outline each of the above three parts of the proof of Theorem 1.4 in more detail.

2.1. Nice graphs and the Laplacian spectrum. First, we define nice graphs and outline how to
prove that they are determined by their Laplacian spectrum.

Definition 2.2. Say that a graph is sun-like5 if it is connected, and deleting all degree-1 vertices yields
a cycle. Equivalently, a sun-like graph can be constructed by taking a cycle C, and attaching some leaves
to some vertices of C. If a vertex of C has i leaves attached to it (equivalently, if the vertex has degree
i+ 2), we call it an i-hub. We simply call a vertex a hub if it is an i-hub for some i ≥ 1 (equivalently, if
its degree is at least 3).

For (integer) parameters k ≥ 1 and ℓ ≥ max(12k, 15), say that a graph G is (ℓ, k)-nice if:

• G is a sun-like graph;
• the unique cycle C in G has length ℓ;
• there are exactly k + 1 hubs, one of which is a 1-hub and the others of which are 2-hubs;

5The reason for this terminology is that the name “sun graph” is sometimes used in the literature to describe a graph
obtained from a cycle by adding a leaf to each vertex.
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• we can fix an orientation of C such that the following holds. Imagine starting at the 1-hub and
walking clockwise around C. We should meet our first 2-hub after walking a distance of 4. Then,
the second 2-hub should appear at distance 4 or 6 after the first. The third 2-hub should appear
at distance 4 or 6 after the second, the fourth should appear at distance 4 or 6 after the third,
and so on. (This freedom between 4 and 6 at each step is crucial; it ensures that there are many
different nice graphs).

See Figure 1 for an illustration of a (46, 3)-nice graph. We simply say that a graph is nice if it is (ℓ, k)-
nice for some k, ℓ (satisfying k ≥ 1 and ℓ ≥ max(12k, 15)). We remark that the restriction ℓ ≥ 12k is
to ensure that all 2-hubs are closer to the 1-hub in the clockwise direction than the counterclockwise
direction.

Lemma 2.3. Every nice graph is determined by its Laplacian spectrum.

We will prove Lemma 2.3 in full detail in Section 4. As a brief outline: the first step in the proof
of Lemma 2.3 is to prove that any graph G′ with the same Laplacian spectrum as a nice graph G is
itself nice (with the same parameters ℓ, k). This “localises” the problem: if we only have to consider
nice graphs, we can give a much more explicit combinatorial meaning to certain spectral statistics (most
crucially, we can give a combinatorial interpretation of the Laplacian spectral moments6 in terms of
closed walks around the unique cycle C). This localisation step crucially uses the matrix-tree theorem
to show that G′ is connected (once we know that G′ is connected, certain spectral inequalities on various
degree statistics allow us to deduce that G′ has a single cycle, then that it is sun-like and then that it
is nice). We remark that similar ideas were previously used by Boulet [4] to prove that so-called “sun
graphs” are determined by their Laplacian spectrum.

After localising the problem, the second step is to show how to “decode” a specific nice graph using
spectral information: i.e., assuming that G′ is nice, we use spectral information to discover which nice
graph it is. The idea for this step is to “inductively explore the graph around its 1-hub” using spectral
moments: assuming we know the positions of all the 2-hubs up to distance d of the 1-hub, we can use
the (2d+ 2)-th spectral moment to see whether there is a 2-hub at distance d+ 1 from the 1-hub. Very
roughly speaking, the reason this is possible is that the spectral moments can be interpreted as certain
weighted sums over closed walks on C. If a closed walk “interacts with 2-hubs” i times, then the weight
of the walk is divisible by 2, so parity considerations allow us to distinguish closed walks involving the
1-hub from closed walks which only involve 2-hubs.

Remark 2.4. For this “decoding” step, there is no advantage of the Laplacian spectrum over the adjacency
spectrum. In fact, it would have been much more convenient to work with the adjacency spectrum, as
the spectral moments of the adjacency matrix have a much more direct combinatorial interpretation
than the spectral moments of the Laplacian matrix. Indeed, the i-th spectral moment of the adjacency
matrix simply counts the number of closed walks of length i. For a nice graph, every nontrivial closed
walk can be obtained by starting with a closed walk in the unique cycle C, and then choosing some hubs
in the walk at which we go in and out of a leaf. Every time we go in and out of a leaf at a 2-hub, we
have an even number of choices, whereas every time we go in and out of a leaf at a 1-hub, we have an
odd number of choices.

Remark 2.5. There are some parallels between our 2-step strategy to prove Lemma 2.3 and a similar
2-step strategy that was recently applied with great success in the continuous case (i.e., in the “hearing
the shape of a drum” setting). Indeed, a recent breakthrough result of Hezari and Zelditch [24] is that
ellipses with low eccentricity are determined by their spectrum. In their proof, the first step is to use
certain spectral inequalities to “localise” the problem, showing that any domain whose spectrum matches
a low-eccentricity ellipse must be “almost circular”. Then, the second step is to pin down the precise
shape of the domain, taking advantage of the fact that the spectrum determines certain information about
closed billiard trajectories inside the domain, and applying powerful results due to Avila, De Simoi and
Kaloshin [2] to study such trajectories. There is some similarity between closed walks in graphs and
closed billiard trajectories in a domain; it is not clear to us whether this connection runs deeper.

2.2. The signless Laplacian spectrum. As outlined, the next step is to prove an analogue of Lemma 2.3
for the signless Laplacian spectrum: we are able to do this with a mild condition on the length of the
cycle ℓ, as follows.

6For the purposes of this paper, the k-th spectral moment of a matrix M is its sum of k-th powers of eigenvalues (this
can also be expressed as the trace of the matrix power Mk).
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v0
v1 v2 v3

Figure 1. An example of a (46, 3)-nice graph. There is one 1-hub v0, and three 2-hubs
v1, v2, v3. The distances between v0 and v1, between v1 and v2 and between v2 and v3
are 4, 6 and 4, respectively.

Lemma 2.6. Let G be an (ℓ, k)-nice graph with ℓ ≡ 2 (mod 4). Then, G is determined by its signless
Laplacian spectrum.

Note that an (ℓ, k)-nice graph is bipartite if and only if ℓ is even, and as we have discussed, for bipartite
graphs, the signless Laplacian spectrum is the same as the Laplacian spectrum. So, given Lemma 2.3, in
order to prove Lemma 2.6 we just need to show that if ℓ ≡ 2 (mod 4) then every graph with the same
signless Laplacian spectrum as an (ℓ, k)-nice graph must be bipartite.

The full details of the proof of Lemma 2.6 appear in Section 5, but to give a brief idea: the only
spectral information we need is the product of nonzero eigenvalues. We observe that for every non-
bipartite graph the product of nonzero eigenvalues is divisible by 4, and that the assumption ℓ ≡ 2
(mod 4) guarantees that the product of nonzero eigenvalues of G is not divisible by 4. For both of these
facts, we use an explicit combinatorial description of the coefficients of the characteristic function of
the signless Laplacian matrix, due to Cvetković, Rowlinson and Simić [10]. (These coefficients can be
expressed as sums of products of eigenvalues via Vieta’s formulas; in particular the nonzero coefficient
with lowest degree tells us the product of nonzero eigenvalues).

Remark 2.7. Lemma 2.6 implies that if n is odd, then there are exponentially many n-vertex graphs
which are determined by their signless Laplacian spectrum. However, there is no bipartite nice graph
on an even number of vertices, so the analogous result for even n is not completely obvious. With a bit
more work we were nonetheless able to prove such a result, yielding a version of Theorem 1.4 for the
signless Laplacian, as follows.

Theorem 2.8. The number of (unlabelled) n-vertex graphs determined by their signless Laplacian spec-
trum is at least ecn for some constant c > 0.

To prove Theorem 2.8, we combine Lemma 2.6 with some of the ideas described in the next subsection;
the details appear in Appendix A.

2.3. Exponentially many graphs determined by their adjacency spectrum. As briefly men-
tioned earlier in this outline, there is a close connection between the signless Laplacian spectrum of a
graph and the adjacency matrix of its line graph. To be a bit more specific, the nonzero eigenvalues of
|L(G)| are in correspondence with the eigenvalues of A(line(G)) different from −2. One might (näıvely)
hope that line(G) being determined by its adjacency spectrum is equivalent to G being determined by its
signless Laplacian spectrum. If this were true, it would be easy to complete the proof of Theorem 1.4, by
considering the family of all n-vertex graphs which are the line graph of some nice graph as in Lemma 2.6.

Unfortunately, this is too much to hope for in general, but quite some theory has been developed in
this direction, and we are able to leverage this theory in the special case where G has a large prime
number of vertices.

Lemma 2.9. There is a constant n0 such that the following holds. Let G be an (ℓ, k)-nice graph with
ℓ ≡ 2 (mod 4), let n = ℓ+2k+1 be its number of vertices, and suppose that n is a prime number larger
than n0. Then line(G) is determined by its adjacency spectrum.

The proof of Lemma 2.9 appears in Section 6. To give a rough idea of the strategy of the proof:
recalling Lemma 2.6, in order to prove Lemma 2.9 it suffices to show that if a graph Q has the same
(adjacency) spectrum as line(G), then

(1) Q = line(H) for some H, and
(2) H has the same signless Laplacian spectrum as G.

For (1), we have the Cameron–Goethals–Seidel–Shult theorem at our disposal, which we can use to show
that Q is a so-called generalised line graph (except possibly for some “exceptional” connected components
with at most 36 vertices). Our main task is to rule out generalised line graphs which are not line graphs.
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Figure 2. The line graph of the (46, 3)-nice graph in Figure 1.

For (2), our task is to show that in the signless Laplacian spectra of G and H, the multiplicities of the
zero eigenvalue are the same (all nonzero eigenvalues are guaranteed to be the same). This amounts to
showing that G and H have the same number of vertices.

For the first of these two tasks, we observe that if a generalised line graph is not a true line graph,
then its adjacency matrix has a zero eigenvalue. So, it suffices to prove that line(G) does not have a zero
eigenvalue, i.e., its adjacency matrix has nonzero determinant. We accomplish this by directly computing
the determinant of line(G) (this is a little involved, but comes down to a certain recurrence).

For the second of these two tasks, we recall that the adjacency spectrum of a line graph tells us the
nonzero eigenvalues of the signless Laplacian spectrum, and in particular tells us the product of these
nonzero eigenvalues (this product was already discussed in Section 2.2). Via a direct computation on
G, we observe that this product is divisible by n. For each connected component of H, the contribution
to this product is always an integer, so if n is a prime number then there must be a single connected
component which is “responsible for the factor of n”. We are then able to deduce that this component
has exactly n vertices and n edges, via a careful case analysis involving a combinatorial interpretation
of the multiplicity of the eigenvalue −2.

Of course, even after proving Lemma 2.9 we are not yet done: every nice graph has the same number
of edges as vertices, so Lemma 2.9 can only be directly used to prove Theorem 1.4 when n is prime. For
general n we consider graphs with two connected components, one of which is the line graph of a nice
graph on a prime number of vertices and the other of which is a complete graph. The parameters of the
nice graph and the size of the complete graph need to satisfy certain inequalities and number-theoretic
properties; the details are a bit complicated and we defer the precise specification to Section 7.

In order to show that all relevant inequalities and number-theoretic properties can be simultaneously
satisfied (by exponentially many graphs), we use a quantitative strengthening of Dirichlet’s theorem
on primes in arithmetic progressions. To actually show that all these graphs are determined by their
adjacency spectrum, we proceed similarly to Lemma 2.9, but the details are more complicated. Roughly
speaking, we identify the complete graph component using its single large eigenvalue and some number-
theoretic considerations, and then we apply Lemma 2.9.

3. Preliminaries

In this section we collect a number of general tools and results that will be used throughout the paper.
Where possible, we cite the original sources of each of these results, but we remark that many of these
results can be found together in certain monographs on algebraic graph theory or graph spectra (see for
example [3, 5, 9, 11,16]).

3.1. Basic observations. First, in Section 2 we have already mentioned that the signless Laplacian
and the Laplacian spectra coincide for bipartite graphs.

Fact 3.1 ([33, Section 2.3]). If a graph is bipartite, then its signless Laplacian spectrum is the same as
its Laplacian spectrum.

Also, we record the near-trivial fact that for all notions of spectrum discussed so far, the spectrum of
a graph can be broken down into the spectra of its connected components.

Fact 3.2. For any graph G, the spectrum of G (with respect to the adjacency, Laplacian or signless
Laplacian matrix) is the multiset union of the spectra of the connected components of G.

3.2. Spectral inequalities. Spectral graph theory provides a range of powerful inequalities on various
combinatorial parameters, usually in terms of the largest, second-largest or smallest eigenvalue of the
adjacency or Laplacian matrix. In this paper we will only need some simple inequalities concerning the
numbers of vertices and edges, and the degrees.
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Lemma 3.3 ([11, Section 3.2] and [37]). Consider a graph G with n vertices, m edges, and maximum
degree ∆. Let λmax be the largest eigenvalue of the adjacency matrix A(G). Then

(1) λmax ≤ ∆,
(2) λmax ≤

√
2m− n+ 1.

Lemma 3.4 ([13, Theorem 3.7] and [1, Theorem 2]). Let G be a graph, write V and E for its sets of
vertices and edges, and ∆ for its maximum degree. Let ρmax be the largest eigenvalue of the Laplacian
matrix L(G). Then

(1) ρmax > ∆,
(2) ρmax ≤ max{deg(u) + deg(v) : uv ∈ E}.

3.3. Combinatorial interpretation of the spectral moments. As briefly mentioned in Section 2,
in this paper we use the term spectral moments to refer to sums of powers of eigenvalues.

Definition 3.5. For a matrix M ∈ Rn×n with spectrum σ, the s-th spectral moment of M is∑
λ∈σ

λs = trace(Ms) =

n∑
i1=1

· · ·
n∑

is=1

Mi1,i2Mi2,i3Mi3,i4 . . .Mis−1,isMis,i1 .

If M is the adjacency matrix of a graph G, then the product Mi1,i2Mi2,i3Mi3,i4 . . .Mis−1,isMis,i1 is
nonzero if and only if there is a closed walk in G running through the vertices indexed by i1, . . . , is (in
which case this product is exactly 1). So, spectral moments simply count closed walks of various lengths.
For example, the second spectral moment is the number of closed walks of length 2, which is precisely
twice the number of edges in G (a closed walk of length 2 simply runs back and forth along an edge,
starting at one of its two endpoints).

In our proof of Lemma 2.3 we will need to carefully study Laplacian spectral moments, which can
also be interpreted in combinatorial terms (albeit in a more complicated way):

Definition 3.6. An s-route in a graph is a sequence of vertices v⃗ = (v1, . . . , vs), such that for each index
j, either vjvj+1 is an edge or vj = vj+1 (where the subscripts should be interpreted modulo s). That is
to say, a route consists of a sequence of s steps: at each step we may either walk along an edge or wait
at the current vertex. Letting t be the number of “waiting steps” in the s-route v⃗, we also define w(v⃗)
to be the product of deg(vj) over all waiting steps j, times (−1)s−t.

Fact 3.7. For any graph G, let Rs be the set of all s-routes in G. Then, the s-th spectral moments of
L(G) and |L(G)| are ∑

v⃗∈Rs

w(v⃗) and
∑
v⃗∈Rs

|w(v⃗)|,

respectively.

We will repeatedly use Fact 3.7 (for many different s) in our proof of Lemma 2.3. For now, we just
record some simple observations for s ≤ 3, which can be straightforwardly proved by considering all
possible cases for a route of length s.

Proposition 3.8. Consider any graph G with n vertices and m edges, and write V for its set of vertices.
Let M = L(G) or M = |L(G)|, and let µs be the s-th spectral moment of M . Then

(1) µ0 = n;

(2) µ1 =
∑
v∈V

deg(v) = 2m;

(3) µ2 =
∑
v∈V

deg(v)2 + 2m;

(4) If G has no triangles, then µ3 =
∑
v∈V

deg(v)3 + 3
∑
v∈V

deg(v)2.

In particular, if we know that G has no triangles, then the spectrum of M is enough information to
determine

∑
v∈V deg(v)s for s ∈ {0, 1, 2, 3}.

3.4. Combinatorial interpretation of the characteristic coefficients. In addition to spectral mo-
ments, another very rich way to extract combinatorial structure from the spectrum is to consider the
coefficients of the characteristic polynomial of our matrix of interest.
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Definition 3.9. Consider a matrix M ∈ Rn×n with spectrum σ, and write its characteristic polynomial
det(xI−M) =

∏
λ∈σ(x−λ) ∈ R[x] in the form

∑n
i=0(−1)iζix

n−i. Then, we define the i-th characteristic
coefficient to be

ζi =
∑

Λ⊆σ:|Λ|=i

∏
λ∈Λ

λ.

(here we have used Vieta’s formulas for the coefficients of a polynomial in terms of its roots).

Note that the n-th characteristic coefficient ζn is the determinant ofM . More generally, if we consider
the largest s for which ζs is nonzero, then ζs is the product of nonzero eigenvalues of M . Recalling the
definition det(xI −M) of the characteristic polynomial, we also have the following observation.

Fact 3.10. If M is an integer matrix, then its characteristic coefficients are all integers.

Now, the characteristic coefficients of the Laplacian, signless Laplacian and adjacency matrices all
have different combinatorial interpretations, as follows.

Definition 3.11. A connected graph is unicyclic if it has exactly one cycle (equivalently, if it has the
same number of edges as vertices). If the length of this cycle is even it is even-unicyclic; otherwise it is
odd-unicyclic. Now, consider any graph G.

(1) A spanning forest F in G is a subgraph of G which is spanning (i.e., contains all the vertices
of G) and whose connected components are trees7. Let α(F ) be the product of the numbers of
vertices in these trees.

(2) A TU-subgraph H of G is a spanning subgraph whose connected components are trees or odd-
unicyclic. Generalising the definition of α above, let α(H) = 4c

∏s
i=1 ns, where c is the number

of odd-unicyclic components in H, and the numbers of vertices in the tree components are
n1, . . . , ns.

(3) An elementary subgraph X of G is a (not necessarily spanning) subgraph whose connected com-
ponents are cycles and individual edges. Let β(X) = (−1)c(−2)d, where c and d are the number
of edge-components and cycle-components in X, respectively.

Let Φi(G), Ψi(G) and Ξi(G) be the sets of spanning forests with i edges, TU-subgraphs with i edges,
and elementary subgraphs with i vertices, respectively, in G.

Theorem 3.12 ([3, Theorem 7.5], [10, Theorem 4.4] and [22, Theorem 3]). For any graph G, the i-th
characteristic coefficients of L(G), |L(G)| and A(G) are∑

F∈Φi(G)

α(F ),
∑

H∈Ψi(G)

α(H) and
∑

X∈Φi(G)

(−1)iβ(X),

respectively.

An immediate corollary (in the Laplacian case, considering the n-th and (n − 1)-th characteristic
coefficients) is Kirchhoff’s celebrated matrix-tree theorem, as follows.

Theorem 3.13 ([27]). For any n-vertex graph G, the Laplacian L(G) has a zero eigenvalue with mul-
tiplicity at least 1. G is connected if and only if the multiplicity of the zero eigenvalue is exactly 1, in
which case8 the number of spanning trees in G is precisely the product of the nonzero eigenvalues divided
by n.

Another corollary is as follows. (A very similar observation appears as [10, Proposition 2.1]).

Proposition 3.14. For any connected graph G:

(1) If G is bipartite, then |L(G)| has a zero eigenvalue with multiplicity 1.
(2) If G is not bipartite, then the determinant of |L(G)| is a positive integer divisible by 4.

Proof. Let n be the number of vertices of G, so the determinant of |L(G)| (i.e., its product of eigenvalues)
is its n-th characteristic coefficient. Note that a tree on at most n vertices has at most n − 1 edges, so
in the description in Theorem 3.12, the only possible contributions to the n-th characteristic coefficient
of |L(G)| come from spanning odd-unicyclic subgraphs. If G is bipartite, then clearly there is no such

7Some authors define a spanning forest of G to have the same number of conected components as G. Here we have no
such requirement.

8One does not really need to make a connectedness case distinction here. Indeed, the matrix-tree theorem can be
formulated as the statement that the number of spanning trees is equal to any cofactor of the Laplacian matrix (this

number may be zero).
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subgraph. On the other hand, if G is not bipartite then it has an odd cycle, and a suitable spanning
odd-unicyclic subgraph can be found by iteratively removing edges outside this cycle. Each spanning
odd-unicylic subgraph H has α(H) = 4.

Since every connected graph has a spanning tree, the (n−1)-th characteristic coefficient of G is always
nonzero (so zero can never be an eigenvalue with multiplicity more than 1). □

3.5. Line graphs. In Section 2 we mentioned a correspondence between the Laplacian spectrum of
a graph G and the adjacency spectrum of its line graph line(G). To elaborate on this: for a graph
with vertices v1, . . . , vn and edges e1, . . . , em, consider the incidence matrix N(G) ∈ {0, 1}n×m, where
the (i, j)-entry is 1 if and only if vi ∈ ej . Then, it is not hard to see that |L(G)| = N(G)N(G)T and
A(line(G)) = N(G)TN(G)−2I. Since the nonzero eigenvalues of N(G)N(G)T are the same as the nonzero
eigenvalues of N(G)TN(G) (including multiplicities), we have the following.

Proposition 3.15. Consider any graph G and any λ ̸= 0. Then, λ is an eigenvalue of |L(G)| with
multiplicity m if and only if λ− 2 is an eigenvalue of A(line(G)) with multiplicity m.

If we know the signless Laplacian spectrum of a graph G, then Proposition 3.15 tells us the spectrum
of A(line(G)), except the multiplicity of the eigenvalue −2. In order to determine this multiplicity we
just need to know the sum of multiplicities of all eigenvalues of line(G), i.e., the number of vertices of
line(G), i.e., the number of edges of G. We have already seen that this information can be recovered
from the signless Laplacian spectrum (Proposition 3.8(2)). So, the signless Laplacian spectrum of G
fully determines the adjacency spectrum of line(G). Unfortunately, as discussed in Section 2 it is not
quite so easy to go in the other direction: there are examples of line graphs which share their adjacency
spectrum with non-line-graphs, and there are examples of graphs G,G′ which have different numbers of
vertices (therefore different signless Laplacian spectra) but for which line(G) and line(G′) have the same
adjacency spectrum.

In this subsection we collect a few results related to Proposition 3.15. First, |L(G)| = N(G)N(G)T is
a positive semidefinite matrix, so we have the following corollary of Proposition 3.15.

Fact 3.16. For any graph G, the eigenvalues of A(line(G)) are all at least −2.

Also, Proposition 3.14 gives us a combinatorial description of the multiplicity of the zero eigenvalue of
G. Together with Proposition 3.15, this can be used to give a combinatorial description of the multiplicity
of −2 as an eigenvalue of A(line(G)).

Lemma 3.17 ([9, Theorem 2.2.4]). Let H be a connected graph with v vertices and e edges, and let µ−2

be the multiplicity of the eigenvalue −2 in A(line(H)). Then

µ−2 =

{
e− v + 1 if H is bipartite,

e− v if H is not bipartite.

Finally, we state the Cameron–Goethals–Seidel–Shult theorem mentioned in Section 2: all but finitely
many connected graphs which share their adjacency spectrum with a line graph are so-called generalised
line graphs.

Definition 3.18. Let Kn be the complete graph on n vertices. A perfect matching in K2m is a collection
of m disjoint edges (covering all the vertices of K2m). The cocktailparty graph CP(m) is the graph
obtained from K2m by removing a perfect matching.

For a graph G with vertices v1, . . . , vn, and nonnegative integers a1, . . . , an, the generalised line graph
line(G; a1, . . . , an) is defined as follows. First, consider the disjoint union of the graphs

line(G), CP(a1), . . . , CP(an).

(i.e., we include each of the above graphs as a separate connected component). Then, for each i, add
all possible edges between the vertices of CP(ai) and the vertices of line(G) corresponding to edges of G
incident to vi (this means 2ai deg(vi) added edges for each i).

Note that for any graph G we have line(G; 0, . . . , 0) = line(G).

Theorem 3.19 ([6, Theorem 4.3 and 4.10]). Suppose Q is a connected graph on more than 36 vertices,
all of whose adjacency eigenvalues are at least −2. Then Q is a generalised line graph.
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3.6. Primes in arithmetic progressions. As mentioned in Section 2, we will need a quantitative
version of Dirichlet’s theorem, counting primes in a given arithmetic progression.

Theorem 3.20. Fix coprime integers a, d ≥ 1, and let φ(d) > 0 be the number of integers up to d which
are relatively prime to d. Let πa,d(n) be the number of primes up to n which are congruent to a (mod d).
Then

lim
n→∞

(
πa,d(n)

n/ log n

)
=

1

φ(d)
.

Theorem 3.20 was first proved by de la Vallée Poussin [12]. All we will need from Theorem 3.20 is the
following (immediate) corollary.

Corollary 3.21. Fix ε > 0 and coprime integers a, d ≥ 1. For any sufficiently large n, there is a prime
number between (1− ε)n and (1 + ε)n which is congruent to a (mod d).

4. Distinguishing nice graphs by their Laplacian spectrum

In this section we prove Lemma 2.3: nice graphs are determined by their Laplacian spectrum. As
discussed in Section 2.1, the first step is to “localise” the problem, showing that any graph with the same
Laplacian spectrum as a nice graph is itself nice. First, we adapt some ideas of Boulet [4, Theorem 9] to
prove the following lemma, which provides some approximate structure (though does not yet completely
determine niceness). Recall the definition of a sun-like graph from Definition 2.2.

Lemma 4.1. Let G be an (ℓ, k)-nice graph, and let H be a graph with the same Laplacian spectrum as
G. Then H is a sun-like graph whose cycle has length ℓ. Moreover, H has exactly one 1-hub, k different
2-hubs, and no i-hubs for any i > 2.

Proof. Let n = ℓ+ 2k + 1 be the number of vertices and edges in G. First of all, by Proposition 3.8(1)
and (2), H also has n vertices and n edges, and by Kirchhoff’s matrix-tree theorem (Theorem 3.13), H is
connected. So, H is unicyclic. In a unicyclic graph, the number of spanning trees is equal to the length
of the cycle, so by Kirchhoff’s theorem again, the cycle in H has length ℓ.

Next, we study the degrees of vertices of H. Writing E for the set of edges of G, recall from
Lemma 3.4(2) that the largest Laplacian eigenvalue ρmax is at most max{deg(u) + deg(v), uv ∈ E} ≤ 6
(in a nice graph, every hub has degree at most 4, every non-hub has degree at most 2, and no two hubs
are adjacent). By Lemma 3.4(1), the maximum degree of H is strictly less than ρmax, so H can only
have vertices of degree 1,2,3,4 or 5.

Let ni be the number of vertices of degree i in H. Since the definition of a nice graph includes the
assumption that ℓ > 12k ≥ 3, there are no triangles in H, so by Proposition 3.8, the Laplacian spectrum
determines the number of vertices, the sum of degrees, the sum of squares of degrees and the sum of
cubes of degrees. In G, the numbers of vertices with degree 1,2,3 and 4 are 2k + 1, ℓ − k − 1, 1 and k,
respectively, so we have

n1 + n2 + n3 + n4 + n5 = n = ℓ+ 2k + 1, (4.1)

n1 + 2n2 + 3n3 + 4n4 + 5n5 = 2n = 2ℓ+ 4k + 2,

n1 + 4n2 + 9n3 + 16n4 + 25n5 = (2k + 1) + 4(ℓ− k − 1) + 9 + 16k = 4ℓ+ 14k + 6,

n1 + 8n2 + 27n3 + 64n4 + 125n5 = (2k + 1) + 8(ℓ− k − 1) + 27 + 64k = 8ℓ+ 58k + 20.

This system of equations has a one-parameter family of solutions, given by

n2 = −4n1 + ℓ+ 7k + 3

n3 = 6n1 − 12k − 5

n4 = −4n1 + 9k + 4

n5 = n1 − 2k − 1. (4.2)

(4.1) and (4.2) together imply that n2 + n3 + n4 + n5 = ℓ− n5 (i.e., there are ℓ− n5 ≤ ℓ vertices with
degree at least 2). But H has a cycle of length ℓ, and all the vertices on that cycle have degree at least
2, so we must have n5 = 0 and all the vertices with degree at least 2 must lie on the cycle. This implies
that H is sun-like.

There was only one degree of freedom in our system of equations: knowing that n5 = 0 allows us to
deduce the values of all ni, and in particular n3 = 1 and n4 = k. That is to say, there is one 1-hub, k
different 2-hubs and no i-hubs for i > 2, as desired. □
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4.1. Decorated routes. Recall the definition of a route from Definition 3.6. The remainder of the proof
of Lemma 2.3 proceeds by carefully studying routes in sun-like graphs. In this subsection we introduce
a convenient framework for working with such routes.

Definition 4.2. Let G be a sun-like graph. A decorated s-route R consists of a route v⃗ = (v1, . . . , vs)
together with a label “look” or “wait” assigned to each j for which vj = vj+1 and vj is a hub (here
arithmetic is mod s). That is to say, recalling that we previously imagined a route v⃗ as a closed walk
with some “waiting steps”, we are now reinterpreting some of the waiting steps as steps where we “look
at a hub”.

For a hub v, if vj = vj+1 = v and j has the label “look”, or if vj = v and vj+1 is one of the leaves
attached to j, then we say that the decorated route interacts with v at step j (i.e., interacting with a
hub means looking at it or entering one of the leaves attached to it).

For a decorated s-route R, define its multiplicity mult(R) to be the number of different decorated
routes that can be obtained by cyclically shifting or reversing R. For example, if R is a trivial route that
repeatedly waits at a single vertex, then mult(R) = 1, but in general mult(R) can be as large as 2s.

Consider a decorated s-route R. Suppose that in this decorated route there are r1 steps where we
wait at leaf vertices, and r2 steps where we wait at cycle vertices (not counting steps in which we look
at a hub). Suppose that for each i, there are ti steps where we look at an i-hub. Then, we define the
weight of R as

w(R) = 2r2
∞∏
i=1

iti .

That is to say, we accumulate a factor of 2 whenever we wait at some vertex on the cycle (not when we
wait at a leaf vertex), and we accumulate a factor of i whenever we look at an i-hub.

Example 4.3. Recall the (46, 3)-nice graph in Figure 1. Write a, b, c for the three vertices between the
1-hub v0 and the 2-hub v1, and let x be one of the leaf vertices attached to v1. Then, an example of a
route is

v⃗ = (v0, v0, a, b, c, v1, v1, x, x, v1, c, b, c, b, a, v0).

This route has four “waiting steps” (in the first and last steps we wait at v0, at the sixth step we wait
at v1 and at the eighth step we wait at x).

In order to make this route into a decorated route, for each of the steps where we wait at a hub (i.e.,
the first, sixth and last step) we need to decide whether to reinterpret this step as a step where we “look
at the hub”. For example, say we label the first step as “look” (and the sixth and last steps are labelled
as “wait”). This route interacts with v0 and v1, once each (we look at v0, and enter a leaf attached to
v1). The weight of this decorated route is 22 · 1 = 4 (we wait twice at cycle vertices, and look at a 1-hub
once).

We then have the following consequence of Fact 3.7.

Lemma 4.4. Consider any sun-like graph G whose cycle has length ℓ. For s < ℓ, let Ds be the set of
all decorated s-routes in G. Then, the s-th spectral moment of L(G) is∑

R∈Ds

w(R).

Proof. In undecorated routes (as in Definition 3.6) we accumulate a factor of deg(v) = i + 2 each time
we wait at a 2-hub v. For our decorated routes, we have simply broken this down into “waiting” and
“looking”; waiting accumulates a factor of 2 (just as it does for a non-hub vertex on the cycle) and
looking contributes a factor of i.

Also, recall that in an undecorated route we accumulate a factor of −1 for each step we walk along
an edge. We can ignore this factor if we only consider routes less than ℓ: such routes cannot make it all
the way around the cycle, so must “retrace their steps” and therefore have an even number of “walking
steps”. □

The reason we have introduced the notion of a decorated route is that if we know the hub distribution
of a graph, this is enough information to determine the contribution to the s-th spectral moment from
routes which interact with at most one hub. (So, we can focus on routes which interact with multiple
hubs, which are key to understanding how the hubs are distributed around the cycle).
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Lemma 4.5. Let G be a sun-like graph whose cycle has length ℓ, and let ki be the number of i-hubs in
G. Let D∗

s be the set of decorated s-routes which interact with at most one hub (any number of times).
Then

∑
R∈D∗

s
w(R) only depends on ℓ and (ki)

∞
i=1.

Proof. Consider two different graphs G,H with the same statistics ℓ and (ki)
∞
i=1. We will show that the

sum of weights under consideration is the same with respect to G and H. Roughly speaking, the key
observation will be that for any route involving a single hub in G, we can “rotate the route around the
cycle” to find a corresponding route in H.

The cycles CG and CH in G both have the same length ℓ, so we can fix an isomorphism ϕ : CG → CH .
Fixing an orientation of CH , let χ : CH → CH be the automorphism that “rotates one step clockwise
around CH”. Since G,H have the same hub distribution, we can also fix an bijection ψ : CG → CH such
that v is an i-hub if and only if ψ(v) is an i-hub. For each v in CG, there is a unique j ∈ Z/ℓZ such that
ψ(v) = χ(j)(ϕ(v)) (i.e., we “make ψ(v) line up with ϕ(v)” by rotating it j steps around the cycle). Let
ϕv = χ(j) ◦ ϕ for this j, so ϕv is an isomorphism CG → CH with ϕv(v) = ψ(v).

• Clearly, ϕ gives us a correspondence between decorated s-routes that don’t interact with any
hubs in G, and decorated s-routes that don’t interact with any hub in H.

• For any i-hub v in CG, the isomorphism ϕv (together with a bijection between the i leaves
attached to v in CG and the i leaves attached to ψ(v) in CH) gives us a correspondence between
decorated s-routes which interact with the single hub v in G, and s-routes which interact with
the single hub ψ(v) in H.

The above correspondences are weight-preserving, so the desired result follows. □

4.2. Localising to nice graphs. Our first application of the framework in Section 4.1 is to finish the
“localisation step” in the proof of Lemma 2.3: every graph with the same spectrum as a nice graph is
itself nice. Given Lemma 4.1, this basically comes down to studying distances between hubs.

Lemma 4.6. Let H be a graph with the same spectrum as an (ℓ, k)-nice graph G. Then H is an (ℓ, k)-nice
graph.

Proof. In this proof, we will omit the word “decorated” (we will have no reason to consider undecorated
routes). First, we apply Lemma 4.1 to see that H is a sun-like graph whose cycle has length ℓ, with one
1-hub, k 2-hubs, and no i-hubs for i > 2.

Let ηs(H), ηs(G) be the sum of weights of s-routes which interact with at least 2 hubs (with respect
to H and G, respectively). By Lemmas 4.4 and 4.5, and the fact that ℓ ≥ 15 from Definition 2.2, we
have ηs(H) = ηs(G) for all s ≤ 14 (so, we mostly just write “ηs” to indicate this common value).

Now, we use the parameters ηs to study the structure of H. We break this down into a sequence of
claims.

Claim 4.7. In H, the closest pair of hubs is at distance 4.

Proof. Note that η2d+2 > 0 if and only if there are two hubs whose distance is at most d. Indeed, the
shortest way for a route to interact with two hubs is to look at one hub, walk d steps to the next hub,
look at it, and walk back; this takes 1 + d+ 1 + d = 2d+ 2 steps.

The closest pair of hubs in G are at distance 4, so the same is true in H. (Note that 2 ·4+2 ≤ 14). □

Claim 4.8. In H:

(1) the 1-hub has distance 4 from exactly one other hub, and
(2) the number of pairs of hubs at distance 4 from each other is the same in G and H.

Proof. The only routes that contribute to η10 are those routes which walk back and forth between two
different hubs at distance 4, looking once at each hub along the way. Each such route contributes a
weight of 4, unless one of the hubs is a 1-hub, in which case the route contributes a weight of 2. Also,
each such route has multiplicity 10 (all ten cyclic shifts yield different routes, but reversing the order
does not yield any further routes).

So, η10/20 can be interpreted as the number of hubs at distance 4 from the 1-hub, plus two times the
number of pairs of 2-hubs at distance 4 from each other.

In G, there is exactly one hub at distance 4 from the 1-hub. So, η10(G)/20 = η10(H)/20 is odd,
meaning that there must be an odd number of hubs at distance 4 from the 1-hub in H. The only
possible odd number here is 1, because there is simply no room to put three or more hubs at distance 4
from the 1-hub.

Then, in H and in G, the number of pairs of 2-hubs at distance 4 from each other is (η10/20−1)/2. □
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Now, Claims 4.7 and 4.8 show that the contributions to ηs(H) and ηs(G) from routes which interact
with two hubs within distance at most 4 (and no other hubs) are the same. (Formally, this can be proved
in a similar way to Lemma 4.5, considering a bijection between the set of pairs of hubs at distance 4 in
G, and the set of pairs of hubs at distance 4 in H). Let η′s(H), η′s(G) be obtained from ηs(H) and ηs(G)
by subtracting these contributions, so η′s(H) = η′s(G) for s ≤ 14.

Claim 4.9. In H, there are no hubs at distance 5 from each other.

Proof. The only routes which can contribute to η′12 are routes which interact with two different hubs at
distance 5 from each other. (By Claim 4.7, every pair of hubs is at distance at least 4 from each other,
so routes of length 12 are much too short to interact with three different hubs). Since G has no pair of
hubs at distance 5, the same is true for H. □

Claim 4.10. In H:

(1) the 1-hub does not have distance 6 from any other hub, and
(2) the number of pairs of hubs at distance 6 from each other is the same in G and H.

Proof. Given Claim 4.9, the only routes which can contribute to η′14 are routes which interact with two
different hubs at distance 6. (Routes of length 14 are still too short to interact with three different hubs).

The same considerations as for Claim 4.8 show that η′14/28 can be interpreted as the number of hubs
at distance 6 from the 1-hub, plus two times the number of pairs of 2-hubs at distance 6 from each other.

In G, there is no hub at distance 6 from the 1-hub. So, η′14(G)/28 = η′14(H)/28 is even, meaning that
there are an even number of hubs at distance 6 from the 1-hub v∗ in H. The only possible even number
here is zero, because if there were two hubs at distance 6 from v∗ (one on either side), one of these 2-hubs
would be at distance 2 from the hub guaranteed by Claim 4.8(1) at distance 4 from v∗, and this is ruled
out by Claim 4.7.

Then, in H and in G, the number of pairs of 2-hubs at distance 6 from each other is (η′14/28)/2. □

Now, Claims 4.7 to 4.10 together imply that H is a (k, ℓ)-nice graph. Indeed, imagine walking around
the cycles of G and H, and consider the distances between each pair of consecutive hubs. By Claims 4.7
and 4.9, these distances are either 4 or at least 6. By Claims 4.8(2) and 4.10(2) , the number of
consecutive pairs of hubs in H which are at distance 4 or 6 is the same as the number of consecutive
pairs of hubs in G which are at distance 4 or 6; this number is exactly k. Recalling that H and G both
have exactly k + 1 hubs, it follows that in H we can start from some hub v0 and walk along the cycle,
encountering a new hub every 4 or 6 steps until we reach a final hub vk. By Claims 4.8(1) and 4.10(1),
the 1-hub is either v0 or vk (with distance exactly 4 to its closest 2-hub). We have established that H is
(ℓ, k)-nice. □

4.3. Decoding a nice graph. Now, we complete the proof of Lemma 2.3, showing that we can decode
a specific nice graph using its Laplacian spectrum.

Proof of Lemma 2.3. As in the proof of Lemma 4.6, we will omit the word “decorated” (we will again
have no reason to consider undecorated routes).

Suppose we know that G is an (ℓ, k)-nice graph (for some k ≥ 1 and ℓ > 12k), and suppose we know
the spectrum of G. We will show how to use this information to determine exactly which (ℓ, k)-nice
graph G is (this suffices to prove Lemma 2.3, by Lemma 4.6).

Specifically, it suffices to determine, for each q ≤ 3k − 1, whether there is a hub at distance 2q from
the 1-hub v∗. (In a nice graph, every hub is at even distance from v∗, and the furthest possible distance
between hubs is 4 + 6(k − 1) = 6k − 2).

We proceed by induction. For some q ≤ 3k − 1, suppose we know the positions of all hubs within
distance 2q − 1 of v∗. We would like to determine whether there is a hub at distance 2q from v∗.

Let ηs be the sum of weights of s-routes which interact with at least 2 hubs. By Lemma 4.5, we have
enough information to determine ηs for s < ℓ. We can refine this further: let η′s be obtained from ηs by
subtracting the contribution from all routes which interact only with hubs within distance 2q − 1 of v∗.
Since our inductive assumption is that we know the positions of all hubs within distance 2q− 1 of v∗, we
have enough information to determine η′s (for s < ℓ).

We focus in particular on the quantity η′4q+2 (note that 4q + 2 ≤ 4(3k− 1) + 2 < 12k < ℓ, so we have
enough information to determine this quantity). We break down η′4q+2 further:

• Let α4q+2 be the contribution to η′4q+2 from routes which interact with v∗, and
14



• Let β4q+2(t) be the contribution to η′4q+2 from routes which do not interact with v∗, and interact
with 2-hubs t times.

Note that η′4q+2 = α4q+2 +
∑∞

t=2 β4q+2(t).

Claim 4.11. We have

α4q+2 =

{
8q + 4 if there is a hub at distance 2q from v∗

0 otherwise

Proof. If there is no hub at distance 2q from v∗, then a route of length 4q + 2 is simply too short to
interact with v∗ and with one of the 2-hubs that is not within distance 2q − 1 of v∗.

If there is a hub v at distance 2q from v∗, the only routes which contribute to α4q+2 are those routes
which walk back and forth between v and v∗, looking once at v and v∗ along the way. All these routes
are cyclic shifts of each other (so, there are 4q+2 of them), and each such route contributes a weight of
2. □

Claim 4.12. β4q+2(t) is divisible by 8 for all t.

Proof. Consider a 2-hub v, and write x, y for the leaves attached to v. Consider a route R which at some
step j enters x from v (then waits at x for some number of steps before returning to v). We can slightly
modify R by simply entering y instead of x at step j (and then waiting at y for the same number of
steps before returning to v).

Say that two routes are equivalent if they can be obtained from one another by a sequence of mod-
ifications of this type. So, routes in an equivalence class have essentially the same structure, but they
may visit different leaves. Now, consider a route R which looks at 2-hubs a times, and enters leaves
attached to 2-hubs b times (so, R interacts with 2-hubs a+ b times). The equivalence class of R has size
2b, and the weight of each route in this equivalence class is divisible by 2a. So, the total weight of this
equivalence class is divisible by 2a+b.

It immediately follows that β4q+2(t) is divisible by 2t, so if t ≥ 3 then β4q+2(t) is divisible by 8. It
remains to consider β4q+2(2) in more detail.

The routes that contribute to β4q+2(2) are the routes which interact once each with two different
2-hubs u, v (and do not interact with v∗). Fix such a route R. As above, the equivalence class of R
contributes weight divisible by 4, so we just need an additional factor of 2. This comes from the fact that
mult(R) is equal to 4q + 2 or 8q + 4 (both of which are divisible by 2). Indeed, all 4q + 2 cyclic shifts of
R yield different routes, because there is a unique interaction-with-u step whose position changes with
each cyclic shift. Reversing the order of R may or may not yield 4q + 2 additional routes. □

Finally, given Claims 4.11 and 4.12, we can determine whether there is a 2-hub at distance 2q from
v∗ simply by checking whether η′4q+2 is divisible by 8 or not. This completes the inductive step. □

5. Determining bipartiteness with the signless Laplacian spectrum

In this section we prove Lemma 2.6. This proof mostly comes down to the following two lemmas.

Definition 5.1. For any graph G, let f|L|(G) be the product of nonzero eigenvalues of |L(G)|.

Lemma 5.2. If G is not bipartite, then f|L|(G) is divisible by 4.

Proof. Let G1, . . . , Gc be the connected components of a non-bipartite graph G, and suppose without
loss of generality that G1 is non-bipartite. By Fact 3.10, each f|L|(Gi) is an integer, and by Fact 3.2 we
have f|L|(G) = f|L|(G1) . . . f|L|(Gc). By Proposition 3.14(2), f|L|(G1) is divisible by 4. □

Lemma 5.3. If G is a connected bipartite unicyclic graph with n vertices, whose cycle has length ℓ, then
f|L|(G) = nℓ.

Proof. Since G is bipartite, its signless Laplacian spectrum is the same as its Laplacian spectrum (by
Fact 3.1), so by Kirchhoff’s matrix tree theorem (Theorem 3.13), f|L|(G) is n times the number of
spanning trees in G (which is ℓ, as we have already observed in the proof of Lemma 4.1). □

Now we are ready to prove Lemma 2.6.

Proof of Lemma 2.6. Let G be an (ℓ, k) nice graph, for ℓ ≡ 2 (mod 4), and let H be a graph with the
same signless Laplacian spectrum as G. As discussed in Section 2.2, given Lemma 2.3 and Fact 3.1, we
just need to prove that H is bipartite.
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Let n = ℓ+2k+1 be the number of vertices in G. By Lemma 5.3, we have f|L|(G) = nℓ. Since ℓ ≡ 2
(mod 4) and n = ℓ+2k+1 is odd, f|L|(G) is not divisible by 4. Since G and H have the same spectrum,
we have f|L|(G) = f|L|(H), so Lemma 5.2 implies that H is bipartite. □

6. The prime case of the main theorem

In this section we prove Lemma 2.9. As outlined in Section 2.3, we will use the Cameron–Goethals–
Seidel–Shult theorem (Theorem 3.19), together with the following fact. Recall the definition of a gener-
alised line graph from Definition 3.18.

Lemma 6.1. If a generalised line graph is not a line graph, then its adjacency matrix has a zero
eigenvalue.

Proof. Let G be a generalised line graph that is not a line graph. We will show that G has two vertices
with the same set of neighbours, meaning that A(G) has two equal rows, so is not invertible and therefore
has a zero eigenvalue.

By the definition of a generalised line graph, G contains a cocktailparty graph CP(a) for some a ≥ 1.
This cocktailparty graph can be thought of as a complete graph K2a with a perfect matching removed.
Consider one of the edges of this removed perfect matching, and let u and v be its endpoints. Then, u
and v have the same neighbourhood (in G), as desired. □

Now, crucially, line graphs of nice graphs as in Lemma 2.9 do not have zero eigenvalues.

Lemma 6.2. Let G be an (ℓ, k)-nice graph with ℓ ≡ 2 (mod 4). Then A(line(G)) does not have a zero
eigenvalue.

We will prove Lemma 6.2 by explicitly computing the determinant of A(line(G)) using Theorem 3.12.
We defer this computation to Section 6.1, as it is a little involved; first we show how to use it to prove
Lemma 2.9 (after stating a definition that will be used in the proofs of Lemma 2.9 and Theorem 1.4).

Definition 6.3. For any graph G, let fA(G) be the product of nonzero eigenvalues of A(G) + 2. Equiv-
alently, writing σ for the adjacency spectrum of G,

fA(G) =
∏
λ∈σ
λ ̸=−2

(λ+ 2).

Proof of Lemma 2.9 assuming Lemma 6.2. Consider ℓ, k with ℓ ≡ 2 (mod 4), and let n = ℓ + 2k + 1.
Define

n0 = max{f|A|(Q) : Q is a graph on at most 36 vertices}, (6.1)

and suppose n is a prime number larger than n0.
Let G be an (ℓ, k)-nice graph, and suppose that Q is a graph with the same adjacency spectrum as

line(G). Our objective is to prove that Q = line(H) for some graph H with n vertices. Indeed, if we are
able to prove this, it will follow from Proposition 3.15 that H has the same nonzero signless Laplacian
eigenvalues as G, and since H and G have the same number of vertices, the multiplicity of the zero
eigenvalue will also be the same in H and G. It will then follow that H and G are isomorphic (hence Q
and line(G) are isomorphic) by Lemma 2.6.

Write Q1, . . . , Qc for the connected components of Q. By Fact 3.10, each fA(Qi) is an integer, and by
Fact 3.2 we have fA(Q1) . . . fA(Qc) = fA(Q). On the other hand, by Proposition 3.15 and Lemma 5.3,

fA(Q) = fA(line(G)) = f|L|(G) = nℓ. (6.2)

Recalling that n is a prime number, some fA(Qi) must be divisible by n. Suppose without loss of
generality that

fA(Q1) is divisible by n. (6.3)

By the Cameron–Goethals–Seidel–Shult theorem (Theorem 3.19), Lemma 6.2, and our assumption
n > n0 from the start of the proof, Q1 is a line graph. We write Q1 = line(H1) for some (connected)
graph H1, with v1 vertices and e1 edges. Note that

e1 ≤ n, (6.4)

because Q1 has e1 vertices and is a connected component of Q, which has n vertices (note that Q has
the same number of vertices as line(G), which is n because G has n edges).
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Figure 3. An illustration of the graph Q(13; 3, 7, 13), with 2-houses on the third, sev-
enth, and thirteenth edges of the underlying path.

Now, by Proposition 3.15 we have fA(Q1) = f|L|(H1). This cannot be divisible by 4, because fA(Q) =
nℓ is not divisible by 4 (here we are recalling (6.2), and using that n is odd and ℓ ≡ 2 (mod 4)). So, by
Lemma 5.2, H1 is bipartite.

By Lemma 3.17, A(Q) has −2 as an eigenvalue with multiplicity 1, so (using Fact 3.2), either −2 is
not an eigenvalue of A(Q1) or it is an eigenvalue with multiplicity 1.

Case 1: −2 is not an eigenvalue of A(Q1). In this case, Lemma 3.17 says that e1 = v1 − 1, and H1

is a tree. The largest TU-subgraph of H1 is H1 itself, so by Theorem 3.12 and Proposition 3.15 we have
fA(Q1) = f|L|(H1) = v1. Then, (6.3) says that v1 is divisible by n. (6.4) says that v1 − 1 ≤ n, so we
must have v1 = n. It follows that Q1 = line(H1) has e1 = n− 1 vertices, meaning that Q only has room
for one other component Q2, consisting of a single isolated vertex. We then compute fA(Q2) = 1, so
fA(Q) = fA(Q1)fA(Q2) = v1 = n. This is not consistent with the fact that fA(Q) = nℓ (as we observed
in (6.2)), so this case cannot actually occur.

Case 2: −2 is an eigenvalue of A(Q1). In this case, Lemma 3.17 says that e1 = v1, and H1 is
an even-unicyclic graph. Let ℓ1 be the length of the cycle in H1, so by Lemma 5.3 we have fA(Q1) =
f|L|(H1) = v1ℓ1.

By (6.4) we have ℓ1 ≤ v1 ≤ n, and (6.3) says that v1ℓ1 is divisible by the prime number n. So, we must
have v1 = n. Since Q1 = line(H1) has e1 = v1 = n vertices, there is no room for any other components:
we have proved that Q = Q1 = line(H1) for some H1 with n vertices, as desired. □

6.1. Computing the determinant of the line graph of a nice graph. In this subsection we prove
Lemma 6.2. First, we need some definitions that allow us to discuss the structure of the line graph of a
nice graph.

Definition 6.4. Let uv be an edge in a graph Q. To add an i-house to uv is to add a set S of i new
vertices to Q, and to add all possible edges between vertices in S∪{u, v}. Then, we say that the subgraph
induced by S ∪ {u, v} (which is a complete graph on i + 2 vertices) is an i-house. The vertices u, v are
internal and the vertices in S are external.

Note that the line graph of every (ℓ, k)-nice graph (as defined in Definition 2.2) can be obtained by
starting with a cycle of length ℓ, then adding a 1-house to one edge and adding 2-houses to k other edges.
The distances between pairs of consecutive i-houses are always 3 or 5 (except one longer distance around
the cycle). See Figure 2 for an illustration.

Now, our objective is to compute the determinant of the line graph of a nice graph. We will be able
to reduce this to computing the determinant of a slightly simpler type of graph, which can be studied
recursively.

Recall from Definition 3.11 that a spanning elementary subgraph of a graph G is a spanning subgraph
(covering all vertices) consisting of vertex-disjoint edges and cycles. For such a subgraph X, recall that
β(X) accumulates a factor of −1 for each edge-component, and a factor of −2 for each cycle-component.
By Theorem 3.12, the determinant of A(G) is (up to sign) the sum of β(X) over all spanning elementary
subgraphs X of G.

Definition 6.5. Consider r ≥ 0 and k ≥ 0, and 1 ≤ a1 ≤ · · · ≤ ak ≤ r satisfying ai − ai−1 ≥ 2 for
each 2 ≤ i ≤ k. The graph Q(r; a1, . . . , ak) is defined by starting with a path of length r, and adding a
2-house on the ai-th edge of this path, for each i. (See Figure 3 for an illustration). Let q(r; a1, . . . , ak)
be the sum of β(X) over all spanning elementary subgraphs X of Q(r; a1, . . . , ak).

Lemma 6.6. Let r, k, a1, . . . , ak be as in Definition 6.5. For inductive reasons it is convenient to addi-
tionally allow r = −1 (in which case Q(r) is the graph with no vertices).

(1) Taking k = 0, we have q(−1) = 1 and q(0) = 0.
(2) If r − ak ≥ 2 (or if r ≥ 2 and k = 0), then q(r; a1, . . . , ak) = −q(r − 2; a1, . . . , ak).
(3) If r − ak = 1 then q(r − 2; a1, . . . , ak−1) + 2q(r − 3; a1, . . . , ak−1).
(4) If r = ak then q(r; a1, . . . , ak−1) = −2q(r − 1; a1, . . . , ak−1)− 3q(r − 2; a1, . . . , ak−1).

17



r − ak ≥ 2

r = ak

r − ak = 1

Figure 4. All the possible ways to cover the final vertex (and possibly the external
vertices in the final 2-house) in a spanning elementary subgraph of a graph
Q(r; a1, . . . , ak).

Proof. First, (1) is an immediate observation.
If ak < r (or if r ≥ 1 and k = 0), then the final vertex in Q(r; a1, . . . , ak) has degree 1. In an

elementary spanning subgraph, this final vertex can only be contained in an edge-component, consisting
of the final two vertices of Q(a1, . . . , ak).

In particular, if r−ak ≥ 2 (or if r ≥ 2 and k = 0), the spanning elementary subgraphs of Q(a1, . . . , ak)
can be obtained by taking a spanning elementary subgraph of Q(a1, . . . , ak − 2), and adding a single
edge-component (see Figure 4). We deduce (2), recalling that each edge-component contributes a weight
of −1.

If r− ak = 1, then the aforementioned edge-component covers one of the internal vertices of the final
2-house. There are two different ways to cover the two external vertices in this 2-house by a spanning
elementary subgraph: either we can cover them with a single edge or we can cover them, in addition to
the remaining internal vertex, with a 3-cycle (see Figure 4). In the first case, we accumulate a factor of
−2, and the remaining vertices of the spanning elementary subgraph can be interpreted as a spanning
elementary subgraph of Q(r − 2; a1, . . . , ak−1). In the second case, we accumulate a factor of −1, and
the remaining vertices of the spanning elementary subgraph can be interpreted as a spanning elementary
subgraph of Q(r − 3; a1, . . . , ak−1). So,

q(r; a1, . . . , ak−1) = (−1)2q(r − 2; a1, . . . , ak−1) + (−1)(−2)q(r − 3; a1, . . . , ak−1),

yielding (3).
If r = ak, then the final vertex of Q(r; a1, . . . , ak) is an internal vertex of the final 2-house, and does

not have degree 1. There are a few different ways to cover the final vertex and the two external vertices
of the final house by a spanning elementary subgraph: we could cover just these three vertices with a
3-cycle, or we could cover the entire 2-house (there are three different ways to do this with two disjoint
edges, and three different ways to do this with a 4-cycle; see Figure 4). Similar considerations as above
yield

q(r; a1, . . . , ak−1) = −2q(r − 1; a1, . . . , ak−1) + (3(−1)2 + 3(−2))q(r − 2; a1, . . . , ak−1),

yielding (4). □
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Figure 5. Four possible ways to cover the tip of the 1-house

The recurrences described in Lemma 6.6 are sufficient to compute any q(r; a1, . . . , ak), but the general
formulas are rather complicated. We consider a restricted class of choices of a1, . . . , ak, which will be
sufficient for the proof of Lemma 6.2.

Corollary 6.7. Suppose a1, . . . , ak are odd integers. Then

q(r; a1, . . . , ak) =

{
2k(−1)r/2+1 if r is even,

(2k + 1)(−1)(r+1)/2 if r is odd.

Proof. We proceed by induction on k.
First, iterating Lemma 6.6(2), starting with Lemma 6.6(1), yields

q(a1 − 2) = (−1)(a1−1)/2, q(a1 − 1) = 0.

So, Lemma 6.6(3) and (4) give

q(a1 + 1; a1) = 2(−1)(a1−1)/2 = 2(−1)(a1+1)/2+1, q(a1; a1) = −3(−1)(a1−1)/2 = 3(−1)(a1+1)/2,

respectively. Iterating Lemma 6.6(2) again yields the desired result for k = 1.
Now, consider k ≥ 2 and assume that the desired statement holds for smaller k. Then, recalling that

ak is odd, our inductive assumption together with Lemma 6.6(3,4) yields

q(ak; a1, . . . , ak) = −2q(ak − 1; a1, . . . , ak−1)− 3q(ak − 2; a1, . . . , ak−1)

= −2(2k − 2)(−1)(ak−1)/2+1 − 3(2k − 1)(−1)(ak−1)/2

= (2k + 1)(−1)(ak+1)/2,

q(ak + 1; a1, . . . , ak) = q(ak − 1; a1, . . . , ak−1) + 2q(ak − 2; a1, . . . , ak−1)

= (2k − 2)(−1)(ak−1)/2+1 + 2(2k − 1)(−1)(ak−1)/2

= 2k(−1)(ak+1)/2+1.

Iterating Lemma 6.6(2) proves the desired statement. □

Now, we are ready to prove Lemma 6.2.

Proof of Lemma 6.2. Let b1 < · · · < bk be the distances of the 2-hubs from the 1-hub in G (so in
particular b1 = 4, and all bi are even). Let D be the sum of β(X) over all spanning elementary subgraphs
X of line(G).

Let u∗ be the tip of the 1-house in line(G). There are four ways for an elementary subgraph to cover
u∗ (pictured in Figure 5):

(1) u∗ could be covered by a long cycle that runs all the way around the nice graph.
(2) u∗ could be covered by a 3-cycle covering the entire 1-house.
(3) u∗ could be covered by a single edge, whose other vertex is at distance 3 from the 2-house.
(4) u∗ could be covered by a single edge, whose other vertex is at distance 4 from the 2-house.

Let D1, D2, D3, D4 be the contributions to D from spanning elementary subgraphs that cover u∗ in
each of the above four ways (in that order). First, D2, D3, D4 can be handled with Corollary 6.7, as
follows. Recall that ℓ ≡ 2 (mod 4).
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For D2: apart from the 3-cycle covering the 1-house, the rest of a spanning elementary subgraph
corresponds to a spanning elementary subgraph of Q(ℓ− 3; b1 − 1, . . . , bk − 1), so

D2 = −2q(ℓ− 3; b1 − 1, . . . , bk − 1) = −2(2k + 1) = −4k − 2. (6.5)

For D3: apart from the edge covering the tip of the 1-house, the rest of a spanning elementary subgraph
corresponds to a spanning elementary subgraph of Q(ℓ− 2; b1 − 1, . . . , bk − 1), so

D3 = −q(ℓ− 2; b1 − 1, . . . , bk − 1) = −(−2k) = 2k. (6.6)

For D4: apart from the edge covering the tip of the 1-house, the rest of a spanning elementary subgraph
corresponds to a spanning elementary subgraph of

Q(ℓ− 2; 2, b1, . . . , bk) ∼= Q(ℓ− 2; ℓ− bk − 1, ℓ− bk−1 − 1 . . . , ℓ− b1 − 1)

(we can describe the graph in “two different directions”). Note that ℓ − bk is even (as the difference of
two even numbers), so

D4 = −q(ℓ− 2; ℓ− bk − 1, ℓ− bk−1 − 1 . . . , ℓ− b1 − 1) = −(−2k) = 2k. (6.7)

It remains to consider D1. Suppose we have an elementary spanning subgraph which contains a long
cycle C covering u∗ and going around the ℓ-cycle of line(G). There are three different ways that C can
interact with each 2-house of line(G) (all of which are pictured at the top of Figure 5). Specifically,
there are two ways for C to pass through all 4 vertices of the 2-house, or alternatively C can simply pass
through the internal vertices of the 2-house, leaving the remaining two external vertices to be covered
by an edge-component.

So, there are 3k spanning elementary subgraphs that contribute to D1. To compute the weight of each
such subgraph: first, start with a base weight of −2. For each 2-house, we have three choices; the first
two (incorporating the 2-house in the cycle) do not affect the weight, but the third (leaving the external
vertices for an edge-component) accumulates a factor of −1. So,

D1 = (−2)(1 + 1− 1)k = −2. (6.8)

Combining (6.5) to (6.8), we see that D = −4, so by Theorem 3.12, the determinant of A(line(G)) is
nonzero (it has absolute value 4). □

7. Augmenting the prime case

In this section we show how to use line graphs of nice graphs to define a family of exponentially
many graphs that are determined by their adjacency spectrum. This definition includes a number of
inequalities and number-theoretic properties which will be used in a somewhat delicate case analysis in
the proof of Theorem 1.4 (to rule out various possibilities for graphs which have the same spectrum as
one of our graphs of interest, but have different structure).

Definition 7.1. The star graph K1,n consists of n leaves attached to a single vertex. Note that line(K1,n)
is the complete graph Kn on n vertices.

Let Gn be the family of graphs G satisfying the following properties.

G1 G has two components. One of these components is an (ℓ, k)-nice graph G1 (for some parameters
ℓ, k satisfying ℓ ≤ max(12k, 15)), and the other of these components is a star graph K1,n2

(with
some number of edges n2).

G2 Writing n1 = ℓ + 2k + 1 for the number of edges and vertices of G1, we have n1 + n2 = n (i.e.,
G has n edges).

G3 n1 is a sufficiently large prime number (larger than n0 from (6.1)).
G4 ℓ = 2p for a sufficiently large prime number p (larger than n0 from (6.1)).
G5 n2 ̸≡ 3 (mod 4).
G6 n1 < n2.
G7 2n1 + p− 2 > n.
G8 2n1 − ℓ+ 2 < n2 − 1.

(Note that G3 and G4 imply that G1 satisfies the properties in Lemma 2.9). Let Qn = line(Gn) be the
family of line graphs of graphs in Gn.

Then, the following two lemmas imply Theorem 1.4.

Lemma 7.2. There is a constant c > 0 such that |Qn| ≥ ecn for every sufficiently large n.

Lemma 7.3. Every graph in Qn is determined by its (adjacency) spectrum.
20



It remains to prove these lemmas. First, Lemma 7.2 follows quite simply from Corollary 3.21.

Proof of Lemma 7.2. For sufficiently large n, Corollary 3.21 guarantees the existence of prime numbers
p, n1 such that n− n1 ̸≡ 3 (mod 4), and such that

|n1 − 0.45n| ≤ 0.001n, |p− 0.2n| ≤ 0.001n.

Let ℓ = 2p, let k = (n1 − ℓ − 1)/2 (which is an integer since n1 is an odd prime and ℓ is even), and let
n2 = n − n1. Then, it is easy to check that ℓ ≤ max(12k, 15) (this is the condition for a nice graph in
Definition 2.2), and that G3 to G8 all hold. We claim that there are exponentially many graphs in Qn

with this specific choice of parameters.
To see this, first note that different (ℓ, k)-nice graphs have different line graphs (as depicted in Figure 2,

the ℓ-cycle in a nice graph G corresponds to an ℓ-cycle in line(G), and 1-hubs and 2-hubs in G correspond
to 1-houses and 2-houses in line(G)). So, it suffices to prove that there are exponentially many graphs
in Gn with our specific choice of parameters.

An (ℓ, k)-nice graph is specified by a sequence of k−1 binary choices (every pair of consecutive 2-hubs
can be at distance 4 or 6). Each of the different ways to make these binary choices lead to different
(non-isomorphic) graphs. So, there are 2k−1 different (ℓ, k)-nice graphs, meaning that

|Qn| ≥ 2k ≥ 2((0.45−0.001)n−2(0.2+0.001)n−1)/2 ≥ e0.01n. □

Then, to prove Lemma 7.3 we need a more sophisticated version of the arguments used to prove
Lemma 2.9. In particular, we will need the following more detailed version of the case distinction in the
proof of Lemma 2.9.

Lemma 7.4. Let n0 be as in (6.1) and let Q be a connected graph with more than n0 vertices, such that
all eigenvalues of A(Q) are at least −2, and such that zero is not an eigenvalue of A(Q). Then we can
write Q = line(H) for some connected H.

1. If −2 is not an eigenvalue of A(Q) then one of the following holds.
A. H is an odd-unicyclic graph, and fA(Q) = 4.
B. H is a tree, and fA(Q) is the number of vertices of H.

2. If −2 is an eigenvalue of A(Q) with multiplicity 1, and if fA(Q) is not divisible by 8, then H is
an even-unicyclic graph (with v vertices and a cycle of length ℓ, say), and fA(Q) = vℓ.

Proof. The initial part of the lemma (that Q is a line graph) follows from Theorem 3.19 and Lemma 6.1.
Then, the structural descriptions in 1A and 1B follow from Proposition 3.14 (specifically, A corresponds
to the case where H is not bipartite, and B corresponds to the case where H is bipartite), and the
statements about fA(Q) are immediate consequences of Theorem 3.12.

For 2, we can similarly apply Proposition 3.14, considering the cases where H is or is not bipartite.
We see that either H is an even-unicyclic graph (in which case the statement about fA(Q) follows from
Lemma 5.3), or H is a non-bipartite graph whose number of edges is one more than its number of vertices.
We need to rule out this latter case (showing that whenever it occurs, fA(Q) is divisible by 8).

So, suppose that H is non-bipartite and its number of edges is one more than its number of vertices.
Let H ′ be the 2-core of H; its largest subgraph with minimum degree at least 2. One can obtain
the 2-core by iteratively peeling off leaf vertices (in any order) until no leaves remain. There are two
possibilities for the structure of H ′:

I. H ′ consists of two edge-disjoint cycles with a single path between them (this path may have
length zero), or

II. H ′ is a “theta graph”, consisting of two vertices with three internally disjoint paths between
them.

Case I. In the first case, write C1, C2 for the two cycles, and let ℓ1, ℓ2 be their lengths. For H to be
non-biparitite, at least one of ℓ1, ℓ2 must be odd (suppose without loss of generality that ℓ1 is odd).

• If ℓ2 is even, then the largest TU-subgraphs of H are the odd-unicyclic subgraphs obtained by
deleting a single edge from C2. So, by Theorem 3.12 we have f|L|(H) = 4ℓ2, which is divisible
by 8.

• If ℓ2 is odd, then the largest TU-subgraphs of H are the odd-unicyclic subgraphs obtained by
deleting a single edge from C1 or C2, and the disconnected subgraphs (with two odd-unicyclic
components) obtained by deleting an edge on the unique path between C1 and C2. Writing ℓ3 for
the length of the path between C1 and C2, by Theorem 3.12 we have f|L|(H) = 4(ℓ1+ ℓ2)+42ℓ3,
which is divisible by 8.
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Case II. In the second case, write P1, P2, P3 for the three internally disjoint paths, and let ℓ1, ℓ2, ℓ3 be
their lengths. For H to be non-biparitite, it cannot be the case that ℓ1, ℓ2, ℓ3 all have the same parity.
Suppose without loss of generality that ℓ1 is even and ℓ2 is odd.

• If ℓ3 is even, then the largest TU-subgraphs of H are the odd-unicyclic subgraphs obtained by
deleting a single edge from P1 or P3. So, by Theorem 3.12 we have f|L|(H) = 4(ℓ1 + ℓ3), which
is divisible by 8.

• If ℓ3 is odd, then the largest TU-subgraphs of H are the odd-unicyclic subgraphs obtained by
deleting a single edge from P2 or P3. So, by Theorem 3.12 we have f|L|(H) = 4(ℓ2 + ℓ3), which
is divisible by 8. □

We also need the following consequence of Lemma 3.3(2), allowing us to recognise a complete graph
by its number of vertices and its largest eigenvalue.

Lemma 7.5. Let G be a graph with n vertices, such that A(G) has n− 1 as an eigenvalue. Then G is
a complete graph.

Proof. Let e be the number of edges of G, and let λmax be the largest eigenvalue of A(G). Then
Lemma 3.3(2) implies that n − 1 ≤ λmax ≤

√
2e− n+ 1, or equivalently that e ≥ n(n − 1)/2; the only

graph with this many edges is a complete graph. □

Now we prove Lemma 7.3, completing the proof of Theorem 1.4.

Proof of Lemma 7.3. Let G ∈ Gn (with parameters ℓ, k, n2, n1, p as in Definition 7.1), and let Q be a
graph with the same adjacency spectrum as line(G). Our objective is to prove that Q has the complete
graph Kn2

as a connected component. Indeed, if we are able to prove this, then we can apply Lemma 2.9
to the graph that remains after removing this Kn2 component (here we are using Fact 3.2 to see that
removing this Kn2 component has a predictable effect on the spectrum).

As is well-known (see for example [5, Section 1.4.1]), the eigenvalues of a complete graph Kn2
are −1

(with multiplicity n2−1) and n2−1 (with multiplicity 1). So (by Fact 3.2), as in the proof of Lemma 2.9
we can see that in the spectrum of A(Q) there is no zero eigenvalue, and −2 appears as an eigenvalue
with multiplicity 1. Also, by Fact 3.2, Proposition 3.15, and Lemma 5.3 we have

fA(Q) = (n2 + 1)n1ℓ = 2(n2 + 1)n1p. (7.1)

Recalling (7.1) and G5, we see that fA(Q) is not divisible by 8 (so by Fact 3.2, fA(Qi) is not divisible
by 8 for any connected component Qi of Q)

Now, Fact 3.2 tells us that some connected component Q2 of Q must have n2 − 1 as an eigenvalue.
Let ∆2 be the maximum degree of Q2, so by Lemma 3.3(1) we have

∆2 ≥ n2 − 1. (7.2)

In particular, Q2 has at least ∆2 +1 ≥ n2 vertices, so by Lemma 7.4 and the assumptions n1 > n2 ≥ n0
from G3 and G6, we can write Q2 = line(H2) for some graph H2. Let v2 be the number of vertices in
H2.

Now, we consider the cases in Lemma 7.4 (1A, 1B and 2) for the structure of H2. We will show that
all these cases lead to contradiction except 1B (i.e., H2 is a tree), and in that case we will prove that
v2 = n2 + 1 vertices (so H2 has n2 edges and Q2 has n2 vertices; this suffices to show that Q2 is our
desired Kn2 component, by Lemma 7.5).

Case 1A: H2 is odd-unicyclic. In this case we have fA(Q2) = 4. Since fA(Q) is divisible by the prime
number n1, there must be some component Q1 ̸= Q2 such that fA(Q1) is divisible by n1. Recall from
(7.1) that fA(Q) is not divisible by 8, so fA(Q1) must be odd.

By Lemma 7.4 (and the assumption n1 > n0 from G3), we can write Q1 = line(H1) for some graph
H1. Let v1 be the number of vertices in H1. Considering all cases of Lemma 7.4, the only possibility
that leads to fA(Q1) being odd is the case where H1 is a tree (whose number of vertices v1 is odd and
divisible by n1). Now, we can proceed similarly to Case 1 in the proof of Lemma 2.9.

Note that Q1 has v1−1 vertices and Q2 has v2 ≥ ∆2+1 ≥ n2 vertices (for the latter inequality, we used
(7.2)). So, v1−1+n2 ≤ n, or equivalently v1 ≤ n1+1. Since v1 is divisible by n1 we must have v1 = n1,
so Q only has room for one other component Q3 (other than Q1, Q2), consisting of a single isolated
vertex. If this component exists, it has fA(Q3) = 1. We then compute fA(Q) = fA(Q1)fA(Q2) = 4n1,
which is not consistent with (7.1). So, this case is impossible.
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Case 1B: H2 is a tree. In this case fA(Q2) = v2. Our objective is to prove that H2 has n2+1 vertices
(this suffices, by Lemma 7.5). We need to carefully consider various possibilities for the connected
components which are responsible for the large prime factors n1 and p of fA(Q). The details will be a
bit delicate.

First, note that Q2 has v2 − 1 vertices; recalling (7.2), we have

v2 − 1 ≥ ∆2 + 1 ≥ n2. (7.3)

Now, suppose that v2 is divisible by n1 (we will show that this leads to contradiction). By (7.3)
and G6, we have v2 > n1 + 1, so in order for n1 to divide v2 we must have v2 ≥ 2n1. It cannot be
the case that v2 is divisible by p as well as n1 (this would cause v2 to be far too large, noting that Q2

has v2 − 1 ≤ n vertices), so there must be some component Q∗ ̸= Q2 such that fA(Q
∗) is divisible by

p. Considering all cases in Lemma 7.4, we see that this is only possible if Q∗ has at least p− 1 vertices
(as the line graph of a graph with at least p − 1 edges). But then Q∗ and Q2 together have at least
(2n1 − 1) + (p− 1) vertices, which contradicts G7.

So, v2 cannot be divisible by n1, and there must be some component Q1 ̸= Q2 such that fA(Q1) is
divisible by n1. By Lemma 7.4, we can write Q1 = line(H1) for some graph H1.

Next, suppose that H1 is a tree (we will show that this leads to contradiction). By (7.3), there are
at most n1 vertices in components other than Q2. Since v1 is divisible by n1, we must have v1 = n1,
meaning that Q1 has n1 − 1 vertices. So, Q only has room for one other component Q3 (other than
Q1, Q2), consisting of a single isolated vertex, and fA(Q) = fA(Q1)fA(Q2) = n1v2 ≤ n1(n2 + 2) (here
we used that Q2 has at most n2 + 1 vertices, so v2 ≤ n2 + 2). This contradicts (7.1).

So, Q1 is not the line graph of a tree. Considering all other cases in Lemma 7.4, we see that the only
way for fA(Q1) to be divisible by n1 is for Q1 to have at least n1 vertices. Recalling (7.3), we deduce
that Q2 has exactly n2 vertices, as desired.

Case 2: H2 is even-unicyclic. Let ℓ2 = 2q be the length of the cycle in H2, so fA(Q2) = v2ℓ2. We
will again need to consider various possibilities for the connected components which are responsible for
the large prime factors n1 and p of fA(Q) (in each case we need to reach a contradiction), but the details
will be even more delicate.

• First, suppose that v2 is divisible by n1. Note that Q2 has v2 vertices. Recalling (7.2) and G6,
we have v2 ≥ ∆2 + 1 ≥ n2 > n1, and we also have v2 ≤ n < 3n1 by G7, so in order for n1 to
divide v2 we must have v2 = 2n1. We consider possibilities for the prime factor p.

– Similarly to Case 1B, it cannot be the case that v2 is divisible by p as well as n1 (this
would cause v2 to be too large).

– Also similarly to Case 1B, it cannot be the case that there is another component Q∗ ̸= Q2

such that fA(Q
∗) is divisible by p (then Q∗ would have to have at least p − 1 vertices by

Lemma 7.4, and Q∗ and Q2 together would have at least 2n1+(p−1) vertices, contradicting
G7).

– Recalling that fA(Q2) = 2v2q, the remaining case is that q is divisible by p. In this case we
have ℓ2 ≥ ℓ, i.e., the cycle in H2 has length at least ℓ. Each of the v2 edges in H2 can be
incident to at most two of the edges of this cycle, so ∆2 ≤ v2 − ℓ + 2 = 2n1 − ℓ + 2. But
then (7.2) and G8 are inconsistent with each other.

• So, v2 is not divisible by n1. Suppose next that q is divisible by n1, so the cycle ofH2 has length at
least 2n1 and ∆2 ≤ v2−2n1+2 ≤ n−2n1+2. But then (7.2) implies p ≤ n1 ≤ n2−1 ≤ n−2n1+2
(using G6), which is inconsistent with G7.

• The only remaining possibility is that there is some component Q1 ̸= Q2 such that fA(Q1) is
divisible by n1. By Lemma 7.4, Q1 has at least n1 − 1 vertices, meaning that there are only
n2 + 1 vertices left for Q2. By (7.2), Q2 must have at least ∆2 + 1 ≥ n2 vertices.

– If Q2 has n2 vertices, then some vertex in Q2 is adjacent to all the other vertices in Q2,
meaning that some edge of H2 is incident to all the other edges in H2. This is not possible,
recalling that H2 is an even-unicyclic graph.

– The only other possibility is that H2 has n2 + 1 vertices, meaning that Q1 has n1 − 1
vertices (and Q1, Q2 are the only components of Q). This is only possible if H1 is an
n1-vertex tree, recalling the cases in Lemma 7.4. Then, some vertex in Q2 is adjacent
to all but one of the other vertices in Q2, meaning that some edge of H2 is incident to
all but one of the other edges in H2. This can only happen if ℓ2 = 4. We deduce that
fA(Q) = fA(Q1)fA(Q2) = n1 · 4(n2 + 1), which is not consistent with (7.1). □
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Appendix A. Determining graphs by their signless Laplacian spectrum

In this section we prove Theorem 2.8, that there are exponentially many graphs determined by their
signless Laplacian.

If n is odd, Theorem 2.8 follows immediately from Lemma 2.6 (fix some ℓ satisfying ℓ ≡ 2 (mod 4)
and say |ℓ − 0.9n| ≤ 4, let k = (n − ℓ − 1)/2, and consider all 2k−1 different (ℓ, k)-nice graphs). If n
is even, we will need to proceed in a similar way to Theorem 1.4, considering a family of “augmented”
nice graphs designed to satisfy certain inequalities and number-theoretic properties. (The augmentation
is simpler because Lemma 2.6 is less restrictive than Lemma 2.9).

Definition A.1. For even n, let Fn be the family of graphs G satisfying the following properties.

F1 G has two components. One of these components is an (ℓ, k)-nice graph G1 (for some parameters
ℓ, k satisfying ℓ ≥ max(12k, 15)), and the other of these components is an isolated vertex.

F2 Writing n1 = ℓ + 2k + 1 for the number of vertices of G1, we have n1 + 1 = n (i.e., G has n
vertices).

F3 ℓ = 2p for an odd prime number p.
F4 n < 3p.
F5 2(n− p) > n1.

Lemma A.2. There is a constant c > 0 such that |Fn| ≥ ecn for every sufficiently large even n.

Proof. By Corollary 3.21, we can find a prime number p such that |p− 0.45n| < 0.01n. Then, let ℓ = 2p,
k = (n− 1− ℓ− 1)/2 and n1 = n− 1. It is easy to check that ℓ ≤ max(12k, 15) and F3 to F5 all hold.
Then, we simply observe that there are

2k−1 ≥ 2(n−2−2(0.46)n)/2 ≥ e0.01n

different (ℓ, k)-nice graphs with this choice of parameters. □

Lemma A.3. Every graph in Fn is determined by its signless Laplacian spectrum.

Proof. Consider G ∈ Fn (with parameters n1, ℓ, p, k as in Definition A.1, and suppose H has the same
spectrum as G. We need to prove that H has an isolated vertex (then, after removing this isolated vertex
we can apply Lemma 2.6).

An isolated vertex has no nonzero eigenvalues, so by Lemma 5.3, we have

f|L|(H) = f|L|(G) = f|L|(G1) = n1ℓ = 2n1p, (A.1)

which is not divisible by 4 (since ℓ ≡ 2 (mod 4), and n1 is odd). So, by Lemma 5.2, H is bipartite.
By Fact 3.2 and Proposition 3.14, the multiplicity of the zero eigenvalue tells us the number of bipartite

connected components. So, both G and H have exactly two connected components. By Proposition 3.8,
both G and H have exactly n vertices and n−1 edges; the only way this is possible is for one component
to be unicyclic and one component to be a tree.

Let H1 be the unicyclic component of H. Suppose that it has v1 vertices and a cycle of length ℓ1 = 2q
(bipartite graphs can only have even cycles). Let H2 be the tree component of H, which has v2 = n− v1
vertices. By Theorem 3.12 and Lemma 5.3, we have

f|L|(H) = ℓ1v1v2 = 2qv1(n− v1). (A.2)

As we have just discussed, this is not divisible by 4, so both v1 and (n − v1) are odd. Also, by (A.1),
f|L|(H) is divisible by p.

Case 1: v1 is divisible by p. We cannot have v1 ≥ 3p by F4, and we cannot have v1 = 2p because v1
is odd. So, in this case we have v1 = p, and comparing (A.1) and (A.2) yields q(n− v1) = n1. But this
is impossible, because n− v1 < n1 and 2(n− v1) > n1 by F5.

Case 2: v2 is divisible by p. In this case we reach a contradiction for essentially the same reason as
Case 1 (swap the roles of v1 and v2).

Case 3: q is divisible by p. In this case we have q ≥ p so comparing (A.1) and (A.2) yields
v1(n− v1) ≤ n− 1. This is only possible if v1 = n− 1 or v2 = n− 1. That is to say, H has an isolated
vertex, as desired. □
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