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Abstract. For integers k and ℓ, let ind(k, ℓ) be the maximum proportion of k-vertex subsets of a large graph
that induce exactly ℓ edges. The edge-statistics theorem (conjectured by Alon–Hefetz–Krivelevich–Tyomkyn,

and proved by Kwan–Sudakov–Tran, Fox–Sauermann, and Martinsson–Mousset–Noever–Trujić) asserts that,

for k → ∞ and 0 < ℓ <
(k
2

)
, one has ind(k, ℓ) ⩽ 1/e+ o(1).

We investigate the “stability” of this problem: how can one improve this bound under additional assumptions

on ℓ? In particular, the edge-statistics theorem is tight when ℓ ∈ {1, k − 1,
(k
2

)
− (k − 1),

(k
2

)
− 1}; we show

that for all other ℓ, one can replace 1/e with a strictly smaller constant. This extends an analogous result of
Ueltzen in the setting of graph inducibility. We also obtain a much stronger (and essentially optimal) upper

bound on ind(k, ℓ) when ℓ is far from a multiple of k, refining and extending previous bounds due to Fox and

Sauermann.

1. Introduction

For a k-vertex graph H, let N(n,H) be the maximum possible number of k-vertex subsets of an n-vertex graph
that induce a copy of H. A simple averaging argument shows that N(n,H)/

(
n
k

)
is non-increasing in n, and

thus one can define the inducibility of H as

ind(H) = lim
n→∞

N(n,H)(
n
k

) .

This concept was introduced by Pippenger and Golumbic [22] in 1975, and has been extensively studied since
then.

Alon, Hefetz, Krivelevich, and Tyomkyn [2] introduced the following variant of this notion. Let N(n, k, ℓ)
be the maximum number of k-vertex subsets of an n-vertex graph that induce exactly ℓ edges. Similarly,
N(n, k, ℓ)/

(
n
k

)
is non-increasing in n, and one can define the edge-inducibility as

ind(k, ℓ) = lim
n→∞

N(n, k, ℓ)(
n
k

) .

Clearly, for each k we have ind(k, 0) = ind(k,
(
k
2

)
) = 1 (since we can take the host graph to be empty or

complete). Also note that ind(k, ℓ) = ind(k,
(
k
2

)
− ℓ), since one can replace the host graph with its complement.

Thus, throughout the rest of this introduction we restrict our attention to the range 1 ⩽ ℓ ⩽ 1
2

(
k
2

)
.

It follows from Goodman’s theorem that ind(3, 1) = 3/4. However, in general it is surprisingly difficult to
determine edge-inducibilities exactly. For several small values of k and ℓ, this was recently done by Bodnár and
Pikhurko [4] via the method of flag algebras. Also, in this direction, Liu, Mubayi, and Reiher [17, Theorem
1.13] obtained an explicit formula for ind(k, 1), for all k.

Alon, Hefetz, Krivelevich, and Tyomkyn suggested studying the asymptotic behaviour of edge-inducibilities as
k → ∞, and posed the following edge-statistics conjecture [2, Conjecture 1.2]: if k is sufficiently large in terms

of ε > 0 and 1 ⩽ ℓ ⩽ 1
2

(
k
2

)
, then

ind(k, ℓ) ⩽ 1/e+ ε. (1)
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This conjecture was proved in a combination of works by Kwan, Sudakov, and Tran [14], Fox and Sauer-
mann [10], and Martinsson, Mousset, Noever, and Trujić [19], and was recently extended to hypergraphs by
Jain, Kwan, Mubayi, and Tran [11].

To see that the bound (1) is asymptotically sharp, one can consider ℓ = 1 or ℓ = k − 1. Indeed, suppose that
k → ∞, and that n is much larger than k. Then,

• for ℓ = 1, consider the random graph G(n,
(
k
2

)−1
): the number of edges in its random k-vertex subgraph

converges to a Poisson random variable with mean 1;

• for ℓ = k−1, consider the complete bipartite graph Kn/k,n−n/k: the size of the intersection of a random
k-subset of its vertices with the smaller part converges to a Poisson random variable with mean 1.

In this paper we investigate the “stability” of this problem: how can one improve the bound (1) under additional
assumptions on ℓ? Our first result states that for ℓ /∈ {1, k − 1}, we can replace 1/e ≈ 0.37 with a strictly
smaller constant.

Theorem 1.1. Let k, ℓ be positive integers such that k is sufficiently large, and 1 ⩽ ℓ ⩽ 1
2

(
k
2

)
, ℓ /∈ {1, k − 1}.

Then,

ind(k, ℓ) < 0.33.

This extends1 a recent result of Ueltzen [23, Theorem 1.2] in the setting of graph inducibility, which states

that for every k-vertex graph H such that 2 ⩽ e(H) ⩽ 1
2

(
k
2

)
and H ̸≃ K1,k−1, one has ind(H) ⩽ c + o(1) as

k → ∞ for some c < 1/e. Also, Theorem 1.1 confirms the uniformity-two case of a general conjecture due to
Jain, Kwan, Mubayi, and Tran [11] on edge-inducibilities in hypergraphs (see Section 1.3).

1.1. Strong bounds when ℓ is far from a small multiple of k. Another interesting direction is to study
assumptions on ℓ that allow one to prove bounds of the form ind(k, ℓ) = o(1) as k → ∞. For the “dense range”,
i.e. when ℓ/k → ∞, an essentially optimal such bound was obtained by Kwan and Sauermann [13] (building
upon the previous work of Kwan, Sudakov, and Tran [14, Theorem 1.1] and Alon, Hefetz, Krivelevich, and
Tyomkyn [2, Theorem 1.5]).

Theorem 1.2 (Kwan–Sauermann [13, Theorem 1.3]). Let k, ℓ be positive integers such that 1 ⩽ ℓ ⩽ 1
2

(
k
2

)
.

Then,

ind(k, ℓ) = O
(√

k/ℓ
)
.

However, for ℓ = O(k) this bound is vacuous. Fox and Sauermann [10, Theorem 1.3] studied edge-inducibilities
in the “very sparse” regime ℓ ⩽ k/2: they obtained an optimal bound of O(ℓ−1/4) for ℓ ⩽ k/ log4 k, and a
slightly suboptimal bound of O(k−1/4 log k) for k/ log4 k ⩽ ℓ ⩽ (1/2− o(1))k.

In our next result, Theorem 1.3, we refine these estimates by showing that the optimal bound O(ℓ−1/4) holds

for all ℓ ⩽ k−
√
k. In fact, more generally, we prove that an analogous statement is true for all values of ℓ that

are far from a multiple of k.

Theorem 1.3. Let k, ℓ0, a be non-negative integers such that 1 ⩽ ℓ0 ⩽ k − 1 and 0 ⩽ a ⩽
√
k. Then,

ind(k, ak + ℓ0) = O
(
max(ℓ

−1/4
0 , ((k − ℓ0)/(a+ 1))−1/2)

)
.

In the range ℓ = O(k), this result is, in some sense, optimal (see Section 8.2 for a further discussion). On the

other hand, while the bound from Theorem 1.3 still holds for a >
√
k, in this range it gets superseded by the

bound from Theorem 1.2.

1Strictly speaking, our result as stated does not provide a bound on ind(H) when H has exactly k − 1 edges but is not a star.
However, it follows from our proof that for such graphs ind(H) ⩽ 2/e2 + o(1).
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Figure 1. This cartoon plot summarises the upper bounds on ind(k, ℓ) given by Theorems 1.2 and 1.3.

1.2. Asymptotic results when ℓ is close to a small multiple of k. Together, Theorems 1.2 and 1.3 imply
that, for every ε > 0, we have ind(k, ℓ) ⩽ ε unless ℓ = ak + b with 0 ⩽ a ⩽ C and −C ⩽ b ⩽ C for some
C = C(ε). That is to say, ind(k, ℓ) is small unless ℓ is close to a multiple of k. In the range where ℓ is close to
a multiple of k, one cannot hope for a bound that goes to zero as k tends to infinity. Indeed, taking the host
graph to be the complete bipartite graph Kan/k,n−an/k, or, respectively, Kan/k,n−an/k with additional edges
between each pair of vertices in the smaller part, it is not hard to see that for each fixed a ⩾ 1 and k → ∞,

ind(k, a(k − a)) ⩾
aa

eaa!
+ o(1), ind(k, a(k − a) +

(
a
2

)
) ⩾

aa

eaa!
+ o(1). (2)

Our next result provides an upper bound that is sharp in the above cases. Moreover, for values of ℓ that do
not fall in an interval of the form [a(k − a), a(k − a) +

(
a
2

)
], we also obtain an asymptotic improvement over

this bound.

Theorem 1.4. Fix any integer a ⩾ 1 and C, ε > 0, and suppose that k is sufficiently large in terms of a,C, ε.
Consider an integer ℓ ∈ [a(k − a)− C, a(k − a) + C].

(1) Then,

ind(k, ℓ) ⩽
aa

eaa!
+ ε;

(2) If, additionally, ℓ does not satisfy a(k − a) ⩽ ℓ ⩽ a(k − a) +
(
a
2

)
, then

ind(k, ℓ) ⩽
(a+ 1)a+1

ea+1(a+ 1)!
+ ε.

In particular, combining the lower bounds (2) with the upper bounds given by Theorem 1.4(1), we conclude
that both ind(k, a(k − a)) and ind(k, a(k − a) +

(
a
2

)
) tend to aa/(eaa!) as k → ∞.

Since MM/(eMM !) is a decreasing function of M ∈ N, the bounds given by Theorem 1.4 for ℓ ̸= k − 1 are at
most 2/e2 + ε. Combined with Theorems 1.2 and 1.3, this implies that ind(k, ℓ) ⩽ 2/e2 + o(1) unless ℓ = O(1).
We make this explicit in the following theorem.

Theorem 1.5. Fix ε > 0, and suppose that k is sufficiently large in terms of ε. Then, for each ℓ such that
60 ⩽ ℓ ⩽ 1

2

(
k
2

)
and ℓ ̸= k − 1,

ind(k, ℓ) ⩽ 2/e2 + ε.

We believe that in fact the above statement should hold with 60 replaced by 2, thereby improving the bound in
Theorem 1.1 from 0.33 to the optimal 2/e2 + o(1) ≈ 0.27. However, we did not manage to accomplish this (see
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Figure 2. This cartoon plot summarises the upper bounds on ind(k, ℓ) in the range ℓ = O(k) and k → ∞
given by Theorems 1.1, 1.3, 1.4 and 1.5.

Section 8.1 for some speculations in this direction). A related conjecture in the setting of graph inducibility was

proposed by Ueltzen [23, Conjecture 1.6]: it states for each graph H with k vertices such that 2 ⩽ e(H) ⩽ 1
2

(
k
2

)

and H ̸≃ K1,k−1, one has ind(H) ⩽ 2/e2 + o(1) as k → ∞. Ueltzen proved this conjecture for graphs with
Ω(k) non-isolated vertices [23, Theorem 2.2], and Theorem 1.5 can be used to confirm it for every graph with
at least 60 edges.

1.3. Edge-inducibilities in uniform hypergraphs. All the questions discussed in this introduction also
make sense in the setting of hypergraphs. Formally, for each integer r ⩾ 2, define indr(k, ℓ) as the limit of
Nr(n, k, ℓ)/

(
n
k

)
as n → ∞, where Nr(n, k, ℓ) is the maximum number of k-vertex subsets of an n-vertex r-

uniform hypergraph that induce exactly ℓ edges. Jain, Kwan, Mubayi, and Tran [11] proved that indr(k, ℓ) ⩽
1/e+ o(1) for each ℓ /∈ {0,

(
k
r

)
}, where the asymptotics is for k → ∞ with r fixed. They also conjectured that

1/e can be replaced by a smaller constant unless min(ℓ,
(
k
r

)
− ℓ) is of the form

(
k−d
r−d

)
for some d ∈ {0, . . . , r−1}.

Theorem 1.1 confirms this conjecture for r = 2.

While our proof of Theorem 1.1 is quite specific to the graph case, some of the ideas behind Theorems 1.2
and 1.3 can be extended to hypergraphs. We combine our approach with the methods from [11] (partially
based on results of Bollobás and Scott [6]) to prove the following weaker analogue of these statements.

Theorem 1.6. For every integer r ⩾ 2 and ε > 0, there exists C = C(ε, r) such that if indr(k, ℓ) > ε then

ℓ ∈
{ r∑

d=0

ℓd

(
k − d

r − d

)
: ℓ0 ∈ {0, 1}, ℓ1, . . . , ℓr ∈ Z ∩ [−C,C]

}
.

Roughly speaking, Theorem 1.6 says that indr(k, ℓ) is negligible unless ℓ is a linear combination of terms of

the form
(
k−d
r−d

)
with small coefficients (it is not hard to see that the converse is also true). The quantitative

aspects of the dependence of C on ε given by our proof, however, appear to be non-optimal.

1.4. Proof ideas. First, we briefly outline the proof of Theorem 1.3. Since ind(k, ℓ) is the limit of a non-
increasing sequence N(n, k, ℓ)/

(
n
k

)
, it suffices to prove upper bounds on N(n, k, ℓ) for n = 3k. This, in turn,

boils down to estimating the probability that a uniformly random k-subset X of an n-vertex graph G contains
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exactly ℓ edges. Since in our case ℓ = o(k2), we may assume that G is sparse (otherwise, the bound easily
follows from a standard concentration inequality).

If G has a large matching, then we obtain the desired bound by combining a recent anticoncentration result
for sparse polynomials of a uniformly random point on a “slice” of the Boolean hypercube (due to Jain, Kwan,
Mubayi, and Tran [11]) with the optimal bound for the quadratic Littlewood–Offord problem (due to Kwan
and Sauermann [13]). Specifically, we deal with this case in Corollary 2.7.

If G has no large matching, then it has a small vertex cover U . Conditioning on the outcome of U ∩ X, we
reduce our problem to a question about a linear polynomial on the “slice”. If almost all its coefficients are
the same, then its value cannot be far from a multiple of k, and thus cannot be equal to ℓ. Otherwise, we can
bound its point concentration probability using a variant of the classical Erdős–Littlewood–Offord theorem
(due to Litvak, Lytova, Tikhomirov, Tomczak-Jaegermann, and Youssef [16]).

The proof of Theorem 1.4 also begins with an application of Corollary 2.7, but the rest of the argument is more
delicate. Namely, instead of considering the whole vertex cover U , we find a subset W ⊆ U of “important”
vertices (such that the degree of each vertex in W is linear in n and is much larger than the total number of
edges not touching W ). Next, we prove that the number of edges inside X is very unlikely to be equal to ℓ
unless W ∩X falls into a certain antichain of subsets of W . Using the classical BLYM inequality on antichains,
along with a result of Ehm [7] comparing the “slice” and “product” distributions, we complete the proof of
the first part of the theorem and reduce the second part to a certain polynomial anticoncentration inequality
(Proposition 4.3). This last ingredient almost follows from a result of Fox, Kwan, and Sauermann [9], but
requires an additional careful argument.

Theorem 1.1 follows from Theorems 1.2, 1.3 and 1.4 unless ℓ = O(1). This last remaining case turns out to be
the most challenging. Our proof in this case is computer-assisted: in Theorem 6.4, we reduce the problem to
a finite computation. While we did not make a serious effort to optimise the constant 0.33 in the statement of
Theorem 1.1, our proof does provide a computational framework for doing so (see Remark 6.7).

Organisation of the paper. In Section 2, we review several known results about polynomials on a slice of
the Boolean hypercube. With these tools at hand, in Section 3, we give a short proof of Theorem 1.3. In
Section 4, we focus on the case when ℓ is close to a nonzero multiple of k, and present a proof of Theorem 1.4
assuming a certain technical proposition (its proof appears in Section 5). In Section 6, we complete the proofs
of Theorems 1.1 and 1.5 by dealing with the case when ℓ is close to zero. In Section 7 we turn our attention
to the hypergraph setting and prove Theorem 1.6.

Finally, in Section 8 we discuss some possible directions for further research, including a conjecture about set
systems of unbounded uniformity.

Notation. We use standard asymptotic notation throughout. For functions f = f(n) and g = g(n), we write
f = O(g) or f ≲ g to mean that there is a constant C such that |f | ⩽ C|g|, f = Ω(g) or f ≳ g to mean that
there is a constant c > 0 such that f(n) ⩾ c|g(n)| for sufficiently large n, and f = o(g) to mean that f/g → 0
as n → ∞. Subscripts on asymptotic notation indicate quantities that should be treated as constants.

We also use standard graph theory notation. In particular, V (G) and E(G) denote the vertex and edge sets of
a graph G, respectively, and e(G) = |E(G)|. For a vertex v ∈ V (G), we write NG(v) for its neighbourhood in
G and degG(v) = |NG(v)| for its degree. For a set of vertices U ⊆ V (G), we write G[U ] for the subgraph of G
induced by U . For two disjoint sets of vertices U1, U2 ⊆ V (G), we write G[U1, U2] for the bipartite subgraph
of G with parts U1 and U2 containing all edges of G between U1 and U2.

For a positive integer n, we write [n] = {1, . . . , n}. All logarithms in this paper are to base e. All polynomials
in this paper have real coefficients. We sometimes omit floor and ceiling symbols and assume large numbers
are integers when divisibility considerations are not important.



6

2. Polynomials on a slice of the Boolean hypercube

Definition 2.1. Let Slice(n, k) denote the subset of {0, 1}n with exactly k entries equal to 1. We write
σ⃗ ∼ Slice(n, k) to denote a uniformly random element of Slice(n, k).

Many of the classical results for polynomials of Bernoulli random variables can be transferred, with appropriate
modifications, to polynomials on the slice. In this section, we collect several such adapted results that will be
used throughout the paper. First, we need the following Azuma–Hoeffding-type concentration inequality, due
to Kwan, Sudakov, and Tran [14].

Proposition 2.2 (Kwan–Sudakov–Tran [14, Lemma 2.1]). Consider a function f : {0, 1}n → R such that for
every i ∈ [n] and x1, . . . , xn ∈ {0, 1}

|f(x1, . . . , xi−1, 0, xi+1, . . . , xn)− f(x1, . . . , xi−1, 1, xi+1, . . . , xn)| ⩽ ai.

Let k ⩽ n and σ⃗ ∼ Slice(n, k). Then, for any t > 0,

P
[
|f(σ⃗)− E[f(σ⃗)]| ⩾ t

]
⩽ 2 exp

(
− t2

8
∑n

i=1 a
2
i

)
.

Erdős [8], sharpening a result of Littlewood and Offord [15], proved that for arbitrary nonzero real numbers
a1, . . . , an and independent Rademacher random variables ξ1, . . . , ξn

sup
ℓ∈R

P[a1ξ1 + . . .+ anξn = ℓ] ⩽

(
n

⌊n/2⌋

)
· 2−n ≲

1√
n
. (3)

The next proposition, essentially due to Litvak, Lytova, Tikhomirov, Tomczak-Jaegermann, and Youssef [16],
provides an analogue of this result for linear polynomials on the slice.

Proposition 2.3. Let R,n, k,m ∈ N satisfy 2k ⩽ n ⩽ Rk and m ⩽ k. Consider a linear polynomial
f(x1, . . . , xn) = a1x1 + . . .+ anxn, and let σ⃗ ∼ Slice(n, k). Then either there exists a set I ⊆ [n], |I| ⩾ n−m
such that all ai for i ∈ I are equal, or

sup
ℓ∈R

P[f(σ⃗) = ℓ] ≲R
1√
m
.

Proof. [16, Proposition 4.10] states that for a polynomial f0(x1, . . . , x2k) =
∑2k

i=1 bixi and σ⃗0 ∼ Slice(2k, k), if
there exists a set I0 ⊆ [2k] such that |I0| ⩽ k and bi ̸= bj for every i ∈ I0, j /∈ I0, then

sup
ℓ∈R

P[f0(σ⃗0) = ℓ] ≲
1√
|I0|

. (4)

Let I be the largest subset of [n] such that |I| ⩽ n/2 and

(⋄) ai ̸= aj for every i ∈ I, j /∈ I.

First, suppose that |I| < m/2. Let x be an arbitrary element of [n] \ I, and let J = {j ∈ [n] : aj = ax}. Note
that J is disjoint from I, and that both I ∪ J and [n] \ (I ∪ J) satisfy the property (⋄) as well. Therefore, we
have |I ∪ J | > n/2. Thus, |[n] \ (I ∪ J)| < n/2, and we conclude (by the choice of I) that |[n] \ (I ∪ J)| < m/2.
But then |J | = n− |I| − |[n] \ (I ∪ J)| > n−m, and all aj for j ∈ J are equal.

So, we may assume that |I| ⩾ m/2. Note that a uniformly random element of Slice(n, k) has the same
distribution as a uniformly random element of Slice(2k, k) where the ground set is a uniformly random subset
B of [n] of size 2k. By Proposition 2.2 applied to the polynomial

∑
i∈I xi on Slice(n, 2k), we conclude that

|B ∩ I| ⩾ (k/n)|I| ⩾ m/(2R) with probability at least 1 − 2 exp(−ΩR(m)) over the choice of B. In this case,
application of (4) to the polynomial

∑
i∈B aixi and the set B ∩ I gives the desired bound of OR(1/

√
m). □

To state an extension of the Erdős–Littlewood–Offord theorem to polynomials of higher degree, we need the
following definitions.
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Definition 2.4. Let f ∈ R[x1, . . . , xn] be an n-variable polynomial of degree r. Then νr(f) is the maximum
integer m such that there exist m disjoint subsets I1, . . . , Im ⊆ [n], |Ij | = r such that for every j the coefficient
of x⃗Ij =

∏
i∈Ij

xi in f is nonzero.

Definition 2.5. For each r ∈ N, we define

LOr(m) = sup
f,n

P[f(ξ1, . . . , ξn) = 0],

where ξ1, . . . , ξn are independent Rademacher random variables, and the supremum is over all n ∈ N and all
n-variable polynomials f of degree r with νr(f) ⩾ m.

In these terms, the Erdős–Littlewood–Offord theorem translates to LO1(m) ≲ 1/
√
m. Recently, Kwan and

Sauermann [13] obtained the same optimal bound in the quadratic case: LO2(m) ≲ 1/
√
m. It is widely believed

that LOr(m) ≲r 1/
√
m holds true for all r ⩾ 1, but the best known bound (by Meka, Nguyen, and Vu [20] via

a result of Kane [12]) has an extra factor of (logm)Or(1).

The following theorem (due to Jain, Kwan, Mubayi, and Tran [11]) allows one to transfer these results to
sufficiently “sparse” polynomials on the slice with small non-negative integer coefficients.

Theorem 2.6 (Jain–Kwan–Mubayi–Tran [11, Lemma 5.1]). For r, q ∈ N, there exists δ = δ(r, q) > 0 such
that the following holds. Consider R, k,m, n ∈ N such that 2k ⩽ n ⩽ Rk. Let f be an n-variable multilinear
polynomial of degree at most r with coefficients in {0, . . . , q}. Suppose that νr(f) ⩾ m and f has at most δnr

nonzero degree-r terms. Then, for σ⃗ ∼ Slice(n, k),

sup
ℓ∈R

P[f(σ⃗) = ℓ] ≲r,q,R max
r′⩽r

LOr′(Ωr,q,R(m)).

For Theorem 1.6 (on hypergraph edge-inducibilities), we will also need some minor variants of Theorem 2.6,
whose statements we defer to Section 7.

Combining Theorem 2.6 with a concentration inequality (Proposition 2.2) and with the optimal bounds for the
linear and quadratic Littlewood–Offord problems, we obtain the following corollary.

Corollary 2.7. There exists an absolute constant δ0 > 0 such that the following holds. Consider R, k, n,m ∈ N
such that 2k ⩽ n ⩽ Rk, and let f be an n-variable multilinear quadratic polynomial with coefficients in {0, 1},
such that ν2(f) ⩾ m. Then, for σ⃗ ∼ Slice(n, k) and every ℓ ⩽ δ0k

2,

P[f(σ⃗) = ℓ] ≲R
1√
m
.

Proof. Let δ > 0 be such that Theorem 2.6 holds with r = 2 and q = 1. If f has at most δn2 nonzero quadratic
terms, then we have

sup
ℓ∈R

P[f(σ⃗) = ℓ] ⩽ max
r′=1,2

LOr′(ΩR(m)) ≲R
1√
m
.

So, we can assume that f has at least δn2 nonzero quadratic terms. Set δ0 = δ/4. Then

E[f(σ⃗)] ⩾
k(k − 1)

n(n− 1)
· δn2 ⩾ 2δ0k

2.

Note that the polynomial f satisfies the assumptions of Proposition 2.2 with ai = n + 1 for every i ∈ [n].
Therefore, we conclude that for every ℓ ⩽ δ0k

2,

P[f(σ⃗) = ℓ] ⩽ P[f(σ⃗) ⩽ δ0k
2] ⩽ 2 exp

(
− (δ0k

2)2

8n(n+ 1)2

)
⩽ exp(−ΩR(k)).

Since k ⩾ n/R ⩾ m/R, this bound is certainly OR(1/
√
m). □
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3. ℓ is far from a multiple of k

Proof of Theorem 1.3. We may assume that k is sufficiently large. Recall that we have ℓ = ak+ ℓ0 for some
1 ⩽ ℓ0 ⩽ k − 1 and 0 ⩽ a ⩽

√
k, and set m = 1

3 min(
√
ℓ0, (k − ℓ0)/(a + 1)). In particular, we have 2m2 < ℓ0

and 2(a+ 1)m < k − ℓ0.

Also recall that, by definition, ind(k, ℓ) is the limit of a non-increasing sequence N(n, k, ℓ)/
(
n
k

)
, where N(n, k, ℓ)

is the maximum number of k-vertex subsets of an n-vertex graph that induce exactly ℓ edges. Thus, it is
sufficient to prove that N(n, k, ℓ)/

(
n
k

)
≲ 1/

√
m for n = 3k.

Consider a graph G on n = 3k vertices. Let X be a uniformly random k-subset of V (G). Then e(G[X]) can be
interpreted as f(σ⃗) for σ⃗ ∼ Slice(n, k) and some homogeneous multilinear quadratic polynomial f in n variables
with coefficients in {0, 1}. We need to prove that

P[e(G[X]) = ℓ] = P[f(σ⃗) = ℓ] ≲ 1/
√
m,

where ℓ ⩽ (
√
k + 1)k. If ν2(f) ⩾ m/2, then this bound follows from Corollary 2.7.

Thus, we may assume that ν2(f) < m/2. In this case, there exists a set U ⊆ [n], |U | ⩽ m such that every
quadratic term of f contains at least one variable xu for u ∈ U . For the rest of the proof, we condition
on an arbitrary outcome U ′ of U ∩ X. In terms of f , this corresponds to substituting xu = 0 for every
u ∈ U \ U ′, and xu = 1 for every u ∈ U ′. After substitution, the polynomial becomes of degree at most one
in the remaining variables (denote it by fU ′). Then we need to estimate the probability P[fU ′(σ⃗0) = ℓ] for
σ⃗0 ∼ Slice(n− |U |, k − |U ′|).

Note that the constant term of fU ′ is at most |U ′|2 ⩽ m2, and that the coefficients of its linear terms lie in
{0, 1, . . . ,m}. If no (n− |U |)−m of these linear coefficients are equal, then by the anticoncentration result for
linear polynomials on the slice (Proposition 2.3), we obtain the desired bound P[fU ′(σ⃗0) = ℓ] ≲ 1/

√
m.

So, we may assume that all but m linear coefficients of fU ′ are equal to some integer a0 ∈ {0, 1, . . . ,m}. In this
case, we will prove that P[fU ′(σ⃗0) = ℓ] = 0. Indeed, note that fU ′(σ⃗0) then satisfies the following inequalities
(with probability 1):

a0(k − 2m) ⩽ a0(k − |U ′| −m) ⩽ fU ′(σ⃗0) ⩽ a0k + |U ′| ·m+m2 ⩽ a0k + 2m2.

Since 2m2 < ℓ0, for a0 ⩽ a we have

fU ′(σ⃗0) ⩽ a0k + 2m2 < ak + ℓ0 = ℓ.

Since 2(a+ 1)m < k − ℓ0, for a0 ⩾ a+ 1 we have

fU ′(σ⃗0) ⩾ a0(k − 2m) > (a+ 1)k − (k − ℓ0) = ℓ. □

4. ℓ is close to a nonzero multiple of k

In this section, we focus on the case when ℓ is close to a(k − a) for some fixed integer a ⩾ 1; our goal is to
prove Theorem 1.4.

For p ∈ [0, 1] and a function F : {0, 1}n → R, we write F (ξ⃗(p)) as a shorthand for F (ξ1, . . . , ξn), where ξ1, . . . , ξn
are independent Ber(p) random variables. For discrete probability distributions µ, ν on the real line, recall that
the total variation distance dTV(µ, ν) is the supremum of |µ(S)− ν(S)| over all S ⊆ R.

In Section 2, we collected several anticoncentration inequalities for polynomials on a slice of the Boolean
hypercube, mirroring classical results for polynomials of independent Bernoulli variables. In the special case
when the polynomial depends only on a few variables, the following result (essentially due to Ehm [7], as
observed in [11]) provides a direct way of comparing these two settings.
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Theorem 4.1 ([11, Theorem 7.1]). Let n, k, s ∈ N satisfy k ⩽ n/2 and s ⩽ n. Consider a function F :
{0, 1}n → R which depends only on x1, . . . , xs. Then, for σ⃗ ∼ Slice(n, k)

dTV

(
F (σ⃗), F (ξ⃗(k/n))

)
⩽

max(s, 2n/k)− 1

n− 1
⩽ max(s/n, 3/k).

In particular, ∣∣∣P[F (σ⃗) = 0]− P[F (ξ⃗(k/n)) = 0]
∣∣∣ ⩽ max(s/n, 3/k).

Fox, Kwan, and Sauermann [9] observed that the following proposition is a consequence of Alon’s Combinatorial
Nullstellensatz [1].

Proposition 4.2 (Fox–Kwan–Sauermann [9, Proposition 1.9]). Let f be a polynomial of degree at most r with
a nonzero constant term. Then, for each p ∈ [0, 1/2],

P[f(ξ⃗(p)) = 0] ⩽ 1− 2−r.

While this is sharp for p = 1/2, it seems plausible that one can obtain a better bound for small p. In this
direction, Fox, Kwan, and Sauermann [9, Theorem 1.8] proved that for any ℓ ̸= 0 and a polynomial f with

non-negative coefficients and no constant term, one has P[f(ξ⃗(p)) = ℓ] ⩽ 1/e+o(1) as p → 0. In the case r = 2,
Proposition 4.2 gives the bound of 3/4. We obtain the following (marginal) improvement over this bound for
a certain class of quadratic polynomials.

Proposition 4.3. Let p > 0 be sufficiently small. Consider a quadratic polynomial f with a nonzero constant
term such that its degree-2 coefficients lie in {0, 1}. Then,

P[f(ξ⃗(p)) = 0] < 0.725.

The proof of Proposition 4.3 involves a somewhat tedious case analysis and is postponed until Section 5. Our
motivation to prove it comes from the numerical inequalities

0.725 · 1
e
<

2

e2
<

3

4
· 1
e
.

Therefore, an attempt to prove Theorem 1.4(2) using Proposition 4.2 instead of Proposition 4.3 would yield
a slightly worse bound in the case a = 1. This would still be sufficient to deduce Theorem 1.1 but not
Theorem 1.5, since the latter asks for the optimal bound of 2/e2 + o(1). We also remark that the bound in
Proposition 4.3 is likely not optimal: the best lower bound we know is 2/e− 1/e2+ o(1) ≈ 0.6 (attained by the
polynomial f(x1, . . . , x2n) = (x1 + . . .+ xn − 1)(xn+1 + . . .+ x2n − 1) with p = 1/n).

Next, we need the following classical result about antichains in the Boolean hypercube, discovered independently
by Bollobás [5], Lubell [18], Yamamoto [24], and Meshalkin [21].

Proposition 4.4 (BLYM inequality). Let A ⊆ 2[N ] be an antichain (that is, there are no A1, A2 ∈ A such
that A1 ⊊ A2). Then,

∑

A∈A

(
N

|A|

)−1

⩽ 1.

Also, we use the following statement about approximating the binomial distribution with the Poisson distribu-
tion, which follows (for example) from [3, Theorem 1].

Proposition 4.5. For each p ∈ (0, 1) and N ∈ N, we have dTV(Bin(N, p),Poi(pN)) ⩽ p. In particular, for
every 0 ⩽ M ⩽ N ,

∣∣∣P[Bin(N, p) = M ]− P[Poi(pN) = M ]
∣∣∣ =

∣∣∣∣
(
N

M

)
pM (1− p)N−M − (pN)M

epNM !

∣∣∣∣ ⩽ p.
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Next, we combine Propositions 4.4 and 4.5 to derive the following convenient lemma.

Lemma 4.6. Let A be an antichain of subsets of some finite set B, and let φ : 2B → [0, 1] be a function such
that φ(A) = 0 for every A /∈ A. Then, for each p ∈ (0, 1) and a p-random subset Bp of B (including each
element of B with probability p independently),

E[φ(Bp)] ⩽ max
A∈A

( |A||A|

e|A||A|!φ(A)

)
+ p.

Proof. Proposition 4.5, combined with a standard calculation, implies that for 0 ⩽ M ⩽ N ,
(
N

M

)
pM (1− p)N−M ⩽

(pN)M

epNM !
+ p ⩽

MM

eMM !
+ p. (5)

Therefore,

E[φ(Bp)] =
∑

A∈A
p|A|(1− p)|B|−|A|φ(A) ⩽ max

A∈A

((|B|
|A|

)
· p|A|(1− p)|B|−|A|φ(A)

)

⩽ max
A∈A

(( |A||A|

e|A||A|! + p
)
φ(A)

)
⩽ max

A∈A

( |A||A|

e|A||A|!φ(A)

)
+ p.

Here in the first line we used that φ is supported on A, and that
∑

A∈A

(|B|
|A|
)−1

⩽ 1 by Proposition 4.4. In the

second line, the first inequality is by (5), and the second inequality follows from the fact that 0 ⩽ φ(A) ⩽ 1. □

Proof of Theorem 1.4. We write (α1, . . . , αM ) ≫ (β1, . . . , βN ) as a shorthand for “each of α1, . . . , αM is
sufficiently large in terms of β1, . . . , βN”. Our goal is to prove the upper bound on ind(k, ℓ) for k ≫ (a,C, 1/ε).
For convenience, we introduce three intermediate parameters m, t, and R satisfying

R ≫ 1/ε, k ≫ (m, t) ≫ (R, a,C, 1/ε).

Recall that, by definition, ind(k, ℓ) is the limit of a non-increasing sequence N(n, k, ℓ)/
(
n
k

)
. Thus, it is sufficient

to prove the upper bound on N(n, k, ℓ)/
(
n
k

)
for n = Rk. Let G be a graph on the vertex set V of size n = Rk,

and let X be a uniformly random k-subset of V . Then we need to estimate P[e(G[X]) = ℓ]. We may assume
that G has at least ℓ edges (otherwise, this probability is zero).

Since m ≫ (R, a), if G has a matching of size m/2 then the desired bound follows from Corollary 2.7. Therefore,
we can assume that the maximum matching in G has size less than m/2. Let U be the vertex set of this
matching. Then |U | ⩽ m, and V \ U is an independent set in G.

For each u ∈ U , denote d(u) = |NG(u)∩ (V \U)| ⩽ n. Next, we find a subset W ⊆ U consisting of its “highest
degree” vertices.

Claim 4.7. There exists a non-empty subset W ⊆ U such that for each w ∈ W , we have d(w) ≳m,t,C k and
d(w) ⩾ 2t · e(G[V \W ]).

Proof of claim. Let u1, . . . , u|U | be the vertices of U ordered by non-increasing values of d(ui): that is, d(ui) ⩾
d(ui+1) for every i ⩾ 1. First we note that d(u1) ≳m,C k. Indeed, recalling that V \ U is an independent set
and that e(G) ⩾ ℓ ⩾ k − C, we obtain

m · d(u1) ⩾ e(G[U, V \ U ]) ⩾ ℓ− |U |2 ⩾ k − C −m2.

Let j be the smallest index i such that d(ui) > 4tm · d(ui+1) (or j = |U | if no such index i exists), and set
W = {u1, . . . , uj}. Then, for every 1 ⩽ j0 ⩽ j,

d(uj0) ⩾ d(uj) ⩾ d(u1)/(4tm)m ≳m,t,C k.
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To check the second condition, we first observe that e(G[U \W,V \ U ]) ⩽ d(uj)/(4t). Indeed, if W = U then
this is trivially true. Otherwise,

e(G[U \W,V \ U ]) ⩽
|U |∑

i=j+1

d(ui) ⩽ m · d(uj+1) ⩽ d(uj)/(4t)

where the last inequality is by the definition of j. Therefore,

e(G[V \W ]) ⩽ e(G[U \W,V \ U ]) + |U |2 ⩽ d(uj)/(4t) +m2 ⩽ d(uj)/(2t),

where in the last inequality we used that d(uj) ≳m,t,C k and k ≫ (m, t, C). ■

Let d = min
w∈W

d(w) ⩾ 2t · e(G[V \W ]). Call a subset W ′ ⊆ W good if

∣∣∣ 1
R

∑

w∈W ′

d(w)− ℓ
∣∣∣ ⩽ d

t
.

Note that, since t ≫ R, the good subsets of W form an antichain. Furthermore, as ℓ ⩾ ak−C, for every good
subset W ′ we have

ak − C ⩽ ℓ ⩽
1

R

∑

w∈W ′

d(w) +
d

t
⩽

n · |W ′|
R

+
n

t
= k ·

(
|W ′|+ R

t

)
.

Since t ≫ R, and k ≫ (a,C), this implies that |W ′| ⩾ a. Next, we check that if W ∩X is not good, then we
are unlikely to have e(G[X]) = ℓ.

Claim 4.8. P[e(G[X]) = ℓ and W ∩X is not good] ⩽ exp(−Ωm,t,R,C(k)).

Proof of claim. It suffices to prove that for every W ′ ⊆ W which is not good,

P[e(G[X]) = ℓ | W ∩X = W ′] ⩽ exp(−Ωm,t,R,C(k)).

Suppose that W ∩X = W ′ and e(G[X]) = ℓ. Then,

ℓ = e(G[X]) = e(G[X ∩ U ]) + e(G[X ∩ (U \W ), X ∩ (V \ U)]) +
∑

w∈W ′

|NG(w) ∩ (X ∩ (V \ U))|.

The first term is at most |U |2 ⩽ m2. The second term is at most d/(2t) by Claim 4.7. Therefore, as W ′ is not
good, ∣∣∣∣∣

∑

w∈W ′

|NG(w) ∩ (X ∩ (V \ U))| − 1

R

∑

w∈W ′

d(w)

∣∣∣∣∣ ⩾
d

t
− d

2t
−m2 =

d

2t
−m2. (6)

On the other hand,
∑

w∈W ′
|NG(w) ∩ (X ∩ (V \ U))| may be interpreted as a linear polynomial on Slice(n −

|W |, k − |W ′|), and its expected value satisfies
∣∣∣∣∣E
[ ∑

w∈W ′

|NG(w) ∩ (X ∩ (V \ U))|
]
− 1

R

∑

w∈W ′

d(w)

∣∣∣∣∣ =
∣∣∣∣
k − |W ′|
n− |W | −

1

R

∣∣∣∣ ·
∑

w∈W ′

d(w) ≲
m

n
·mn = m2.

Since d ≳m,t,C k, and k ≫ (m, t, C), we note that if (6) holds, then this polynomial takes a value at least
d/(4t) away from its expectation. Applying Proposition 2.2 (our concentration inequality on the slice) with
av = |W ′| ⩽ m, we conclude that this happens with probability at most

2 exp

(−(d/(4t))2

8m2n

)
⩽ exp(−Ωm,t,R,C(k)),

where in the last inequality we used that d ≳m,t,C k and n = Rk. ■
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Define a function φ : 2W → [0, 1] as follows: if W ′ ⊆ W is good, then let

φ(W ′) = P[e(G[X]) = ℓ | W ∩X = W ′];

otherwise, set φ(W ′) = 0. Since k ≫ (m, t,R,C, 1/ε), Claim 4.8 implies that

P[e(G[X]) = ℓ] ⩽ P[e(G[X]) = ℓ and W ∩X is good] + ε/4 = E[φ(W ∩X)] + ε/4. (7)

Set p = k/n = 1/R and let Vp denote a p-random subset of V . Consider the function F : {0, 1}V → [0, 1] which
sends the characteristic vector 1A ∈ {0, 1}V of a set A ⊆ V to the value φ(W ∩ A), and note that F depends
on at most |W | ⩽ m coordinates. Applying Theorem 4.1 to this function F , we obtain

∣∣∣E[φ(W ∩X)]− E[φ(W ∩ Vp)]
∣∣∣ ⩽

∫ 1

0

∣∣∣P[φ(W ∩X) ⩾ t]− P[φ(W ∩ Vp) ⩾ t]
∣∣∣ dt

⩽ dTV(φ(W ∩X), φ(W ∩ Vp)) ⩽ max

( |W |
n

,
3

k

)
⩽

m+ 3

k
.

But W ∩ Vp is just a p-random subset Wp of W . Then, since k ≫ (m, 1/ε), we can bound the expression from
(7) as

P[e(G[X]) = ℓ] ⩽ E[φ(Wp)] + (m+ 3)/k + ε/4 ⩽ E[φ(Wp)] + ε/2.

Recall that φ is supported on the antichain of good subsets of W , and that p = 1/R ⩽ ε/4 (because R ≫ 1/ε).
Therefore, we can bound the expected value E[φ(Wp)] using Lemma 4.6, and obtain that

P[e(G[X]) = ℓ] ⩽ E[φ(Wp)] + ε/2 ⩽ max
W ′⊆W is good

(
|W ′||W ′|

e|W ′||W ′|!φ(W
′)

)
+ 3ε/4. (8)

Recall that every good subset has size at least a, and that MM/(eMM !) is a decreasing function of M ∈ N.
Now we can complete the proof of the first part of the theorem. Indeed, using the crude bound φ(W ′) ⩽ 1, we
see that the maximum in the right hand side of (8) is at most aa/(eaa!), and hence

P[e(G[X]) = ℓ] ⩽
aa

eaa!
+ 3ε/4 ⩽

aa

eaa!
+ ε.

To prove the second part, we need a non-trivial bound on φ(W ′) for good subsets of size exactly a. If W ′ is a
good subset of size a, then

∑

w∈W ′

d(w) ⩾ R(ℓ− d/t) ⩾ R(a(k − a)− C − d/t) ⩾ an−OR,a,C(n/t). (9)

Therefore, each vertex of W ′ is adjacent to all but at most OR,a,C(n/t) other vertices of G. Conditioning on
the event W ∩X = W ′, we interpret e(G[X]) as a polynomial of a random variable σ⃗ ∼ Slice(n−|W |, k−|W ′|):

e(G[X]) = e(G[W ′]) +
∑

u∈W ′,v∈V \W
uv∈E(G)

σv +
∑

uv∈E(G[V \W ])

σuσv.

As discussed above, the sum in the second term is taken over almost all pairs of vertices u ∈ W ′ and v ∈ V \W .
Thus, we assume that “by default” each vertex u ∈ W ′ is adjacent to all k − a vertices of X ∩ (V \W ), and
then subtract the corresponding sum over the non-edges. Namely, we can write

e(G[X]) = e(G[W ′]) + a(k − a) + f(σ⃗),

where

f((xv)v∈V \W ) = −
∑

u∈W ′,v∈V \W
uv/∈E(G)

xv +
∑

uv∈E(G[V \W ])

xuxv.

Note that, by (9), the first term involves only OR,a,C(n/t) variables. Claim 4.7 implies that e(G[V \ W ]) ⩽
n/(2t), thus the second term also involves at most n/t variables. Therefore, by Theorem 4.1, f is essentially a
polynomial of Bernoulli random variables. Specifically, let

ℓ∗ = ℓ− e(G[W ′])− a(k − a), p∗ = (k − |W ′|)/(n− |W |) ≲ 1/R.
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Then, Theorem 4.1 implies that

φ(W ′) = P[e(G[X]) = ℓ | W ∩X = W ′] = P[f(σ⃗) = ℓ∗] ⩽ P[f(ξ⃗(p∗)) = ℓ∗] +OR,a,C(max(1/t, 1/k)). (10)

Recall that |W ′| = a, and that, by the assumption in the second part of the theorem, ℓ /∈ [a(k−a), a(k−a)+
(
a
2

)
].

This implies that ℓ∗ ̸= 0, and thus the polynomial f − ℓ∗ satisfies the assumptions of Proposition 4.3. So,

P[f(ξ⃗(p∗)) = ℓ∗] < 0.725.

Since (k, t) ≫ (R, a,C, 1/ε), from (10) we can further conclude that

φ(W ′) < 0.725 + ε/4.

Substituting this into (8), we obtain the bound

P[e(G[X]) = ℓ] ⩽ max

(
0.725 · aa

eaa!
,
(a+ 1)a+1

ea+1(a+ 1)!

)
+ ε.

A simple calculation shows that the second term in the maximum always dominates, completing the proof. □

5. Proof of Proposition 4.3

In this section we present the proof of Proposition 4.3 (used in the proof of Theorem 1.4), which states

that P[f(ξ⃗(p)) = 0] < 0.725 for each sufficiently small p > 0 and each polynomial f satisfying the following
assumption:

(⋆) f is a quadratic polynomial with a nonzero constant term whose degree-2 coefficients lie in {0, 1}.
We introduce some notation for the maximum point concentration probability of the binomial distribution: for
each m ∈ N and p ∈ [0, 1], we define

MP(m, p) = max
0⩽m0⩽m

P[Bin(m, p) = m0], MP+(m, p) = max
1⩽m0⩽m

P[Bin(m, p) = m0]. (11)

It is a standard fact that for p < 1 the maximum in the definition of MP(m, p) is attained at ⌊(m+ 1)p⌋ (i.e.,
⌊(m + 1)p⌋ is a mode of Bin(m, p)), and thus MP+(m, p) = MP(m, p) for every p ∈ [ 1

m+1 , 1). Also note that,
for each m0, we have

P[Bin(m, p) = m0] = p · P[Bin(m− 1, p) = m0 − 1] + (1− p) · P[Bin(m− 1, p) = m0] ⩽ MP(m− 1, p),

and hence MP(m, p) is a non-increasing function of m.

Proof of Proposition 4.3. First, we observe that it suffices to prove the statement of the proposition for
one specific value of p > 0. Indeed, consider p∗ < p and a polynomial g∗ satisfying assumption (⋆). Define
a (random) polynomial g obtained from g∗ in the following way: for each variable xi of g∗ independently,
we substitute xi = 0 with probability 1 − (p∗/p). Note that g also satisfies assumption (⋆), and that the

random variables g(ξ⃗(p)) and g∗(ξ⃗(p∗)) have the same distribution. Therefore, applying the statement of the
proposition for p and g, we obtain the same statement for p∗ and g∗:

P[g∗(ξ⃗(p∗)) = 0] = Eg

[
Pξ⃗(p)[g(ξ⃗(p)) = 0 | g]

]
< 0.725.

So, from now on, we fix p = 0.388. Consider a polynomial f in the variables x1, . . . , xs satisfying assumption
(⋆), with a constant term equal to some ℓ ̸= 0. Since any Bernoulli random variable ξ satisfies ξ2 = ξ, we can
also assume that f is multilinear.

Suppose that some linear monomial xi appears in f with a coefficient not equal to −ℓ. In this case, the

polynomials f
(0)
i and f

(1)
i obtained from f by the substitutions xi = 0 and xi = 1, respectively, also satisfy

assumption (⋆). Applying the induction hypothesis (on the number of variables) to each of them, we conclude
that

P[f(ξ⃗(p)) = 0] = (1− p) · P[f (0)
i (ξ⃗(p)) = 0] + p · P[f (1)

i (ξ⃗(p)) = 0] < ((1− p) + p) · 0.725 = 0.725.

Therefore, we may assume that every linear monomial of f has a coefficient equal to −ℓ.
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Define a graph G on the vertex set [s] with an edge ij for each monomial xixj appearing in f with coefficient
1. We consider several cases depending on the structure of G: namely, we deal with the case when G is not a
complete multipartite graph using Claim 5.1, with the case when G is complete multipartite but not complete
using Claim 5.2, and with the case when G is complete using Claim 5.3.

Claim 5.1. Suppose that there exist vertices u,w1, w2 such that w1w2 is an edge in G while uw1 and uw2 are
non-edges in G. Then,

P[f(ξ⃗(p)) = 0] ⩽ (1−MP+(degG(u), p)) · (1− p) +MP+(degG(u), p) · (1− p2).

Proof of claim. Denote the linear polynomial
∑

v∈NG(u) xv by Lu. Then, f can be written as

f = ℓ+ xu · (−ℓ+ Lu) + g

for some polynomial g not involving xu. Let ξ1, . . . , ξs be independent Ber(p) random variables, and write

ξ⃗in = (ξv)v∈NG(u), ξ⃗out = (ξv)v/∈NG(u).

Then, conditioning on the outcome of ξ⃗in, we have

P[f(ξ⃗in, ξ⃗out) = 0] = Eξ⃗in

[
Pξ⃗out

[ℓ+ ξu(−ℓ+ Lu(ξ⃗in)) + gξ⃗in(ξ⃗out) = 0
∣∣ ξ⃗in]

]
, (12)

where gξ⃗in is obtained from g by the substitutions xv = ξv for each v ∈ NG(u).

First, we estimate the inner conditional probability in the case when Lu(ξ⃗in) ̸= ℓ. Recalling that the polynomial
g does not depend on xu, we can further condition on the outcomes of all the remaining variables except ξu to

conclude that, for ξ⃗in satisfying Lu(ξ⃗in) ̸= ℓ,

Pξ⃗out
[ℓ+ ξu(−ℓ+ Lu(ξ⃗in)) + gξ⃗in(ξ⃗out) = 0

∣∣ ξ⃗in] ⩽ sup
c∈R

P[ξu = c] ⩽ 1− p. (13)

Since ℓ ̸= 0, we can bound the probability that Lu(ξ⃗in) = ℓ as

Pξ⃗in
[Lu(ξ⃗in) = ℓ] ⩽ MP+(degG(u), p). (14)

To bound the inner conditional probability in (12) in the case when Lu(ξ⃗in) = ℓ, we recall that g contains a
quadratic term xw1

xw2
with w1, w2 /∈ NG(u). Therefore, conditioning on the outcomes of all the remaining

variables except ξw1
and ξw2

, we conclude that, for ξ⃗in satisfying Lu(ξ⃗in) = ℓ,

Pξ⃗out
[ℓ+ ξu(−ℓ+ Lu(ξ⃗in)) + gξ⃗in(ξ⃗out) = 0

∣∣ ξ⃗in] = Pξ⃗out
[ℓ+ gξ⃗in(ξ⃗out) = 0

∣∣ ξ⃗in]
⩽ sup

c0,c1,c2∈R
P[ξw1

ξw2
+ c1ξw1

+ c2ξw2
+ c0 = 0].

(15)

By the Combinatorial Nullstellensatz (or a direct verification), the 2-variable polynomial ξw1
ξw2

+ c1ξw1
+

c2ξw2
+ c0 cannot be identically zero on {0, 1}2, and hence the above supremum of probabilities is at most

1− p2.

Combining Equations (13), (14) and (15), we can bound the expression from (12) as

P[f(ξ⃗(p)) = 0] ⩽ P[Lu(ξ⃗in) ̸= ℓ] · (1− p) + P[Lu(ξ⃗in) = ℓ] · (1− p2)

⩽ (1−MP+(degG(u), p)) · (1− p) +MP+(degG(u), p) · (1− p2). ■

By the discussion after (11), for each m ⩾ 2 we have

MP+(m, p) = MP(m, p) ⩽ MP(2, p) = 2p(1− p) < 0.475. (16)

Since MP+(0, p) = 0 and MP+(1, p) = p = 0.388, we conclude that MP+(m, p) < 0.475 for every m ⩾ 0.
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Note that the vertices u,w1, w2 required in the statement of Claim 5.1 exist if and only if the complement of
G is not a union of cliques (equivalently, if G is not a complete multipartite graph). So, in this case Claim 5.1
yields the desired bound

P[f(ξ⃗(p)) = 0] ⩽ (1− 0.475) · (1− 0.388) + 0.475 · (1− 0.3882) < 0.725.

Therefore, we may assume that G is a complete multipartite graph.

Claim 5.2. Suppose that I is an independent set of G such that each vertex of I is adjacent to each vertex of
[s] \ I. Then,

P[f(ξ⃗(p)) = 0] ⩽ 1−
(
1−MP(|I|, p)

)(
1−MP+(s− |I|, p)

)
.

Proof of claim. The proof is similar to that of Claim 5.1 (and is, in fact, simpler). Denote J = [s] \ I, and let
LI =

∑
v∈I xv, LJ =

∑
v∈J xv. Then, we can write f as

f = ℓ+ LI(−ℓ+ LJ) + g,

for some polynomial g depending only on the variables xv with v ∈ J . Let ξ1, . . . , ξs be independent Ber(p)

random variables, and write ξ⃗I = (ξv)v∈I , ξ⃗J = (ξv)v∈J . Then, conditioning on the outcome of ξ⃗J , we have

P[f(ξ⃗I , ξ⃗J) = 0] = Eξ⃗J

[
Pξ⃗I

[ℓ+ LI(ξ⃗I) · (−ℓ+ LJ(ξ⃗J)) + g(ξ⃗J) = 0 | ξ⃗J ]
]
. (17)

Note that if LJ(ξ⃗J) ̸= ℓ, then the inner conditional probability is always at most

sup
c∈R

Pξ⃗I
[LI(ξ⃗I) = c | ξ⃗J ] = MP(|I|, p).

On the other hand, since ℓ ̸= 0,

Pξ⃗J
[LJ(ξ⃗J) = ℓ] ⩽ MP+(|J |, p).

Therefore, we can bound the expression from (17) as

P[f(ξ⃗(p)) = 0] ⩽ P[LJ(ξ⃗J) ̸= ℓ] ·MP(|I|, p) + P[LJ(ξ⃗J) = ℓ]

⩽
(
1−MP+(|J |, p)

)
·MP(|I|, p) +MP+(|J |, p).

This gives the desired bound. ■

Suppose that G is a complete multipartite graph with a part I of size at least 2. Recalling (16), for every
m ⩾ 0 we have MP+(m, p) < 0.475, and for every m ⩾ 2 we have MP(m, p) < 0.475. Therefore, Claim 5.2
implies that in this case

P[f(ξ⃗(p)) = 0] ⩽ 1− (1− 0.475)(1− 0.475) < 0.725.

So, it remains to consider the case when G is a complete graph. In this case, for independent Ber(p) random
variables ξ1, . . . , ξs, we have

f(ξ1, . . . , ξs) = ℓ− ℓ · (ξ1 + . . .+ ξs) +
∑

1⩽i<j⩽s

ξiξj =
1

2
(ξ1 + . . .+ ξs − 2ℓ)(ξ1 + . . .+ ξs − 1).

Therefore, f(ξ1, . . . , ξs) = 0 if and only if ξ1 + . . .+ ξs ∈ {1, 2ℓ}, and it suffices to verify the following claim.

Claim 5.3. For any nonzero real numbers ℓ1, ℓ2, we have P[ξ1 + . . .+ ξs ∈ {ℓ1, ℓ2}] < 0.713.

Proof of claim. The proof is a routine calculation. Namely, the cases s = 1, 2, 3 can be checked directly, and
for s ⩾ 4 we have

P[ξ1 + . . .+ ξs ∈ {ℓ1, ℓ2}] ⩽ 2 ·MP(s, p) ⩽ 2 ·MP(4, p) < 0.713. ■

□
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6. ℓ is close to zero

In this section, we complete the proofs of Theorems 1.1 and 1.5 by dealing with the case when ℓ = O(1). First,
in Lemma 6.1, we reduce our problem to a question about polynomials of Bernoulli random variables. Then,
in Theorem 6.4, we further reduce this question to a finite verification.

It turns out that when ℓ = O(1) there is essentially no difference (for our edge-inducibility problem) between
considering a uniformly random k-subset of vertices X and just including each vertex independently with
probability k/n. Indeed, intuitively, if the host graph G has very few edges, then most of its vertices are
isolated and we can use Theorem 4.1 to pass from the slice to independent Bernoulli random variables. On the
other hand, if G has at least a moderate number of edges, then the probability that e(G[X]) = ℓ is automatically
small. The following lemma makes this intuition precise.

Lemma 6.1. Fix any p ∈ (0, 1/2]. Then, for each ℓ such that 1 ⩽ ℓ ⩽ k,

ind(k, ℓ) ⩽ sup
f

P[f(ξ⃗(p)) = ℓ] +Op

(
ℓ log k + log2 k

k

)
,

where the supremum is over all homogeneous multilinear quadratic polynomials f with coefficients in {0, 1}.

Proof. Set R = 1/p, and assume that k is sufficiently large in terms of R. It is sufficient to obtain an upper
bound on N(n, k, ℓ)/

(
n
k

)
for n = Rk. So, we need to prove that for every graph G on n = Rk vertices and for

a random k-subset X ⊆ V (G), we have

P[e(G[X]) = ℓ] ⩽ sup
f

P[f(ξ⃗(p)) = ℓ] +OR

(
ℓ log k + log2 k

k

)
. (18)

First, we clean up the graph by removing edges adjacent to high-degree vertices. Specifically, define

U = {v ∈ V (G) : degG(v) ⩾ 2Rℓ+ 26R2 log k},
and let G′ be the graph obtained from G by deleting all edges adjacent to vertices of U . Then, for each u ∈ U ,

E
[
|X ∩NG(u)|

]
=

degG(u)

R
⩾ ℓ+

degG(u)

2R
.

Hence, by our concentration inequality on the slice (Proposition 2.2),

P
[
|X ∩NG(u)| ⩽ ℓ

]
⩽ 2 exp

(
− (degG(u)/(2R))2

8 degG(u)

)
⩽ 2 exp(−2 log k) ⩽

2

k2
.

Taking the union bound over u ∈ U , we conclude that with probability at least 1− 2n/k2, for every u ∈ U we
have |X∩NG(u)| > ℓ. However, in this case, if e(G[X]) = ℓ then X must be disjoint from U , and, in particular,
we must have G[X] = G′[X]. Therefore,

P[e(G[X]) = ℓ] ⩽ P[e(G′[X]) = ℓ] + 2n/k2 = P[e(G′[X]) = ℓ] + 2R/k,

and hence it suffices to prove (18) with G′ in place of G.

We can interpret e(G′[X]) as a homogeneous quadratic polynomial of σ⃗ ∼ Slice(n, k):

e(G′[X]) = fG′(σ⃗), where fG′((σv)v∈V (G′)) =
∑

uv∈E(G′)

σuσv.

Case 1: e(G′) ⩽ 28R4 log k · (2Rℓ + 26R2 log k) = OR(ℓ log k + log2 k). Since fG′ depends on at most 2e(G′)
variables, by Theorem 4.1 we conclude that

P[fG′(σ⃗) = ℓ] ⩽ P[fG′(ξ⃗(p)) = ℓ] + max(2e(G′)/n, 3/k) = P[fG′(ξ⃗(p)) = ℓ] +OR

(
ℓ log k + log2 k

k

)
,

which gives the desired bound.
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Case 2: e(G′) > 28R4 log k · (2Rℓ+ 26R2 log k). Since we have cleaned up high-degree vertices, each vertex of
G′ has degree at most 2Rℓ+ 26R2 log k. Then,

∑

v∈V (G′)

degG′(v)2 ⩽ (2Rℓ+ 26R2 log k) · 2e(G′).

The expected number of edges in G′[X] satisfies

E[e(G′[X])] =
k(k − 1)

n(n− 1)
· e(G′) ⩾

e(G′)

2R2
⩾ ℓ+

e(G′)

4R2
.

Applying our concentration inequality on the slice (Proposition 2.2) with av = degG′(v), we conclude that

P[e(G′[X]) = ℓ] ⩽ 2 exp


− (e(G′)/(4R2))2

8
∑

v∈V (G′)

degG′(v)2


 ⩽ 2 exp

(
− e(G′)

28R4(2Rℓ+ 26R2 log k)

)

⩽ 2 exp(− log k) ⩽ 2/k.

This bound is certainly smaller than the one required in (18), thus we are done. □

Recall from (11) that for each m ∈ N and p ∈ [0, 1], we write

MP(m, p) = max
0⩽m0⩽m

P[Bin(m, p) = m0] = max
0⩽m0⩽m

(
m

m0

)
pm0(1− p)m−m0 .

The following lemma states that MP(m, p) is also an upper bound on the point concentration probability for
a general class of polynomials.

Lemma 6.2. Let f be a polynomial with non-negative coefficients, which has at least m nonzero linear terms.
Then, for each ℓ ∈ R,

P[f(ξ⃗(p)) = ℓ] ⩽ MP(m, p).

Proof. Let f be a polynomial in s variables x1, . . . , xs, and let ξ1, . . . , ξs be independent Ber(p) random vari-
ables. Then, we need to prove that

P[f(ξ1, . . . , ξs) = ℓ] ⩽ MP(m, p).

Without loss of generality, suppose that monomials x1, . . . , xm appear in f with positive coefficients. Condi-
tioning on the outcomes of (ξi)i>m, we may assume that s = m.

For a set A ⊆ [m], let 1A ∈ {0, 1}m denote its characteristic vector. Note that the polynomial f is strictly
increasing (on {0, 1}m) with respect to each of its m variables. Therefore, the family A of subsets of [m] defined
as

A = {A ⊆ [m] : f(1A) = ℓ}
is an antichain. Using the BLYM inequality (Proposition 4.4), we conclude that

P[f(ξ1, . . . , ξm) = ℓ] = P[{i ∈ [m] : ξi = 1} ∈ A] =
∑

A∈A
p|A|(1− p)m−|A|

⩽ max
A∈A

(
m

|A|

)
p|A|(1− p)m−|A| ⩽ MP(m, p).

This completes the proof. □

Now, we explain how to obtain bounds on ind(k, ℓ) (for ℓ = O(1)) by a finite computation.

Definition 6.3. Let Gs be the set of multilinear quadratic polynomials in s variables with coefficients in {0, 1}
and no constant term, and let G =

⊔
s⩾1 Gs. Next, let G(m) ⊆ G consist of polynomials g ∈ G satisfying the

following condition: for every variable xi of g, the polynomial gi obtained from g by the substitution xi = 1
does not belong to G and has fewer than m nonzero linear terms.
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Theorem 6.4. Consider a polynomial f ∈ G. Then, for each m, ℓ ∈ N and p ∈ [0, 1], we have

P[f(ξ⃗(p)) = ℓ] ⩽ max

(
MP(m, p), max

g∈G(m)
P[g(ξ⃗(p)) = ℓ]

)
. (19)

Importantly, G(m) is a finite set: as we will show in Lemma 6.5, every element of G(m) is a polynomial in at
most (m + 1)2/4 variables. Therefore, Theorem 6.4 provides us with a computational approach to obtaining

upper bounds on the concentration probability P[f(ξ⃗(p)) = ℓ] for an arbitrary f ∈ G. Indeed, after fixing
certain m ∈ N, the right hand side of (19) becomes a finite and relatively explicit expression, which can be
then optimised over p ∈ [0, 1]. Taking larger m here should yield better bounds, but, as the size of G(m) grows,
this increases the amount of computation needed.

Proof of Theorem 6.4. We prove the statement for every f ∈ Gs by induction on s. If f lies in G(m), then

we have nothing to prove. Otherwise, there exists a variable xi such that the polynomial f
(1)
i obtained from f

by the substitution xi = 1 either belongs to G or has at least m nonzero linear terms.

Note that the polynomial f
(0)
i obtained from f by the substitution xi = 0 always belongs to Gs−1 (indeed, it

depends on at most s− 1 variables, and the set of its nonzero coefficients is a subset of the nonzero coefficients
of f). Thus, by the induction hypothesis, we have

P[f (0)
i (ξ⃗(p)) = ℓ] ⩽ max

(
MP(m, p), max

g∈G(m)
P[g(ξ⃗(p)) = ℓ]

)
.

Next, we observe that an analogous bound holds for f
(1)
i as well. Indeed, if f

(1)
i belongs to Gs−1, then we can

again use the induction hypothesis. Otherwise, it has at least m nonzero linear terms. While its coefficients

do not necessarily lie in {0, 1}, they are still non-negative. Hence, by Lemma 6.2, we have P[f (1)
i (ξ⃗(p)) = ℓ] ⩽

MP(m, p). In both cases, we can conclude that

P[f (1)
i (ξ⃗(p)) = ℓ] ⩽ max

(
MP(m, p), max

g∈G(m)
P[g(ξ⃗(p)) = ℓ]

)
.

This completes the proof, since

P[f(ξ⃗(p)) = ℓ] = p · P[f (1)
i (ξ⃗(p)) = ℓ] + (1− p) · P[f (0)

i (ξ⃗(p)) = ℓ]. □

Lemma 6.5. Every g ∈ G(m) is a polynomial in at most (m + 1)2/4 variables (that is, g ∈ Gs for some
s ⩽ (m+ 1)2/4).

Proof. Let g be a polynomial in s variables x1, . . . , xs. Recall that, by definition of G(m), for each variable
i ∈ [s], the polynomial gi obtained from g by the substitution xi = 1

• does not belong to G (that is, it either has a nonzero constant term, or has a coefficient at least 2), and

• has at most m− 1 nonzero linear terms.

Let

L = {i ∈ [s] : g has a term xi}, Q = [s] \ L.
Note that for each j ∈ Q, there exists i ∈ L such that g contains a term xixj : otherwise, we would have gj ∈ G.
On the other hand, for each i ∈ L there are at most m − |L| indices j ∈ Q such that g contains a term xixj :
otherwise, gi would have at least (m − |L| + 1) + (|L| − 1) = m nonzero linear terms. Together, these two
statements imply that |Q| ⩽ |L| · (m− |L|), and thus

s = |L|+ |Q| ⩽ |L| · (m− |L|+ 1) ⩽
(m+ 1)2

4
. □

Next, we deduce Propositions 6.6 and 6.8, which will be used to complete the proofs of Theorems 1.1 and 1.5,
respectively.
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Proposition 6.6. There exists p ∈ (0, 1/2], such that for every polynomial f ∈ G and every integer ℓ ⩾ 2 we
have

P[f(ξ⃗(p)) = ℓ] < 0.3293 < 0.33.

Proof. By Theorem 6.4, it is sufficient to find m ∈ N and p ∈ (0, 1/2] such that

max

(
MP(m, p), max

g∈G(m),ℓ⩾2
P[g(ξ⃗(p)) = ℓ]

)
< 0.3293.

We take m = 5 and p = 1/3. Note that G(5) is relatively small: by Lemma 6.5, it contains only polynomials in
at most 9 variables such that (by definition) each variable appears in at most 4 of its quadratic terms. For each
of these finitely many polynomials, one needs to check only finitely many values of ℓ. Therefore, calculation of

max
g∈G(5),ℓ⩾2

P[g(ξ⃗(p)) = ℓ] is within reach of a computer program2. This way, we obtain that

MP(5, p) = max
g∈G(5),ℓ⩾2

P[g(ξ⃗(p)) = ℓ] = 0.3292... < 0.3293.

(the maximum is attained at ℓ = 2 and the polynomial (1 + x1)(x2 + x3 + x4 + x5) ∈ G(5)). This completes
the proof. □

Remark 6.7. The table below depicts, for m = 2, 3, 4, 5, the sizes of G(m) (after identifying polynomials that
can be obtained from each other by a permutation of variables), the optimal value of p one needs to take in

the above argument, and the resulting bound on sup
f∈G,ℓ⩾2

P[f(ξ⃗(p)) = ℓ].

m 2 3 4 5
|G(m)/ ∼ | 4 16 99 1653
optimal value of p 2/3 3 0.5 0.4 1/3

bound on sup
f∈G,ℓ⩾2

P[f(ξ⃗(p)) = ℓ] 0.444... 0.375 0.3456 0.3292...

It is plausible that this bound could be improved by considering larger values of m, perhaps with a more
optimised search algorithm or greater computational resources. However, it is not clear whether this approach
can yield the optimal bound of 2/e2 + o(1) for ℓ = 2 and p → 0.

Proposition 6.8. There exists p ∈ (0, 1/2] such that for every polynomial f ∈ G and every integer ℓ ⩾ 60 we
have

P[f(ξ⃗(p)) = ℓ] < 0.27 < 2/e2.

Proof. By Theorem 6.4, it is sufficient to find m ∈ N and p ∈ (0, 1/2] such that

max

(
MP(m, p), max

g∈G(m),ℓ⩾2
P[g(ξ⃗(p)) = ℓ]

)
< 0.27.

We take m = 8 and p = 0.426. A simple calculation shows that MP(8, 0.426) < 0.27.

Now consider a polynomial g ∈ G(8). By Lemma 6.5, it is a polynomial in at most ⌊(m+1)2/4⌋ = 20 variables.
Also, by the definition of G(m), it has at most m = 8 linear terms, and each of its variables appears in at most
m− 1 = 7 quadratic terms. Therefore,

E[g(ξ⃗(p))] ⩽ p2 · 7 · 20
2

+ p · 8 < 16.112.

Since ℓ ⩾ 60, by Markov’s inequality we conclude that

P[g(ξ⃗(p)) = ℓ] ⩽
1

ℓ
E[g(ξ⃗(p))] < 0.27. □

2Our (quite straightforward) code is available in the ancillary files of the arXiv submission.
3Some results in this section are stated only for p ⩽ 1/2, but this assumption is not necessary and can be easily removed.
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Finally, we can formally deduce Theorems 1.1 and 1.5 from Theorems 1.2, 1.3 and 1.4, Lemma 6.1, and Propo-
sitions 6.6 and 6.8.

Proofs of Theorems 1.1 and 1.5. For Theorem 1.5, we fix an arbitrary ε > 0; for Theorem 1.1, we set
ε = 0.01. First, we prove that ind(k, ℓ) ⩽ 2/e2 + ε when C < ℓ ⩽ 1

2

(
k
2

)
(for some absolute constant C),

ℓ ̸= k − 1, and k is sufficiently large in terms of ε.

• When ℓ > C1k (for a certain absolute constant C1) the desired bound follows from Theorem 1.2;

• When ℓ ⩽ C1k and does not lie in an interval of the form [ak − C, ak + C] for some positive integer
a ⩾ 1 (for a certain absolute constant C), the bound follows from Theorem 1.3;

• When ℓ lies in some interval [ak−C, ak+C] with 1 ⩽ a ⩽ C1+1, the bound follows from Theorem 1.4
(here we use that ℓ ̸= k − 1).

It remains to deal with the case when ℓ ⩽ C. By Lemma 6.1, for every p ∈ (0, 1/2] we have

ind(k, ℓ) ⩽ sup
f∈G

P[f(ξ⃗(p)) = ℓ] +Op

(
ℓ log k + log2 k

k

)
.

Note that for a fixed p and ℓ ⩽ C, the second term tends to zero as k → ∞. Proposition 6.6 states that there

exists p ∈ (0, 1/2] such that for every f ∈ G and ℓ ⩾ 2, we have P[f(ξ⃗(p)) = ℓ] < 0.3293 < 0.33. This implies
Theorem 1.1. Similarly, Proposition 6.8 states that there exists p ∈ (0, 1/2] such that for every f ∈ G and

ℓ ⩾ 60, we have P[f(ξ⃗(p)) = ℓ] < 0.27 < 2/e2. This implies Theorem 1.5. □

7. Hypergraphs

In this section, we study edge-inducibilities in hypergraphs and prove Theorem 1.6. In fact, we deduce it from
a structural result about polynomials on the slice (Theorem 7.2 below). Roughly speaking, this result states
that if a polynomial on the slice is poorly anticoncentrated, then one can make it constant by fixing values of
a small number of its variables.

Definition 7.1. We say that a multilinear polynomial f in n variables of degree at most r is constantly ℓ on
Slice(n, k) if for every 0 ⩽ d ⩽ r, all

(
n
d

)
coefficients of its degree-d monomials are equal to some ℓd ∈ R, and

r∑

d=0

ℓd

(
k

d

)
= ℓ.

In particular, this implies that f(x⃗) = ℓ for every x⃗ ∈ Slice(n, k).

For a polynomial f in n variables and disjoint sets Y0, Y1 ⊆ [n], let fY0,Y1
denote the polynomial obtained from

f by setting all variables in Y0 to zero and all variables in Y1 to one. Note that if f is constantly ℓ on Slice(n, k)
(and |Y1| ⩽ k), then fY0,Y1 is also constantly ℓ on Slice(n− |Y0| − |Y1|, k − |Y1|).

Theorem 7.2. Consider r, q, R, n, k ∈ N and K0, ε > 0 such that 3k −K0 ⩽ n ⩽ Rk +K0, and let f be an
n-variable multilinear polynomial of degree at most r with coefficients in Z ∩ [−q, q]. Then, for each ℓ ∈ R, at
least one of the following holds:

1. P[f(σ⃗) = ℓ] ⩽ ε, where σ⃗ ∼ Slice(n, k);

2. There exist C ′ = C ′(ε, r, q, R,K0) and disjoint sets Y0, Y1 ⊆ [n] of size at most C ′, such that fY0,Y1 is
constantly ℓ on Slice(n− |Y0| − |Y1|, k − |Y1|) in the sense of Definition 7.1.

The proof of Theorem 7.2 relies on the following two propositions. Proposition 7.3 extends [11, Lemma 5.1]
(stated in this paper as Theorem 2.6) to sparse polynomials on the slice with possibly negative coefficients.
Proposition 7.4 provides a suitable analogue of it for dense polynomials on the slice, generalising [11, Lemma
4.1].
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Proposition 7.3. For r, q ∈ N, there exists δ = δ(r, q) > 0 such that the following holds. Consider R, k,m, n ∈
N such that 2k ⩽ n ⩽ Rk, and let f be an n-variable multilinear polynomial of degree at most r with coefficients
in Z∩[−q, q]. Suppose that νr(f) ⩾ m and f has at most δ

(
n
r

)
nonzero degree-r terms. Then, for σ⃗ ∼ Slice(n, k),

sup
ℓ∈R

P[f(σ⃗) = ℓ] ≲r,q,R max
r′⩽r

LOr′(Ωr,q,R(m)).

Proposition 7.4. Consider r, q, R, n, k ∈ N and δ > 0 such that 2k ⩽ n ⩽ Rk. Let f be an n-variable
multilinear polynomial of degree at most r with coefficients in Z∩ [−q, q], such that no (1− δ)

(
n
r

)
of its degree-r

coefficients are equal to the same value. Then, for σ⃗ ∼ Slice(n, k),

sup
ℓ∈R

P[f(σ⃗) = ℓ] ≲r,q,R max
r′⩽r

LOr′(Ωr,q,R(δk)).

Our proofs of Propositions 7.3 and 7.4 are minor adaptations of the arguments in [11], and are deferred to
Appendix A.

Proof of Theorem 7.2 assuming Propositions 7.3 and 7.4. Our proof goes by induction on r (in the
base case r = 0, the polynomial is clearly constant on the slice). We may assume that k is sufficiently large in
terms of ε, r, q, R,K0 (otherwise, the statement holds trivially). In particular, we assume that 2k ⩽ n ⩽ (R+1)k.

Let δ = δ(r, q) > 0 be the constant from Proposition 7.3.

Case 1: no (1− δ)
(
n
r

)
of the degree-r coefficients of f are equal to the same value. Recall from the discussion

after Definition 2.5 that for every r′ ⩽ r and N ⩾ 1

LOr′(N) ⩽ (logN)Or(1)/
√
N ≲r N−1/3. (20)

Then, by Proposition 7.4, we have

P[f(σ⃗) = ℓ] ≲r,q,R max
r′⩽r

LOr′(Ωr,q,R(δk)) ≲r,q,R (δk)−1/3.

Since k is sufficiently large in terms of ε, r, q, R, we conclude that P[f(σ⃗) = ℓ] ⩽ ε. This completes the proof in
this case.

Case 2: (1 − δ)
(
n
r

)
degree-r coefficients of f are equal to some ℓr ∈ Z ∩ [−q, q]. Then, the polynomial f∗

obtained from f by subtracting ℓr from each of its degree-r coefficients, has at most δ
(
n
r

)
nonzero degree-r

terms. Note that the coefficients of f∗ lie in Z ∩ [−2q, 2q], and denote ℓ∗ = ℓ − ℓr
(
k
r

)
. By Proposition 7.3

(combined with (20)), we conclude that

P[f(σ⃗) = ℓ] = P[f∗(σ⃗) = ℓ∗] ≲r,q,R max
r′⩽r

LOr′(Ωr,q,R(νr(f
∗))) ≲r,q,R (νr(f

∗))−1/3.

Thus, there exists a constant C0 = C0(r, q, R, ε) such that if νr(f
∗) ⩾ C0/r, then P[f(σ⃗) = ℓ] ⩽ ε. So, we may

assume that νr(f
∗) < C0/r. In this case, there exists a set U ⊆ [n] of size at most C0 such that every degree-r

monomial of f∗ contains at least one variable from U .

Consider a partition U = U0 ⊔ U1. Recall that f∗
U0,U1

denotes the polynomial obtained from f∗ by setting
all variables in U0 to zero and all variables in U1 to one. Note that f∗

U0,U1
has degree at most r − 1, that its

coefficients lie in Z ∩ [−2qrCr
0 , 2qrC

r
0 ], and that

3(k − |U1|)−K0 − C0 ⩽ n− |U0| − |U1| ⩽ R(k − |U1|) +K0 +RC0.

Therefore, we can apply the induction hypothesis to f∗
U0,U1

and ℓ∗. Suppose that statement 2 holds for f∗
U0,U1

and ℓ∗: that is, there exist disjoint sets Y ′
0 , Y

′
1 ⊆ [n] \ U such that f∗

U0∪Y ′
0 ,U1∪Y ′

1
is constantly ℓ∗ on the

corresponding slice. Let Y0 = U0 ∪ Y ′
0 and Y1 = U1 ∪ Y ′

1 . Clearly, f − f∗ is constantly ℓr
(
k
r

)
on Slice(n, k), and

hence (f−f∗)Y0,Y1
is constantly ℓr

(
k
r

)
on Slice(n−|Y0|−|Y1|, k−|Y1|). Therefore, fY0,Y1

= f∗
Y0,Y1

+(f−f∗)Y0,Y1

is constantly ℓ = ℓ∗ + ℓr
(
k
r

)
on Slice(n− |Y0| − |Y1|, k− |Y1|). This means that statement 2 also holds for f and

ℓ.
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So, we may assume that, for every partition U = U0 ⊔ U1, statement 1 of Theorem 7.2 holds for f∗
U0,U1

and

ℓ∗. In this case, we claim that statement 1 holds for f and ℓ as well. Indeed, let U ′
0 = {i ∈ U : σi = 0} and

U ′
1 = {i ∈ U : σi = 1} be the random partition of U induced by σ⃗ ∼ Slice(n, k). Then, conditioning on the

outcome of U ′
0 and U ′

1, we have

P[f(σ⃗) = ℓ] = P[f∗(σ⃗) = ℓ∗] = EU ′
0,U

′
1

[
P[f∗

U ′
0,U

′
1
(σ⃗) = ℓ∗ | U ′

0, U
′
1]
]
⩽ EU ′

0,U
′
1
[ε] = ε.

This completes the proof. □

Proof of Theorem 1.6. We may assume that k is sufficiently large in terms of ε, r (otherwise, the statement
holds trivially). Recall that indr(k, ℓ) > ε is the limit of a non-increasing sequence Nr(n, k, ℓ)/

(
n
k

)
as n → ∞.

In particular, Nr(n, k, ℓ) > ε
(
n
k

)
for n = 3k, and hence there exists an r-uniform hypergraph on n = 3k vertices

such that a uniformly random k-subset of its vertices induces exactly ℓ edges with probability greater than ε.
Interpreting this hypergraph as a homogeneous multilinear degree-r polynomial f with coefficients in {0, 1},
we have P[f(σ⃗) = ℓ] > ε for σ⃗ ∼ Slice(n, k).

Therefore, by Theorem 7.2 (applied with q = 1, R = 3), there exist C ′ = C ′(ε, r) and disjoint sets Y0, Y1 ⊆ [n]
of size at most C ′ such that the polynomial fY0,Y1

(obtained from f by setting all variables in Y0 to zero and
all variables in Y1 to one) is constantly ℓ on Slice(n−|Y0|− |Y1|, k−|Y1|). This means that for every 0 ⩽ d ⩽ r,
all degree-d coefficients of fY0,Y1 are equal to some ℓ′d ∈ R, and

ℓ =

r∑

d=0

ℓ′d

(
k − |Y1|

d

)
. (21)

Furthermore, since f is a homogeneous multilinear polynomial of degree r with coefficients in {0, 1}, the
coefficients of fY0,Y1

are non-negative integers at most (C ′)r. Hence, ℓ′0, . . . , ℓ
′
r ∈ {0, . . . , (C ′)r}. Then, using

the following elementary identities (valid for all integers a, b, c ⩾ 0, a ⩾ b+ c)
(
a+ c

b

)
=

b∑

i=0

(
c

i

)(
a

b− i

)
,

(
a− c

b

)
=

b∑

i=0

(−1)i
(
c+ i− 1

i

)(
a

b− i

)
,

we can rewrite (21) as

ℓ =

r∑

d=0

ℓr−d

(
k − (r − d)

d

)
=

r∑

d=0

ℓd

(
k − d

r − d

)
,

where ℓ0, . . . , ℓr ∈ Z ∩ [−C,C] and C = r((C ′ + r)C ′)r. Since 0 ⩽ ℓ ⩽
(
k
r

)
and k is sufficiently large in terms

of C, r, we must have ℓ0 ∈ {0, 1}. This completes the proof. □

8. Concluding remarks

We have proved a number of results going beyond the edge-statistics theorem, but there is still much scope for
further research.

8.1. Edge-statistics for set systems. Recall that indr(k, ℓ) is bounded by the maximum probability, over
r-uniform hypergraphs on n vertices, that a uniformly random k-subset of vertices induces exactly ℓ edges.
When k is sufficiently large in terms of r, ℓ, and n/k, it is essentially equivalent to consider a set obtained by
including each vertex independently with probability k/n (see Lemma 6.1 for a precise statement in the case
r = 2). Motivated by this, we suggest studying the following variant of edge-inducibilities for independent
samples from set systems of unbounded uniformity: for an integer ℓ and p ∈ (0, 1), we define

ind∗(ℓ, p) = sup
A,B

P[#{A ∈ A : A ⊆ Bp} = ℓ], (22)

where the supremum is over all finite sets B and families of non-empty subsets A ⊆ 2B , and Bp denotes a
p-random subset of B (including each element with probability p independently). A standard subsampling
argument shows that ind∗(ℓ, p) is non-decreasing in p, and thus we can further define

ind∗(ℓ) = lim
p→0

ind∗(ℓ, p).
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Equivalently, one can interpret ind∗(ℓ, p) as the maximum probability that the value of a multilinear polynomial
(with coefficients in {0, 1} and no constant term) at independent Ber(p) random variables equals ℓ. Using this
reformulation, we notice that ind∗(ℓ) ⩽ 1/e for every ℓ ⩾ 1 by a result of Fox, Kwan, and Sauermann [9,
Theorem 1.8]. While this bound is sharp for ℓ = 1, we conjecture that for ℓ ⩾ 2 it can be improved as follows.

Conjecture 8.1. For every ℓ ⩾ 2, we have ind∗(ℓ) ⩽ 2/e2.

If true, this would be sharp for ℓ ∈ {2, 3}, as one can take n = ⌈2/p⌉ and either A = {A ⊆ [n] : |A| = 1} or
A = {A ⊆ [n] : 1 ⩽ |A| ⩽ 2}.
Conjecture 8.1 should be viewed as an “arbitrary uniformity” analogue of Theorem 1.5 in the regime ℓ = O(1).
Indeed, Lemma 6.1 implies that for a fixed ℓ and k → ∞, we have ind(k, ℓ) ⩽ ind∗(ℓ) + o(1), and thus a
proof of this conjecture would (combined with the results of this paper) yield the optimal 2/e2 + o(1) bound
in Theorem 1.1. In fact, for this application, it would suffice to restrict the supremum in (22) to families
consisting of sets of size 2 (a full resolution would be useful for generalising our results to edge-inducibilities in
hypergraphs).

8.2. Tightness of Theorems 1.2 and 1.3: constructions and discussion. The bound in Theorem 1.2 is
tight (up to a multiplicative constant factor) when ℓ has the form a(k − a) for some integer a ∈ [0, k/2]. Jain,
Kwan, Mubayi, and Tran [11] conjectured that it can be improved for “generic” values of ℓ: more precisely,

that for a 1 − o(1) proportion (as k → ∞) of values of ℓ in the range [0,
(
k
2

)
], one has ind(k, ℓ) ⩽ k−1/2−δ for

some absolute constant δ > 0.

We suspect that a similar phenomenon might occur in the sparse regime. Namely, the following constructions
show that for every fixed a ⩾ 0, the bound in Theorem 1.3 is tight for Ωa(

√
k) different values of ℓ within the

interval [ak, (a+ 1)k].

• Suppose that 1 ⩽ ℓ0 ⩽ k −
√
k (thus, the ℓ

−1/4
0 term in the bound from Theorem 1.3 dominates), and

that ℓ0 =
(
m
2

)
− a2 for some m ∈ N. Let n be much larger than k, and consider the following graph G

on n vertices. Pick two disjoint sets of vertices A,M ⊆ [n] such that |A| = an/k, |M | = mn/k. Let G
contain all the edges between A and [n] \ A, as well as all the edges inside M . Then, one can check
that a random k-subset of its vertices contains exactly a vertices of A and exactly m vertices of M
with probability Θ(1/

√
(a+ 1)m). If both these events occur, then the subgraph induced by this set

has exactly a(k − a) +
(
m
2

)
= ak + ℓ0 edges. So,

ind(k, ak + ℓ0) ≳
1√

(a+ 1)m
≳a

1

ℓ
1/4
0

.

• Suppose that k−
√
k ⩽ ℓ0 ⩽ k−1 (thus, the (k−ℓ0)

−1/2 term dominates), and that k−ℓ0 = (a+1)(m+
a + 1) for some m ∈ N. Similarly, pick two disjoint sets A,M ⊆ [n], |A| = (a + 1)n/k, |M | = mn/k.

Let G contain all the edges between A and [n] \ (A ∪M). Then, with probability Θ(1/
√
(a+ 1)m), a

random k-subset of its vertices contains exactly a + 1 vertices of A and exactly m vertices of M , and
thus exactly (a+ 1)(k − (a+ 1)−m) = ak + ℓ0 edges. So,

ind(k, ak + ℓ0) ≳
1√

(a+ 1)m
≳

1

(k − ℓ0)1/2
.

In particular, ind(k, ℓ) ≳ ℓ−1/4 for each ℓ ⩽ k that is of the form ℓ =
(
m
2

)
. On the other hand, for an arbitrary

ℓ ⩽ k/2, the best construction we know comes from a decomposition ℓ =
(
m1

2

)
+ . . . +

(
ms

2

)
: one can take

the host graph to be a disjoint union of cliques of sizes m1n/k, . . . ,msn/k (and isolated vertices) to conclude
that ind(k, ℓ) ⩾ (

∏s
i=1 mi)

−1/2. However, for most values of ℓ, one can only find such a decomposition with∏s
i=1 mi = ℓ1+o(1). Therefore, we conjecture that for 1−o(1) proportion (as k → ∞) of values of ℓ in the range

[0, k], one has ind(k, ℓ) ⩽ ℓ−1/4−δ for some absolute constant δ > 0.
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Appendix A. Proofs of Propositions 7.3 and 7.4

Throughout this section, we denote the set of all subsets of some finite set X that have size r by
(
X
r

)
, and the

set of all subsets of X that have size at most r by
(
X
⩽r

)
. We also write α ≫ (β1, . . . , βM ) as a shorthand for “α

is sufficiently large in terms of β1, . . . , βM”.

First, we review a standard coupling that allows us to interpret a polynomial on the slice as a polynomial of
independent Rademacher random variables. Let f be a multilinear polynomial of σ⃗ ∼ Slice(n, k) of degree at
most r:

f(σ⃗) =
∑

W∈([n]
⩽r)

f̂(W )σ⃗W .

Let v⃗ = (v1(−1), v1(1), . . . , vk(−1), vk(1)) be a uniformly random sequence of 2k distinct elements of [n], and

let ξ⃗ = (ξ1, . . . , ξk) be a sequence of independent Rademacher random variables. Then {v1(ξ1), . . . , vk(ξk)} is

a uniformly random k-subset of [n]. Interpreting σ⃗ ∼ Slice(n, k) as a function of v⃗ and ξ⃗, we can rewrite f(σ⃗)

as a polynomial of ξ⃗ with coefficients depending on v⃗. Specifically, a calculation identical to [11, Lemma 3.4]
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shows that

f(σ⃗) =
∑

I∈([k]
⩽r)

Av⃗(I)ξ⃗
I , where Av⃗(I) =

∑

W∈Wv⃗(I)

2−|W |(−1)|W∩{vi(−1):i∈I}|f̂(W ), (23)

and Wv⃗(I) is the family of subsets of {v1(−1), v1(1), . . . , vk(−1), vk(1)} of size at most r containing exactly one
of vi(−1) and vi(1) for each i ∈ I. We further decompose Av⃗(I) as A

=r
v⃗ (I) +A<r

v⃗ (I), where

A=r
v⃗ (I) = 2−r

∑

W∈Wv⃗(I)
|W |=r

(−1)|W∩{vi(−1):i∈I}|f̂(W ), A<r
v⃗ (I) =

∑

W∈Wv⃗(I)
|W |⩽r−1

2−|W |(−1)|W∩{vi(−1):i∈I}|f̂(W ). (24)

Note that for each s ∈ [r] with s ⩾ |I|, Wv⃗(I) contains at most 2s(2k)s−|I| sets of size s. Therefore, if the

coefficients of f satisfy |f̂(W )| ⩽ q for each W ∈
(
[n]
⩽r

)
, then for every I ∈

(
[k]
⩽r

)
we have

|A=r
v⃗ (I)| ≲r qkr−|I|, |A<r

v⃗ (I)| ≲r qkr−|I|−1. (25)

We also record the following simple corollary of our concentration inequality on the slice (Proposition 2.2).

Proposition A.1. Consider r,R, n, k0 ∈ N and δ > 0 such that k0 ⩽ n ⩽ Rk0. Let H be an r-uniform
hypergraph on n vertices with δ

(
n
r

)
edges, and let U be a uniformly random k0-subset of [n]. Then, with

probability 1 − exp(−Ωr,R(δk0)), the number of edges in the subhypergraph of H induced by the vertices of U

lies in the interval [ δ2
(
k0

r

)
, 3δ

2

(
k0

r

)
].

Proof. Note that the number of edges in the subhypergraph of H induced by U can be interpreted as a
degree-r polynomial on Slice(n, k0), and its expected value is δ

(
k0

r

)
. So, we can apply Proposition 2.2 with

av = |{S ∈ E(H) : v ∈ S}|. Since

∑

v∈V (H)

a2v ⩽


 ∑

v∈V (H)

av


 · max

v∈V (H)
av ⩽ r|E(H)| ·

(
n− 1

r − 1

)
⩽ rδ

(
n

r

)(
n− 1

r − 1

)
,

we conclude that

P

[
|{S ∈ E(H) : S ⊆ U}|(

k0

r

) /∈ [δ/2, 3δ/2]

]
⩽ 2 exp


−

(
δ
2

(
k0

r

))2

rδ
(
n
r

)(
n−1
r−1

)


 ⩽ exp(−Ωr,R(δk0)). □

Now we prove Proposition 7.3, which extends [11, Lemma 5.1] to polynomials with possibly negative coefficients.
The proof in [11] does not apply verbatim in this setting, but minor modifications suffice.

Proof of Proposition 7.3. We may assume that (k/m) ≫ (r, q, R) (otherwise, one can divide m by a large
enough constant depending on r, q, R).

Let v⃗ = (v1(−1), v1(1), . . . , vk(−1), vk(1)) be a uniformly random sequence of 2k distinct elements of [n]. Also,
let

v⃗(−1) = (v1(−1), . . . , vk(−1)), v⃗(1) = (v1(1), . . . , vk(1)),

U(−1) = {v1(−1), . . . , vk(−1)}, U(1) = {v1(1), . . . , vk(1)}, U = U(−1) ∪ U(1).

Let H be the r-uniform hypergraph on vertex set [n] such that E ⊆ [n] is an edge of H if and only if |E| = r

and f̂(E) ̸= 0. Since νr(f) ⩾ m, H has a matching of size m. Then, by [11, Lemma 5.2], the subhypergraph
of H induced by the vertices of v⃗(1) has a matching of size m′ = Ωr,R(m) with probability 1 − Or,R(1/m).
Condition on such an outcome of v⃗(1), and let E1, . . . , Em′ be the edges of this matching. Also, we condition
on the outcome of the set U(−1) (but not on its ordering v⃗(−1)).
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For a set S ⊆ U(1), let W (S) be a uniformly random set subject to the constraints S ⊆ W (S) ⊆ U and
|W (S)| = r, and define

E(S) = EW (S)[f̂(W (S))].

Let t ≫ r, and take δ = 1/(2qtr). So, by the assumption of the proposition, H has at most δ
(
n
r

)
edges. By

Proposition A.1 (applied with k0 = 2k), with probability 1−exp(−Ωr,q,R(k)), the subhypergraph of H induced

by the vertices of U has at most 3δ
2

(
2k
r

)
edges. From now on, we consider the case when this happens. Then,

|E(∅)| ⩽ q · 3δ
2

(
2k
r

)
(
2k
r

) < t−r,

and |E(Ei)| ⩾ 1 for every i ∈ [m′]. Therefore, for every i ∈ [m′], the minimal set Fi ⊆ Ei such that
|E(Fi)| ⩾ t|Fi|−r is non-empty. Let m′′ = ⌈m′/r⌉. Without loss of generality, we may assume that F1, . . . , Fm′′

have the same size s ∈ [r].

For every j ∈ [m′′], denote Ij = {i ∈ [k] : vi(1) ∈ Fj} and V⃗j = (vi(−1))i∈Ij . Also, let Av⃗(Ij) = A=r
v⃗ (Ij) +

A<r
v⃗ (Ij) be as in (23) and (24).

Claim A.2. With probability Ωr,t,q(1) over the choice of V⃗j , we have |Av⃗(Ij)| ≳r,t k
r−s.

Proof of claim. The choice of V⃗j uniquely determines the family of sets Wv⃗(Ij). By (24) and (25), we have

Av⃗(Ij) = A=r
v⃗ (Ij) +A<r

v⃗ (Ij) = 2−r
∑

S⊆Fj

(−1)s−|S|
∑

W ′∈Wv⃗(Ij)

|W ′|=r, W ′∩Fj=S

f̂(W ′) +Or(qk
r−s−1).

Note that a uniformly random set from the (random) family of sets {W ′ ∈ Wv⃗(Ij) : |W ′| = r,W ′ ∩ Fj = S}
has the same distribution as a uniformly random set W ′′ subject to the constraints S ⊆ W ′′ ⊆ U , |W ′′| = r
and W ′′∩Fj = S. Since 1−Or(1/k) proportion of sets satisfying the first two constraints also satisfy the third

one, the expected value of f̂(W ′′) is E(S) +Or(q/k). Therefore,

∑

W ′∈Wv⃗(Ij)

|W ′|=r
W ′∩Fj=S

f̂(W ′) = |{W ′ ∈ Wv⃗(Ij) : |W ′| = r, W ′∩Fj = S}| ·EW ′′ [f̂(W ′′)] =

(
2k − 2s

r − s

)
·E(S)+Or(qk

r−s−1).

By the choice of Fj , we have |E(Fj)| ⩾ ts−r, and |E(S)| ⩽ ts−r−1 for every S ⊊ Fj . Hence,

E[|Av⃗(Ij)|] ⩾ 2−r

(
2k − 2s

r − s

)
|E(Fj)| −

∑

S⊊Fj

|E(S)|


+Or(qk

r−s−1) ≳r,t k
r−s.

On the other hand, by (25) we have |Av⃗(Ij)| ≲r qkr−s. Therefore, |Av⃗(Ij)| ≳r,t k
r−s with probability Ωr,t,q(1).

■

By Claim A.2, for every j ∈ [m′′], there exists a family Fj of ordered s-tuples of elements of U(−1) with

|Fj | ≳r,t,q ks, such that if V⃗j falls into Fj , then |Av⃗(Ij)| ≳r,t kr−s. Then, by [11, Lemma 4.4] (proved via
a simple application of Chebyshev’s inequality), with probability 1 − Or,t,q(1/m

′′) over the choice of s-tuples

V⃗1, . . . , V⃗m′′ , we have V⃗j ∈ Fj (and thus |Av⃗(Ij)| ≳r,t k
r−s) for Ωr,t,q(m

′′) indices j ∈ [m′′].

We conclude that, with probability 1 − Or,t,q,R(1/m) − exp(−Ωr,q,R(k)) over the randomness of v⃗, the poly-

nomial
∑

I∈([k]
⩽r)

Av⃗(I)ξ⃗
I has Ωr,t,q,R(m) degree-s monomials involving disjoint sets of variables that appear

with coefficients of order kr−s (in absolute value). This puts us into the setting of the classical polynomial
Littlewood–Offord problem (cf. Definitions 2.4 and 2.5). Specifically, we apply [11, Corollary 2.5] to the

randomness of ξ⃗, and obtain that

P[f(σ⃗) = ℓ] ⩽ max
r′⩽r

LOr′(Ωr,t,q,R(m)) +Or,t,q,R(1/m) + exp(−Ωr,q,R(k)).
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Recall that k ⩾ n/R ⩾ m/R, and that LO1(N) = Θ(1/
√
N). Hence, the first summand dominates the other

ones, and this completes the proof. □

Next, we turn to the proof of Proposition 7.4. Jain, Kwan, Mubayi, and Tran [11, Lemma 4.1] proved it in the
special case when n = 2k and f is homogeneous of degree r with coefficients in {0, 1} (that is, when f comes
from an r-uniform hypergraph). We show how to extend their proof to our slightly more general setting.

Proof of Proposition 7.4. We may assume that (δk) ≫ (r, q, R) (otherwise, the desired bound holds triv-
ially). Also, we may assume that δ ⩽ 1/2. Let v⃗ = (v1(−1), v1(1), . . . , vk(−1), vk(1)) be a uniformly random
sequence of 2k distinct elements of [n]. Then, U = {v1(−1), v1(1), . . . , vk(−1), vk(1)} is a uniformly random
2k-subset of [n]. Let fU be the polynomial obtained from f by setting all variables outside U to zero.

Let S ⊆
(
[n]
r

)
be the largest family of sets such that |S| ⩽ 1

2

(
n
r

)
and f̂(S1) ̸= f̂(S2) for every S1 ∈ S,

S2 /∈ S. Since no (1− δ)
(
n
r

)
degree-r coefficients of f are equal to the same value, one can check that, in fact,

δ′ = |S|/
(
n
r

)
satisfies δ/2 ⩽ δ′ ⩽ 1/2 (an identical argument was employed in the proof of Proposition 2.3).

Applying Proposition A.1 (with k0 = 2k) to the hypergraph with the vertex set [n] and edge set S, we conclude
that, with probability 1− exp(−Ωr,R(δk)) over the choice of U ,

|{S ∈ S : S ⊆ U}|(
2k
r

) ∈ [δ′/2, 3δ′/2] ⊆ [δ/4, 1− δ/4].

Condition on such an outcome of the set U (but not on its ordering v⃗). Then, no (1 − δ/4)
(
2k
r

)
degree-r

coefficients of fU are equal to the same value. In a sense, this reduces the problem to the polynomial fU on
Slice(2k, k).

Let M = (
∑

W∈(Ur)
f̂(W ))/

(
2k
r

)
be the average of degree-r coefficients of fU (note that for every W ⊆ U we

have f̂(W ) = f̂U (W )). Consider the function g :
(
U
r

)
→ R defined by g(W ) = f̂(W ) − M , and note that∑

W∈(Ur)
g(W ) = 0. Also, since at least δ

4

(
2k
r

)
degree-r coefficients of fU differ from M by at least 1/2, we have

∥g∥1 =
∑

W∈(Ur)

|g(W )| ≳r δkr.

For each s ∈ [r], let Xs be the set of all sequences x⃗ = (x1(−1), x1(1), . . . , xs(−1), xs(1)) of 2s distinct elements
of U . For each x⃗ ∈ Xs, let W=r

x⃗ be the family of subsets of U of size r containing exactly one of xi(−1) and
xi(1) for each i ∈ [s]. As in [11, Lemma 4.3], we consider

Bs(g) =
∑

x⃗∈Xs

∣∣∣∣∣∣
∑

W∈W=r
x⃗

(−1)|W∩{x1(−1),...,xs(−1)}|g(W )

∣∣∣∣∣∣
,

bs(g) =
1

2k(2k − 1) . . . (2k − (2s− 1))

(
2k − 2s

r − s

)−1

Bs(g).

Then, [6, Lemma 9] implies that b1(g) + . . .+ br(g) ≳r (2k)−r∥g∥1, and hence there exists s ∈ [r] such that

Bs(g) ≳r kr+sbs(g) ≳r ks∥g∥1 ≳r δkr+s.

Since the value of Bs(g) is unaffected by replacing g with g +M , we conclude that

∑

x⃗∈Xs

∣∣∣∣∣∣
∑

W∈W=r
x⃗

(−1)|W∩{x1(−1),...,xs(−1)}|f̂(W )

∣∣∣∣∣∣
≳r δkr+s.
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The outer sum here has at most (2k)2s terms, and each of them is Or(qk
r−s). Therefore, there exists a subset

of sequences F ⊆ Xs, |F| ≳r,q δk2s such that for every x⃗ ∈ F ,
∣∣∣∣∣∣
∑

W∈W=r
x⃗

(−1)|W∩{x1(−1),...,xs(−1)}|f̂(W )

∣∣∣∣∣∣
≳r δkr−s. (26)

Recall that v⃗ = (v1(−1), v1(1), . . . , vk(−1), vk(1)) is a uniformly random ordering of the elements of U . For

every set I ∈
(
[k]
⩽r

)
, let Av⃗(I) = A=r

v⃗ (I)+A<r
v⃗ (I) be as in (23) and (24). Let m = ⌊k/s⌋ ≳r k. Consider disjoint

s-subsets I1, . . . , Im of [k] and corresponding subsequences of v⃗: namely, for each j ∈ [m], we denote

v⃗j = (vi1(−1), vi1(1), . . . , vis(−1), vis(1)), where Ij = {i1, . . . , is}.
By [11, Lemma 4.4], with probability 1−Or,q(1/(δm)) over the randomness of v⃗, for Ωr,q(δm) indices j ∈ [m] we
have v⃗j ∈ F . By (24) and (26), for every such index j we have |A=r

v⃗ (Ij)| ≳r,q δkr−s. Since |A<r
v⃗ (Ij)| ≲r qkr−s−1

by (25), we conclude that |Av⃗(Ij)| ≳r,q δkr−s as well.

So, with probability 1−Or,q(1/(δk))−exp(−Ωr,R(δk)) over the randomness of v⃗, the polynomial
∑

I∈([k]
⩽r)

Av⃗(I)ξ⃗
I

has Ωr,q(δk) degree-s monomials involving disjoint sets of variables that appear with coefficients of order kr−s

(in absolute value). This puts us into the setting of the classical polynomial Littlewood–Offord problem:

applying [11, Corollary 2.5] to the randomness of ξ⃗, we obtain that

P[f(σ⃗) = ℓ] ⩽ max
r′⩽r

LOr′(Ωr,q(δk)) +Or,q(1/(δk)) + exp(−Ωr,R(δk)).

The first summand dominates the other ones (because LO1(N) = Θ(1/
√
N)), and this completes the proof. □
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