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Abstract. Consider a bipartite quantum system, where Alice and Bob jointly possess a pure state |ψ⟩.
Using local quantum operations on their respective subsystems, and unlimited classical communication,
Alice and Bob may be able to transform |ψ⟩ into another state |ϕ⟩. Famously, Nielsen’s theorem [Phys.
Rev. Lett., 1999] provides a necessary and sufficient algebraic criterion for such a transformation to be
possible (namely, the local spectrum of |ϕ⟩ should majorise the local spectrum of |ψ⟩).

In the paper where Nielsen proved this theorem, he conjectured that in the limit of large dimension-
ality, for almost all pairs of states |ψ⟩, |ϕ⟩ (according to the natural unitary invariant measure) such a
transformation is not possible. That is to say, typical pairs of quantum states |ψ⟩, |ϕ⟩ are entangled in
fundamentally different ways, that cannot be converted to each other via local operations and classical
communication.

Via Nielsen’s theorem, this conjecture can be equivalently stated as a conjecture about majorisation
of spectra of random matrices from the so-called trace-normalised complex Wishart–Laguerre ensemble.
Concretely, letX and Y be independent n×m random matrices whose entries are i.i.d. standard complex
Gaussians; then Nielsen’s conjecture says that the probability that the spectrum of XX†/ tr(XX†)
majorises the spectrum of Y Y †/ tr(Y Y †) tends to zero as both n and m grow large. We prove this
conjecture, and we also confirm some related predictions of Cunden, Facchi, Florio and Gramegna
[J. Phys. A., 2020; Phys. Rev. A., 2021].

1. Introduction

Suppose a bipartite pure quantum state is distributed to two parties Alice and Bob. Imagine that Alice
and Bob then travel to distant labs; after this point, they may only perform quantum operations on their
own subsystem, though they are free to coordinate their operations via classical communication (e.g.,
they can share the results of any measurements). This paradigm is known as LOCC (local operations
with classical communication), and plays a fundamental role in quantum information theory. See the
Nielsen–Chuang monograph [24] for a general introduction to quantum information theory, and see the
survey of Chitambar, Leung, Mančinska, Ozols, and Winter [9] for a thorough survey on the LOCC
paradigm.

The LOCC paradigm naturally defines a partial order (called LOCC-convertibility or entanglement
transformation) on the set of bipartite pure states Cn ⊗Cm for any dimensions n,m ∈ N. Namely, for a
pair of states |ψ⟩, |ϕ⟩ ∈ Cn⊗Cm, we write |ψ⟩ → |ϕ⟩ (read “|ψ⟩ transforms to |ϕ⟩”) if and only if, starting
from the state |ψ⟩, it is possible for Alice and Bob to coordinate some sequence of local operations to
guarantee that they end up with the state |ϕ⟩.

In 1999, Nielsen [23] found a beautiful connection between LOCC-convertibility and the mathematical
theory of majorisation. For the precise statement, and more context, the reader should refer to [23] (and
Chapter 12.5.1 of Nielsen–Chuang [24]), but as a brief summary: although Alice and Bob share a pure
state |ψ⟩, Alice can interpret her subsystem as a mixed state (a statistical ensemble of pure states in Cn).
This mixed state can be described by a density operator ρψ = tr2(|ψ⟩⟨ψ|) (a Hermitian linear operator
Cn → Cn obtained via a partial trace, “tracing out” Bob’s subsystem). The eigenvalues of ρψ are all
nonnegative real numbers, summing to 11. Nielsen’s theorem is that LOCC-convertibility |ψ⟩ → |ϕ⟩ is
equivalent to the property that the spectrum of ρϕ majorises the spectrum of ρψ: the sum of the k
smallest2 eigenvalues of ρψ should be at most the sum of the k smallest eigenvalues of ρϕ, for all k ≤ n.

Vishesh Jain was partially supported by NSF CAREER award DMS-2237646. Matthew Kwan was supported by ERC
Starting Grant “RANDSTRUCT” No. 101076777. Marcus Michelen was supported in part by NSF grants DMS-2137623
and DMS-2246624.

1We could equally well have defined these eigenvalues by tracing out Alice’s subsystem, instead of Bob’s subsystem.
It is not hard to see that this choice only affects the number of zero eigenvalues; the nonzero eigenvalues do not actually
depend on which of the two subsystems we choose to trace out.

2Note that since the eigenvalues sum to 1, this is equivalent to the condition that the sum of the k largest eigenvalues
of ρψ is at most the sum of the k largest eigenvalues of ρϕ, for all k ≤ n.
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Nielsen’s theorem has a number of consequences. In particular, it lays bare the fact that (if n,m ≥ 3)
there are fundamentally different types of entanglement that cannot be LOCC-converted to each other:
there exists a pair of states |ψ⟩, |ϕ⟩ ∈ Cn ⊗ Cm such that |ψ⟩ ̸→ |ϕ⟩ and |ϕ⟩ ̸→ |ψ⟩. Nielsen conjectured
that this phenomenon is actually typical : if |ψ⟩, |ϕ⟩ are independent random states (both sampled from
the Haar measure, with respect to unitary transformations, on the unit sphere in Cn ⊗ Cm), then the
probability of the event |ψ⟩ → |ϕ⟩ tends to zero as n,m → ∞. This conjecture has remained unproved
for the last 25 years, though it is supported by strong numerical evidence (cf. the very convincing
computations of Cunden, Facchi, Florio and Gramegna [11]), and there are quite convincing heuristic
arguments for why it should be true (a brief heuristic argument was given by Nielsen [23], and another
heuristic argument via integral geometry was given by Życzkowski and Bengtsson [36]). Also, the infinite-
dimensional counterpart to Nielsen’s conjecture was proved by Clifton, Hepburn and Wüthrich [10].

The main purpose of this paper is to prove Nielsen’s conjecture. Due to Nielsen’s characterisation
of LOCC-convertibility in terms of majorisation, we can actually completely abandon the language of
quantum information theory: it was observed by Życzkowski and Sommers [37] that for a random pure
state |ψ⟩ ∈ Cn ⊗ Cm, the density operator ρψ can be interpreted as a random matrix sampled from the
trace-normalised complex Wishart–Laguerre ensemble, defined as follows.
Definition. For parameters n,m ∈ N, the complex Wishart–Laguerre ensemble is the distribution of
the random Hermitian matrix GG†, where “†” denotes Hermitian transpose, and G ∈ Cn×m is an
n×m matrix with independent complex standard Gaussian entries3. Moreover, by the trace-normalised
complex Wishart-Laguerre ensemble, we mean the distribution of M/ tr(M), where M is sampled from
the complex Wishart–Laguerre ensemble.

So, Nielsen’s conjecture is equivalent to the following theorem, which is the main result of this paper.
Theorem 1.1. Let A(1), A(2) ∈ Cn×n be independent samples from the trace-normalised complex Wishart-
Laguerre ensemble with parameters n,m. Let λ(1)1 ≥ · · · ≥ λ

(1)
n ≥ 0 and λ

(2)
1 ≥ · · · ≥ λ

(2)
n ≥ 0 be the

eigenvalues of A(1) and A(2), respectively. Then

P
[
λ
(1)
k + · · ·+ λ(1)n ≤ λ

(2)
k + · · ·+ λ(2)n for all k ≤ n

]
→ 0

as n,m→ ∞.
We discuss the proof approach for Theorem 1.1 in a bit more detail later in this introduction (Sec-

tion 1.3), but to give a very brief flavour: due to the so-called eigenvalue repulsion phenomenon, the
(complex) Wishart–Laguerre spectrum has only tiny fluctuations, and existing technology in random
matrix theory is not precise enough to describe the distributions of quantities of the form λk + · · ·+ λn.
So, instead of considering such quantities directly, we consider a sequence of convex test functions which
emphasise different parts of the spectrum (increasingly “focusing in” on the “edges” of the spectrum);
this defines a sequence of linear statistics with nearly independent fluctuations, for which we can derive
a multivariate central limit theorem. We can then take advantage of the relationship between convexity
and majorisation, together with some analytic and combinatorial estimates.
Remark. Our proof approach, as written, is not quantitative; we prove that the desired majorisation
probability converges to zero without proving any explicit bounds on this probability. In principle,
it may be possible to establish quantitative central limit theorems for the complex Wishart–Laguerre
spectrum, which would provide an explicit bound, though it seems that substantial new ideas would be
required to precisely characterise the asymptotic rate of decay of the majorisation probability (computer
experiments by Cunden, Facchi, Florio and Gramegna [11] indicate that the probability has order of
magnitude n−θ for some constant θ > 0, assuming that the ratio m/n is held constant).
Remark. We have only discussed LOCC-convertibility of bipartite quantum states, and it is natural to
also ask about multipartite states with more than two subsystems. The theory of LOCC-convertibility
becomes much more challenging in this general setting (in the tripartite case, a necessary and sufficient
condition is known [31], but it is rather complicated). However, our proof of Nielsen’s conjecture auto-
matically implies a similar result for any number of subsystems (e.g., if there are three subsystems, we
can simply view two of the subsystems as comprising a single larger subsystem to reduce to the bipartite
case; this only makes LOCC-convertibility more permissive).

In addition to Theorem 1.1, we also prove some other related results, which we describe next.

3There are two slightly different conventions for the definition of “complex standard Gaussian” (differing by a factor of√
2). Due to the trace-normalisation, the distinction is irrelevant, but for concreteness we use the normalisation that for

complex standard Gaussian X we have E[(ℜX)2 + (ℑX)2] = 1.
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1.1. The uniform measure on the simplex. For any possible outcome M of the trace-normalised
complex Wishart–Laguerre ensemble, the eigenvalues are nonnegative real numbers that sum to 1. That
is to say, the spectrum can be interpreted as a point in the (n− 1)-simplex

∆n−1 = {x⃗ ∈ [0,∞)n : x1 + · · ·+ xn = 1},
and Nielsen’s conjecture can be interpreted as a conjecture about majorisation of two independent random
points sampled from a particular probability distribution (defined in random-matrix-theoretic terms) on
∆n−1.

Of course, there are other interesting distributions on ∆n−1; perhaps the most natural (and most
tractable) such measure is the uniform measure on ∆n−1. Cunden, Facchi, Florio and Gramegna [12]
proved the natural analogue of Nielsen’s conjecture for this measure. Their proof was fundamentally
non-quantitative (it critically used Kolmogorov’s zero-one law), but based on numerical experiments and
heuristic comparison with persistence probabilities of random walks, they predicted that the majorisation
probability should decay “polynomially fast” (specifically, they predicted that the majorisation probability
should scale like n−θ for some positive constant θ ≈ 0.41). We are able to prove a bound of this shape
(though presumably not with an optimal value of θ), as follows.

Theorem 1.2. Let (X(1)
k )nk=1, (X

(2)
k )nk=1 be two independent uniform random vectors in ∆n−1, and de-

note by (λ
(1)
k )nk=1, (λ

(2)
k )nk=1 their decreasing rearrangements (i.e., the results of sorting (X

(1)
k )nk=1, (X

(2)
k )nk=1

in decreasing order). Then

P
[
λ
(1)
k + · · ·+ λ(1)n ≤ λ

(2)
k + · · ·+ λ(2)n for all k ≤ n

]
= O((n/ log n)−1/16).

As observed by Cunden, Facchi, Florio and Gramegna [12], this result actually has a quantum-
information-theoretic interpretation: in the same way that Nielsen’s conjecture studies the resource
of entanglement (i.e., the operations that can be made without introducing new entanglement into the
system), Theorem 1.2 can be interpreted as a theorem about the resource of coherence. We direct the
reader to [12], and the references therein, for more details.

1.2. Approximate LOCC-convertibility. So far, we have only been concerned about exact LOCC-
convertibility: we write |ψ⟩ → |ϕ⟩ if it is possible for Alice and Bob to orchestrate a sequence of local
quantum operations (with unlimited classical communication) which guarantee, with probability 1, that
|ψ⟩ will be converted to |ϕ⟩. It is natural to ask how the situation changes if we allow some probability
of failure.

Shortly after Nielsen’s 1999 paper, Vidal [34] found a generalisation of Nielsen’s theorem along these
lines. For bipartite states |ψ⟩, |ϕ⟩ ∈ Cn ⊗Cm, he proved that the maximum possible success probability
Π(|ψ⟩ → |ϕ⟩) for the task of converting |ψ⟩ to |ϕ⟩ (in the LOCC paradigm) is exactly

min
1≤k≤n

λ
(1)
k + λ

(1)
k+1 · · ·+ λ

(1)
n

λ
(2)
k + λ

(2)
k+1 · · ·+ λ

(2)
n

,

where λ(1)1 ≥ · · · ≥ λ
(1)
n are the eigenvalues of ρψ and λ(2)1 ≥ · · · ≥ λ

(2)
n are the eigenvalues of ρϕ.

In [11], Cunden, Facchi, Florio and Gramegna considered Π(|ψ⟩ → |ϕ⟩) for random states |ψ⟩, |ϕ⟩ ∈
Cn ⊗ Cm: with what probability can one successfully convert between two randomly entangled states?
In their computer simulations, they found that the answer seems to heavily depend (in a somewhat
surprising way) on the relationship between n and m. Indeed, suppose n,m → ∞ with m/n = c (for
some constant c ∈ (0,∞)). If c = 1, computational evidence suggests that Π(|ψ⟩ → |ϕ⟩) has a nontrivial
limiting distribution supported on the whole interval [0, 1] (with mean about 0.58). On the other hand,
if c ̸= 1 then computational evidence suggests that Π(|ψ⟩ → |ϕ⟩) converges to 1 in probability.

As our final result in this paper, we confirm the latter prediction.

Theorem 1.3. Let A(1), A(2) ∈ Cn×n be independent samples from the trace-normalised complex Wishart–
Laguerre ensemble with parameters n,m. Let λ(1)1 ≥ · · · ≥ λ

(1)
n and λ(2)1 ≥ · · · ≥ λ

(2)
n denote the respective

eigenvalues, and let

Π = min
1≤k≤n

λ
(1)
k + λ

(1)
k+1 · · ·+ λ

(1)
n

λ
(2)
k + λ

(2)
k+1 · · ·+ λ

(2)
n

.

Then, for any fixed ε > 0 and c ̸= 1, we have

P[Π < 1− ε] → 0

as n,m→ ∞ with m/n→ c.
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Remark 1.4. The conclusion of Theorem 1.3 cannot hold without some separation between m and n.
Indeed, in the case m = n, Edelman [15] showed that the smallest eigenvalue λn of a matrix drawn from
the complex Wishart–Laguerre ensemble has probability density function given by f(λ) = ne−λn/2/2.
Using the concentration of the trace (as in the proof of Theorem 1.3) along with the observation that
Π ≤ λ

(1)
n /λ

(2)
n , we see that for every ε < 1, there exists cε > 0 such that P[Π < 1− ε] > cε.

Our proof of Theorem 1.3 really shows that P[Π < 1 − ε] → 0 as long as |m − n| grows faster than√
n log n (see Theorem 4.1 for a precise statement), and it is conceivable that existing results in random

matrix theory can be used to extend the above argument (showing P[Π < 1 − ε] > cε) to the range
|m − n| = O(

√
n). However, this would still leave a “gap” of order

√
log n. It would be interesting to

investigate this further.

1.3. Discussion of proof ideas. If (λ(1)k )nk=1 and (λ
(2)
k )nk=1 are the decreasing rearrangements of two

independent random vectors on the simplex, sampled according to any continuous distribution, then for
every individual k, it is easy to see by symmetry considerations that λ(1)k + · · ·+ λ

(1)
n ≤ λ

(2)
k + · · ·+ λ

(2)
n

with probability exactly 1/2. So, a first instinct for how to study majorisation of (λ(1)k )nk=1 and (λ
(2)
k )nk=1

(e.g., in the settings of Theorems 1.1 and 1.2) is to study the dependence between the events that
λ
(1)
k + · · · + λ

(1)
n ≤ λ

(2)
k + · · · + λ

(2)
n for different k. For example, if we consider a sequence of indices

k1 < · · · < kℓ which grow very rapidly or are in some other sense “well-spaced” from each other, one might
hope that the corresponding events are approximately independent from each other, meaning that one
might hope for an upper bound of about 2−ℓ on the majorisation probability. This type of approach has
been very successful for some similar problems about majorisation in random settings (see for example
[21,25,26] for its use in the study of random integer partitions).

This is the approach we take in our proof of Theorem 1.2. Indeed, we employ an exact description of
the joint distribution of (λk)nk=1, in terms of independent exponential random variables. Via some simple
approximation arguments, we can relate the quantities λ(1)1 + · · ·+λ(1)k to so-called iterated partial sums.
There is a fairly extensive literature on persistence of iterated partial sums (see for example [3,13,30,35]);
in particular we take advantage of a general estimate due to Dembo, Ding and Gao [13].

Unfortunately, the above strategy seems to be extremely difficult to apply in the setting of Theo-
rem 1.1. In this setting there does not seem to be any convenient exact description of the distribution
of λk + · · · + λn, so it seems we are forced to turn to limit theorems. There is a huge body of re-
search on central limit theorems for certain statistics of Wishart–Laguerre ensembles (see for example
[1,2,4,6,8,16,17,19,29]), but none of this applies to quantities of the form λk + · · ·+ λn. The difficulty
here is that there is a so-called eigenvalue repulsion phenomenon for Hermitian random matrices: the
eigenvalues “want to be separated from each other”, which has the effect of “locking the spectrum in
place”. Specifically (at least in the case where m and n are approximately equal), for any bounded
test function f , the fluctuations of f(λ1) + · · · + f(λn) are tiny, of comparable size to the eigenvalues
themselves (and so there is no chance of describing the fluctuations in λk + · · · + λn via a central limit
theorem for linear statistics of the form f(λ1) + · · ·+ f(λn)).

Instead, we take advantage of the relationship between majorisation and convex functions: if (λ(1)k )nk=1

majorises (λ
(2)
k )nk=1, then for any convex function f : R → R we have

f(λ
(1)
1 ) + · · ·+ f(λ(1)n ) ≥ f(λ

(2)
1 ) + · · ·+ f(λ(2)n ).

So, we choose a sequence of convex test functions f1, . . . , fℓ which “emphasise distinct parts of the
spectrum” and whose corresponding statistics therefore fluctuate almost independently. Specifically, for
each i, we choose the function fi to grow much more rapidly than f1, . . . , fi−1, and therefore focus
much more strongly on the upper edge (the so-called soft edge) of the spectrum. For simplicity, we
will ultimately take the functions fj to be polynomials of rapidly growing degree. We can then apply a
general multivariate central limit theorem (with an adjustment for trace-normalisation) to the ℓ different
statistics of the form fi(λ1) + · · · + fi(λn), and via analysis of certain integrals we can upper-bound
the covariances between these statistics. The upshot is that we are able to show that the majorisation
probability is at most about 2−ℓ; since we can take ℓ arbitrarily large, the desired result follows.

The proof of Theorem 1.3 is completely different. Since the trace is extremely well-concentrated, it
suffices to prove a version of Theorem 1.3 for eigenvalues of the non-trace-normalised complex Wishart–
Laguerre ensemble. Writing µ1, . . . , µn for these non-normalised eigenvalues, our approach is to prove
that each individual eigenvalue µk is tightly concentrated (in a multiplicative sense) around its expected
value Eµk. Our proof of this fact relies on two ingredients: first, by Weyl’s inequalities, µ1/2

k can be
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interpreted as a 1-Lipschitz function (with respect to the Euclidean norm) of a Gaussian random vector,
so it follows from the Gaussian concentration inequality of Sudakov–Tsirelson and Borell that µk is well-
concentrated in an additive sense. Second, since m ≥ n+C

√
n log n, it follows from known estimates on

the smallest singular value of random matrices that E[µ1/2
n ] is sufficiently large to convert the additive

error to multiplicative error. The second ingredient is the only place where we use the separation between
m and n; as we discuss in Remark 1.4, this is necessary.

2. Proof of Nielsen’s conjecture

In this section we present the proof of Theorem 1.1 (Nielsen’s conjecture), modulo some analytic
estimates that will be deferred to Section 5.

Theorem 1.1 concerns parameters m,n which both tend to infinity, without making any assumption
about the relationship between m and n. However, it is straightforward to reduce to the case where
m ≥ n (by the symmetry between m and n), and it is then straightforward to reduce to the case where
m/n → c for some constant c ∈ [1,∞] (by compactness). There are certain complications in the c = ∞
(“imbalanced”) case that are not present in the c <∞ (“approximately balanced”) case, so we choose to
present these two cases separately.

2.1. Majorisation and convexity. First, as discussed in Section 1.3, it is crucial that instead of
working with majorisation directly, we can work with convex test functions. To this end, we need the
following well-known theorem (appearing, for example, as [27, p. 259, Theorem B]).

Theorem 2.1. Consider any real numbers λ(1)1 ≥ · · · ≥ λ
(1)
n and λ(2)1 ≥ · · · ≥ λ

(2)
n , such that

λ
(1)
k + · · ·+ λ(1)n ≤ λ

(2)
k + · · ·+ λ(2)n for all k ∈ {1, . . . , n− 1} and λ

(1)
1 + · · ·+ λ(1)n = λ

(2)
1 + · · ·+ λ(2)n .

Then for any convex function f : R → R, we have

f(λ
(1)
1 ) + · · ·+ f(λ(1)n ) ≤ f(λ

(2)
1 ) + · · ·+ f(λ(2)n ).

In particular, to show that a sequence (λ
(1)
k )nk=1 is not majorised by (λ

(2)
k )nk=1, it suffices to exhibit

a convex function f for which
∑n
k=1 f(λ

(1)
k ) >

∑n
k=1 f(λ

(2)
k ). To prove Theorem 1.1, we will consider

an explicit sequence of convex test functions fi, and show that the events of the form
∑n
k=1 fi(λ

(1)
k ) >∑n

k=1 fi(λ
(2)
k ) (for different i) are nearly independent from each other, meaning that it is very likely that

at least one of these events holds (and therefore (λ
(1)
k )nk=1 is likely not majorised by (λ

(2)
k )nk=1).

2.2. A central limit theorem for linear statistics, in the approximately balanced case. The
other key general ingredient we will need is a (joint) central limit theorem for linear statistics of the
complex Wishart–Laguerre spectrum. To start with, we present a central limit theorem that is suitable
for the c < ∞ case (i.e., the case where m and n are approximately balanced). The statement of our
central limit theorem requires some preparation.

Definition 2.2. For continuous functions f, g : R → R, define

Γ(f, g) =
1

π2

∫ 1

−1

∫ 1

−1

(
f(x)− f(y)

x− y

)(
g(x)− g(y)

x− y

)
1− xy

√
1− x2

√
1− y2

dx dy.

Then, for c ∈ [1,∞), let a± = (1 ±
√
c)2 and Φc(x) = 2

√
cx + c + 1, and for continuous f, g : R → R,

define

γc(f) =
1

2π

∫ a+

a−

f(x)

√
(a+ − x)(x− a−)

x
dx, Γc(f, g) = Γ(f ◦ Φc, g ◦ Φc).

Also, let F be the set of all continuously differentiable functions f : R → R with “sub-exponential
growth”, in the sense that (log |f(x)|)/|x| → 0 when |x| → ∞.

Theorem 2.3. Fix functions f1, . . . , fℓ ∈ F and let µ1, . . . , µn be the eigenvalues of a random matrix
sampled from the complex Wishart–Laguerre ensemble with parameters m,n. Suppose m,n→ ∞ in such
a way that m/n→ c ∈ [1,∞). For each i ∈ {1, . . . , ℓ} let

Xi =

n∑
k=1

fi(µk/n).

Then the following two asymptotic properties hold.
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(1) For each i ∈ {1, . . . , ℓ}, we have the L1-convergence

E
∣∣Xi/n− γc(fi)

∣∣→ 0.

(2) We have the multivariate convergence in distribution(
X1 − EX1, . . . , Xℓ − EXℓ)

d→ N (⃗0,Σ),

where the limiting covariance matrix Σ ∈ Rℓ×ℓ has (i, j)-entry equal to Γc(fi, fj).

Theorem 2.3 can be proved by combining a few different results in the literature. The asymptotic
formulas for the means in (1) go back to the seminal work of Marchenko and Pastur [20], and a central
limit theorem was first proved by Arharov [2]. However, Arharov did not provide formulas for the
covariances; for the covariance formulas in (2), we use a result of Lytova and Pastur [19]. There are
three differences between these results and Theorem 2.3: first, our result is valid for a larger class of test
functions; second, in (1), we obtain convergence in mean (whereas previous results obtain almost-sure
convergence or convergence in probability—the distinction will be important for our application), and
third, our result is a multivariate central limit theorem (whereas most previous results are univariate).
In Appendix A we show how to deduce Theorem 2.3 from previous results (the deduction is standard,
but we include this for completeness).

Remark. It is perhaps more common to study the real Wishart–Laguerre ensemble, which is the distribu-
tion of AA⊺ when A ∈ Rn×m is a random matrix with independent real standard Gaussian entries. The
distinction between the real and complex case does not affect Theorem 2.3(1), and affects the limiting
covariances in Theorem 2.3(2) by a factor of exactly 2 (i.e., the covariances are twice as large in the real
case as in the complex case); see e.g. [19, Remark 4.1].

In our proof of Theorem 1.1, the only reason we need Theorem 2.3 is for the following corollary,
providing a central limit theorem for sums of powers of trace-normalised eigenvalues.

Corollary 2.4. Let µ1, . . . , µn be the eigenvalues of a random matrix sampled from the complex Wishart–
Laguerre ensemble with parameters m ≥ n and let λ1, . . . , λn denote the trace-normalised eigenvalues.
Fix ℓ, and for each i ∈ {1, . . . , ℓ} let

Xi =

n∑
k=1

(µk/n)
i and Yi =

n∑
k=1

λik.

Suppose n,m → ∞ in such a way that m/n → c, for some fixed c ∈ [1,∞). Then we have multivariate
convergence in distribution(

n

(
Yi ·

(EX1)
i

EXi
− 1

))
i≤ℓ

d→
(

Zi
γc(xi)

− i
Z1

γc(x)

)
i≤ℓ

where (Zi)i≤ℓ ∼ N (⃗0,Σ) for a matrix Σ ∈ Rℓ×ℓ with (i, j)-entry Γc(x
i, xj).

(Here we are abusing notation slightly, writing xi to indicate the function x 7→ xi).

Proof. Writing Z̃i = Xi−EXi, note that by Theorem 2.3 we have convergence in distribution (Z̃i)i≤ℓ →
(Zi)i≤ℓ. We may then expand

Yi ·
(EX1)

i

EXi
=
Xi

Xi
1

· (EX1)
i

EXi
=

(
1 +

Z̃i
EXi

)(
1 +

Z̃1

EX1

)−i

= 1 +
Z̃i
EXi

− iZ̃1

EX1
+O(n−2). (2.1)

Here, asymptotics are “in probability”, treating c, i as constants: the notation O(n−2) denotes a random
variable Ec,i such that n2Ec,i is bounded in probability (as n → ∞, holding c, i fixed). This estimate
for Ec,i follows from the fact that the random variables Z̃i are bounded in probability (which is a
consequence of Theorem 2.3(2)) and the fact that EXi = nγc(x

i) + o(n) has order of magnitude n (here
we used Theorem 2.3(1), and the observation that γc(xi) ∈ (0,∞) for all c ∈ [1,∞) and i ≥ 1).

Rearranging (2.1) and using again that EXi = nγc(x
i) + o(n) completes the proof. □

Remark. Our choice of test functions x 7→ xi is mainly to keep the proof of Corollary 2.4 (and its
counterpart for the imbalanced case, Corollary 2.8) as simple as possible. If one were interested in
optimising the quantitative aspects of our proof strategy, one should presumably consider alternative
test functions.
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2.3. The covariance structure, and putting the pieces together. In order to use Corollary 2.4, we
will need some control over the quantities γc and Γc, which describe the limiting means and covariances
of our test functions. This is the content of the next lemma, whose proof we defer to Section 5. Recall
the definition of a+ from Definition 2.2.

Lemma 2.5. Fix c ∈ [1,∞). For i ∈ N, let hi(x) = (x/a+)
i.

(1) We have limi→∞ iγc(hi) = 0.
(2) The limit αc = limi→∞ Γc(hi, hi) exists, and satisfies αc > 0.
(3) We have limA→∞ limi→∞ Γc(hi, hAi) = 0.

Recall the random variables Yi =
∑n
k=1 λ

i
k from Corollary 2.4, which can be interpreted as linear

statistics associated with convex test functions fi : x 7→ xi. The estimates in Lemma 2.5 can be
interpreted as saying that the fluctuations of Yi and Yj are nearly independent, as long as i is very
large and j is much larger than i (specifically, (1) can be used to show that correlations due to trace-
normalisation are not very impactful, and (2) and (3) can then be used together to show that the
covariance between the non-trace-normalised random variables Xi and Xj is negligible compared to the
variances of Xi and Xj individually).

Remark. One can compute the relevant integrals in Lemma 2.5, and apply them to prove Theorem 1.1,
without any intuitive understanding of why estimates of this type should hold. However, roughly speak-
ing, the picture to keep in mind is that if j is much larger than i, then the largest eigenvalues (and
their fluctuations) contribute much more strongly to Yj than to Yi. That is to say, Yj is dominated by a
few very large eigenvalues, which play only a negligible role in Yi. So, intuitively speaking, Lemma 2.5
corresponds to the fact that different parts of the Wishart–Laguerre spectrum have nearly independent
fluctuations, and the sizes of these fluctuations do not significantly decay as we approach the upper edge
of the spectrum (the latter is important as there is a “competition” between these fluctuations and the
fluctuations due to trace-normalisation). We remark that the lower edge of the spectrum does not enjoy
these properties: since all eigenvalues are always at least zero, the fluctuations of the smallest eigenvalues
are more constrained. The upper and lower edges of the spectrum are sometimes called the “soft edge”
and “hard edge” for this reason.

Given the preparations in this section so far, we can now prove Nielsen’s conjecture in the case where
m/n→ c for c ∈ [1,∞).

Proof of Theorem 1.1, in the case m/n→ c ∈ [1,∞). Let Emaj be the event that λ(1)k +· · ·+λ(1)n ≤ λ
(2)
k +

· · · + λ
(2)
n for all k ≤ n. Recall that we wish to show that P[Emaj] → 0, when m,n → ∞ in such a way

that m/n→ c ∈ [1,∞).
For s ∈ {1, 2} define Y

(s)
i =

∑n
j=1(λ

(s)
j )i. By convexity of the functions x 7→ xi on [0,∞), and

Theorem 2.1, we see that on the event Emaj we must have Y (1)
i ≤ Y

(2)
i . By Corollary 2.4 this implies

that for any ℓ, we have

lim sup
n→∞

P[Emaj] ≤ P
[
Z

(1)
i ≤ Z

(2)
i − iγc(x

i)

γc(x)

(
Z

(2)
1 − Z

(1)
1

)
for all i ≤ ℓ

]
,

where (Z
(1)
i )i≤ℓ and (Z

(2)
i )i≤ℓ are independent Gaussian vectors as defined in Corollary 2.4. Since the

left-hand-side is independent of ℓ, we may take ℓ→ ∞, so that

lim sup
n→∞

P[Emaj] ≤ lim inf
ℓ→∞

P
[
Z

(1)
i ≤ Z

(2)
i − iγc(x

i)

γc(x)

(
Z

(2)
1 − Z

(1)
1

)
for all i ≤ ℓ

]
= P

[
Z

(1)
i ≤ Z

(2)
i − iγc(x

i)

γc(x)

(
Z

(2)
1 − Z

(1)
1

)
for all i

]
.

Define W (s)
i = Z

(s)
i /ai+, and let hi(x) = (x/a+)

i as in Lemma 2.5. Note that the covariance between
W

(s)
i and W (s)

j is precisely Γc(hi, hj), and note that

P
[
Z

(1)
i ≤ Z

(2)
i − iγc(x

i)

γc(x)

(
Z

(2)
1 − Z

(1)
1

)
for all i

]
= P

[
W

(1)
i ≤W

(2)
i − iγc(hi)

γc(x)

(
Z

(2)
1 − Z

(1)
1

)
for all i

]
.

Now, for each j, q, A ∈ N, set ij(q,A) = qAj . So, by Lemma 2.5, as we send A, q → ∞ (where A → ∞
much more rapidly than q → ∞), we observe:

(1) ij(q, A)γc(hij(q,A)) → 0;
7



(2) the variances of the individual W (s)
ij(q,A) tend to αc > 0;

(3) the covariances between different W (s)
ij(q,A) tend to zero.

So, letting (ζ
(1)
j , ζ

(2)
j )j≤N be i.i.d. (real) Gaussians with mean zero and variance αc > 0, we have

P
[
W

(1)
i ≤W

(2)
i − iγc(hi)

γc(x)
(Z

(2)
1 − Z

(1)
1 ) for all i

]
≤ lim
A→∞

lim
q→∞

P
[
W

(1)
ij

≤W
(2)
ij

−
ij(q, A)γc(hij(q,A))

γc(x)
(Z

(2)
1 − Z

(1)
1 ) for all j ≤ N)

]
= P[ζ(1)j ≤ ζ

(2)
j for all j ≤ N ]

= 2−N .

Taking N → ∞ completes the proof. □

2.4. The imbalanced case. In this subsection, we present analogues of Theorem 2.3, Corollary 2.4, and
Lemma 2.5 for the “imbalanced” case where m/n → ∞. We then deduce the statement of Theorem 1.1
in this case, and provide the details for how to deduce the full statement of Theorem 1.1 from the
approximately-balanced and imbalanced cases.

The main technical difficulty in the imbalanced case is that the spectrum of the complex Wishart-
Laguerre ensemble is concentrated around m (i.e., typically all eigenvalues are of the form m − o(m)).
This means that linear statistics Yi =

∑n
k=1 λ

i
k of the type considered in Corollary 2.4 have variance

o(1), and their limiting distribution is degenerate.
The root of the problem is that the normalisation in Theorem 2.3 (considering statistics of the form∑n
k=1 f(µk/n)) is not appropriate in the imbalanced regime, and to get a sensible central limit theorem,

one should renormalise with an “additive shift”: namely, one should consider statistics of the form∑n
k=1 f

(
(µk −m)/

√
nm
)
. The following central limit theorem is an analogue of Theorem 2.3 with this

renormalisation.

Definition 2.6. Recall the set of functions F with “sub-exponential growth”, and the notation Γ(f, g),
from Definition 2.2. For a continuous function f : R → R, let

γ(f) =
1

π

∫ 1

−1

f(x)
√

1− x2 dx.

Theorem 2.7. Fix functions f1, . . . , fℓ ∈ F and let µ1, . . . , µn be the eigenvalues of a random matrix
sampled from the complex Wishart–Laguerre ensemble with parameters m,n. Suppose m,n→ ∞ in such
a way that m/n→ ∞. For each i ∈ {1, . . . , ℓ} let

Xi =

n∑
k=1

fi

(
µk −m

2
√
nm

)
.

Then the following two asymptotic properties hold.
(1) For each i ∈ {1, . . . , ℓ}, we have the L1-convergence

E
∣∣Xi/n− γ(fi)

∣∣→ 0.

(2) We have the multivariate convergence in distribution(
X1 − EX1, . . . , Xℓ − EXℓ)

d→ N (⃗0,Σ),

where Σ ∈ Rℓ×ℓ is a matrix with (i, j)-entry Γ(fi, fj).

As for Theorem 2.3, we can prove Theorem 2.7 by combining various results in the literature (the
deduction can again be found in Appendix A). Specifically, the formulas for the means in (1) are essen-
tially due to Bai and Yin [5]4, and a central limit theorem in this regime was proved independently by
Bao [6] and by Chen and Pan [8].

4In random matrix theory language, when m/n→ c <∞ (as n→ ∞), the spectrum converges to the Marchenko-Pastur
law with parameter c. As c→ ∞, it is not hard to see that the Marchenko–Pastur law (with an appropriate normalisation)
converges to the semicircular law. Bai and Yin proved that when m/n→ ∞, the (suitably-normalised) spectrum converges
to the semicircular law, thus showing that the n→ ∞ and c→ ∞ limits commute.
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Remark. We have stated Theorem 2.7 only for the case m/n→ ∞ (as we have already handled the case
where m/n converges to a finite limit), but we remark that it would be possible to state a more general
(albeit somewhat complicated) central limit theorem that holds for all m,n→ ∞, and use this to give a
unified proof of Theorem 1.1 without a case distinction.

Now, as an analogue of Corollary 2.4, we next deduce a corollary of Theorem 2.7 for powers of (suitably
shifted) trace-normalised eigenvalues. Due to the shifting, the deduction is somewhat more complicated
than for Corollary 2.4.

Corollary 2.8. Let µ1, . . . , µn be the eigenvalues of a random matrix sampled from the complex Wishart–
Laguerre ensemble with parameters n,m and let λ1, . . . , λn denote the trace-normalised eigenvalues. Fix
ℓ, and for each i ∈ {1, . . . , 2ℓ} let

Xi =

n∑
k=1

(
µk −m

2
√
mn

)i
and Yi =

n∑
k=1

(
λk −

1

n

)i
.

Suppose n,m→ ∞ in such a way that m/n→ ∞. Then we have multivariate convergence in distribution(
n

(
Y2i ·

(mn/4)i

(EX2i)
− 1

))
i≤ℓ

d→
(

Z2i

γ(x2i)

)
i≤ℓ

where (Z2i)i≤ℓ ∼ N (⃗0,Σ) for a matrix Σ ∈ Rℓ×ℓ with (i, j)-entry Γ(x2i, x2j).

In our proof of Corollary 2.8, we will need the following basic fact.

Fact 2.9. In the setting of Corollary 2.8 we have E[µ1 + · · ·+ µn] = mn.

Proof. Let G ∈ Rn×m be a random matrix with independent standard complex Gaussian entries, in such
a way that µ1, . . . , µn are the eigenvalues of GG†. Then, we have

µ1 + · · ·+ µn =

n∑
i=1

m∑
j=1

|Gij |2,

and the desired result follows (recalling that the entries Gij are complex standard Gaussian). □

Proof of Corollary 2.8. Throughout this proof, all implicit constants in asymptotic notation are allowed
to depend on ℓ (i.e., we think of ℓ as a constant).

Writing Z̃i = Xi − EXi, by Theorem 2.7(2) we have the convergence in distribution (Z̃i)i≤2ℓ →
(Zi)i≤2ℓ. Then, writing T = µ1 + · · ·+ µn, note that

T = mn+ 2
√
nmZ̃1,

using Fact 2.9. We may then write

Y2i = T−2i
n∑
k=1

(
µk −

T

n

)2i

=

(
4

mn

)i(
1 +

2Z̃1√
mn

)−2i n∑
k=1

(
µk −m

2
√
mn

− Z̃1

n

)2i

. (2.2)

Since Z̃1 is bounded in probability by Theorem 2.7(2), we have that(
1 +

2Z̃1√
mn

)−2i

= 1 +O

(
1√
mn

)
= 1 + o

(
1

n

)
, (2.3)

where asymptotics are in probability. Moreover, writing ε = −Z̃1/n we can expand
n∑
k=1

(
µk −m

2
√
mn

+ ε

)2i

=

n∑
k=1

2i∑
j=0

(
2i

j

)(
µk −m

2
√
mn

)2i−j

εj

=

2i∑
j=0

(
2i

j

)
X2i−jε

j =

2i∑
j=0

(
2i

j

)(
EX2i−j + Z̃2i−j

)
εj .

Now, recall from Theorem 2.7(1) that for each i ≤ 2ℓ we have

EXi = nγ(xi) + o(n).
9



For each j ≤ ℓ, observing that γ(x2j) ∈ (0,∞) and γ(x2j−1) = 0, it follows that EX2j = O(n) and
EX2j−1 = o(n). Also, by Theorem 2.7(2), we have that ε = O(1/n) in probability. Therefore,

n∑
k=1

(
µk −m

2
√
mn

+ ε

)2i

= EX2i + Z̃2i + o(1), (2.4)

where the o(1) term is in probability. The desired result then follows from Equations (2.2) to (2.4). □

Finally, as an analogue of Lemma 2.5, we need the following technical estimates on γ and H, which
are proved in Section 5.

Lemma 2.10.
(1) The limit α = limi→∞ Γ(xi, xi) exists, and satisfies α > 0.
(2) We have limA→∞ limi→∞ Γ(xi, xAi) = 0.

We can now complete the proof of Theorem 1.1, supplementing the approximately balanced case in the
last subsection with similar considerations in the imbalanced case (using Corollary 2.8 and Lemma 2.10).

Proof of Theorem 1.1. As before, let Emaj be the event that λ(1)k + · · · + λ
(1)
n ≤ λ

(2)
k + · · · + λ

(2)
n for all

k ≤ n. We wish to show that P[Emaj] → 0 as m,n→ ∞.
First, note that we can restrict our attention to the case where m ≥ n. Indeed, recall that the complex

Wishart–Laguerre ensemble with parameters n,m is the distribution of a random matrix of the form
AA†, where A ∈ Cn×m is a matrix with standard complex Gaussian entries. Switching the roles of m
and n is equivalent to considering the matrix A†A, which has the same nonzero eigenvalues as AA† (if
n ≤ m, this switch merely introduces m − n additional zero eigenvalues) and this is the only relevant
information for the event Emaj.

Second, note that if Theorem 1.1 were not true, then there would be some sequence of parameter-pairs
(n,mn), with mn ≥ n → ∞, such that lim supn→∞ P[Emaj] > 0. By compactness of [1,∞], there would
then be an infinite subsequence of values of n along which mn/n→ c for some c ∈ [1,∞]. So, in proving
Theorem 1.1 we may assume that mn/n→ c for some c ∈ [1,∞]. In Section 2.3 we have already handled
the case where c <∞, we may (and do) assume that m/n→ ∞.

For s ∈ {1, 2}, let Y (s)
i =

∑n
k=1(λk − 1/n)i. By convexity of the functions x 7→ (x− 1/n)2i, it follows

from Corollary 2.8 and Theorem 2.1 (as in the approximately balanced case) that

lim sup
n→∞

P[Emaj] ≤ P
[
Z

(1)
2i ≤ Z

(2)
2i for all i

]
,

where (Z
(1)
i )i and (Z

(2)
i )i are independent vectors distributed as in Corollary 2.8.

Proceeding as in the approximately balanced case, but now using Lemma 2.10, it follows that if we
let (ζ

(1)
j , ζ

(2)
j ) denote i.i.d. (real) Gaussians with mean zero and variance α, then

P[Z(1)
i ≤ Z

(2)
i for all i] ≤ lim

N→∞
P
[
ζ
(1)
j ≤ ζ

(2)
j for all j ≤ N

]
= 0. □

3. The uniform measure

In this section we prove Theorem 1.2, for the uniform measure on the simplex. The starting point
is that if (X1, . . . , Xn) is uniformly distributed on the simplex, then the decreasing rearrangement
(λ1, . . . , λn) has a closed form description in terms of independent random variables, as follows.

Theorem 3.1. Let Z1, . . . , Zn be i.i.d. exponential random variables with mean 1. Then the normalised
vector

1

Z1 + · · ·+ Zn
(Z1, . . . , Zn)

is uniformly distributed in the simplex ∆n−1.

Theorem 3.2. Let Z1, . . . , Zn be i.i.d. exponential random variables with mean 1, and let Z(1) <
· · · < Z(n) be their order statistics (i.e., (Z(n−i+1))

n
i=1 is the decreasing rearrangment of (Zi)ni=1). Then

(Z(i))
n
i=1 has the same distribution as(

Z1

n
,

Z1

n
+

Z2

n− 1
,

Z1

n
+

Z2

n− 1
+

Z3

n− 2
, . . . ,

Z1

n
+ · · ·+ Zn

1

)
.
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Theorems 3.1 and 3.2 are both classical. In particular, Theorem 3.1 is a direct consequence of [14,
Chapter V, Theorems 2.1 and 2.2], and Theorem 3.2 can be found in [14, Chapter V, Section 3.3].

Now, before getting into the details, we briefly describe the plan to prove Theorem 1.2. First, by a
standard concentration inequality (e.g. Bernstein’s inequality, see for example [27, Theorem 2.8.1 and
Example 2.7.8]), sums of exponential random variables do not fluctuate very much, as follows.

Theorem 3.3. Let Z1, . . . , ZN be i.i.d. exponential random variables with mean 1, and let U = a1Z1 +
· · ·+ aNZN for some coefficients a1, . . . , aN ∈ R. There is an absolute constant c > 0 such that

P
[
|U − EU | ≥ t

]
≤ exp

(
−cmin

(
t2

a21 + · · ·+ a2N
,

t

maxi |ai|

))
for every t ≥ 0.

Given Theorem 3.3 (applied with a1 = · · · = an = 1), we can approximate quantities of the form
λk + · · ·+ λn (as in the statement of Theorem 1.2) with sums of the form

n−k+1∑
j=1

j∑
i=1

Zi
n− (i− 1)

If n − k is small, then each of the denominators n − i + 1 is very close to n (i.e., the denominators
are all almost the same), meaning that it suffices to understand the iterated partial sums of the form∑q
j=1

∑j
i=1 Zi. There is a fairly substantial literature on this topic; in particular, we take advantage of

the following powerful theorem of Dembo, Ding and Gao [13, Theorem 1.1], on persistence probabilities
for iterated partial sums.

Theorem 3.4. Let (Wi)i∈N be a sequence of i.i.d. random variables with zero mean and 0 < EW 2
i <∞.

For q ∈ N, let Sq =
∑q
j=1

∑j
i=1Wi. Then for any fixed t ∈ R we have

P
[
Sq < t for all q ≤ N

]
= Θt(N

−1/4).

We now provide the full details of the proof of Theorem 1.2.

Proof of Theorem 1.2. Let (Zj)nj=1 and (Z ′
j)
n
j=1 be i.i.d. sequences of standard exponential random vari-

ables, and let (Z(j))
n
j=1 and (Z ′

(j))
n
j=1 be their order statistics. Let Emaj be the event that

Z(1) + · · ·+ Z(q)

Z(1) + · · ·+ Z(n)
≤
Z ′
(1) + · · ·+ Z ′

(q)

Z ′
(1) + · · ·+ Z ′

(n)

for all q ≤ n. Recalling Theorem 3.1, our goal is to prove that P[Emaj] ≤ O((n/ log n)−1/16).
By Theorem 3.3, for a sufficiently large constant C we have |Z1 + · · · + Zn − n| ≤ C

√
n log n with

probability at most n−100. So,

P[Emaj] ≤ P

[
Z(1) + · · ·+ Z(q) ≤

(
1 + 3C

√
log n

n

)
(Z ′

(1) + · · ·+ Z ′
(q)) for all q ≤ n

]
+ n−100.

Recalling Theorem 3.2, it suffices to prove that

P

 q∑
j=1

j∑
i=1

Zi
n− (i− 1)

≤

(
1 + 3C

√
log n

n

)
q∑
j=1

j∑
i=1

Z ′
i

n− (i− 1)
for all q ≤ n

 ≤ O((n/ log n)−1/16).

(3.1)

Let Q = ⌊c(n/ log n)1/4⌋ for some small constant c > 0. By Theorem 3.3, with probability at least
1− n−100 we have

Q∑
j=1

j∑
i=1

Z ′
i

n− (i− 1)
=

Q∑
i=1

(
Q− (i− 1)

n− (i− 1)
· Z ′

i

)
≤ 2Q2

n
≤ 2c2√

n log n
,

and similarly, with probability at least 1− n−100 we have∣∣∣∣∣∣
k∑
j=1

j∑
i=1

Zi − Z ′
i

n− (i− 1)
−

k∑
j=1

j∑
i=1

Zi − Z ′
i

n

∣∣∣∣∣∣ =
∣∣∣∣∣
k∑
i=1

i− 1

n
· k − (i− 1)

n− (i− 1)
· (Zi − Z ′

i)

∣∣∣∣∣ ≤ 1

2n
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for all k ≤ Q. Assuming that c is sufficiently small (in terms of C), it follows that the probability in
(3.1) is at most

P

 q∑
j=1

j∑
i=1

Zi
n− (i− 1)

≤
q∑
j=1

j∑
i=1

Z ′
i

n− (i− 1)
+ 3C

√
log n

n
· 2c2√

n log n
for all q ≤ Q

+ n−100

≤ P

 q∑
j=1

j∑
i=1

Zi
n− (i− 1)

≤
q∑
j=1

j∑
i=1

Z ′
i

n− (i− 1)
+

1

2n
for all q ≤ Q

+ n−100

≤ P

 q∑
j=1

j∑
i=1

Zi − Z ′
i

n
≤ 1

n
for all q ≤ Q

+ 2n−100

= P

 q∑
j=1

j∑
i=1

(Zi − Z ′
i) ≤ 1 for all q ≤ Q

+ 2n−100.

This probability is at most O(Q−1/4) = O((n/ log n)−1/16), by Theorem 3.4. □

4. Approximate LOCC-convertibility

In this section, we prove Theorem 1.3 in the following, more precise, form.

Theorem 4.1. Let M (1),M (2) ∈ Cn×n be independent samples from the trace-normalised complex
Wishart–Laguerre ensemble with parameters n,m. Let λ(1)1 ≥ · · · ≥ λ

(1)
n and λ(2)1 ≥ · · · ≥ λ

(2)
n denote the

respective eigenvalues, and let

Π = min
1≤k≤n

λ
(1)
k + λ

(1)
k+1 · · ·+ λ

(1)
n

λ
(2)
k + λ

(2)
k+1 · · ·+ λ

(2)
n

.

For every ε, δ > 0, there exists a constant C(ε, δ) > 0 such that if m ≥ n + C(ε, δ)
√
n log n and n ≥

C(ε, δ), then P[Π < 1− ε] ≤ δ.

In our proof of Theorem 4.1 we need a few general tools. First, we need concentration of the trace of
the complex Wishart–Laguerre ensemble.

Lemma 4.2. There is an absolute constant c such that the following holds. Let M be a sample from the
complex Wishart–Laguerre distribution with parameters n,m. Then

P
[
|tr(M)−m| > t

]
≤ exp

(
− cmin

(
t2/(mn), t

))
.

Proof. As in the proof of Fact 2.9, we can write

tr(M) =

n∑
i=1

m∑
j=1

|Gij |2,

where the Gij are independent standard complex Gaussians. The terms |Gij |2 are sub-exponential (see
[33, Lemma 2.7.6], so the desired result follows from Bernstein’s inequality (see [33, Theorem 2.8.1]). □

We also need the Gaussian concentration inequality for Lipschitz functions, due independently to
Borell and Sudakov–Tsirelson (see [33, Definition 2.5.6 and Theorem 5.2.2]).

Theorem 4.3. There is an absolute constant c > 0 such that the following holds. Let F : Rn → R
be a Lipschitz function (with respect to the Euclidean metric), with Lipschitz constant at most r. Let
X1, . . . , Xn ∈ R be i.i.d. standard Gaussian random variables, and let Y = F (X1, . . . , Xn). Then for any
t ≥ 0 we have

P
[
|Y − EY | ≥ t

]
≤ 2 exp(−ct2/r2).

For a matrix G ∈ Cn×m, let σk(G) denote the k-th largest singular value of G and let ∥G∥F =√∑
ij |Gij |2 denote the Frobenius norm of G. The next ingredient we will need is a version of Weyl’s

inequality. The following statement is a consequence of e.g. [32, Exercise 1.3.22(iv)], using the inequality
∥H∥F = (tr(H†H))1/2 = (

∑
i σi(H)2)1/2 ≥ σ1(H).

Theorem 4.4. For any matrices G,H ∈ Cn×m, we have

|σk(G+H)− σk(G)| ≤ ∥H∥F.
12



Finally, we need a lower bound on the expected least singular value of complex Gaussian rectangular
matrices. The following estimate is a direct consequence of [18, Theorem 3.4], which is an adaptation of
the main result of [28] to the complex case.

Lemma 4.5. There is an absolute constant c > 0 such that the following holds. Let G be an n × m
matrix with independent complex standard Gaussian entries. Then, for all 1 ≤ k ≤ n,

E[σk(G)] ≥ E[σn(G)] ≥ c
(√
m−

√
n− 1

)
. (4.1)

Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. Throughout this proof, we treat ε, δ as constants. In particular, implicit constants
in asymptotic notation are allowed to depend on ε, δ. Our goal is to prove that P[Π < 1− ε] ≤ δ, as long
as n is sufficiently large and m ≥ n+ C

√
n log n for large enough C.

Let G(1), G(2) be independent n ×m matrices with independent complex standard Gaussian entries,
and for s ∈ {1, 2} let M (s) = G(s)(G(s))† ∈ Cn×n denote the corresponding sample from the complex
Wishart–Laguerre ensemble with parameters n,m. Let µ(s)

1 ≥ · · · ≥ µ
(s)
n ≥ 0 denote the eigenvalues of

M (s); we may take λ(s)1 ≥ · · · ≥ λ
(s)
n ≥ 0 to be the eigenvalues of M (s)/ tr(M (s)).

By Lemma 4.2, with probability at least 1 − δ/2 we have tr(M (i)) = mn + O(
√
mn). Therefore, it

suffices to show that P[Πµ < 1− ε] ≤ δ/2, where

Πµ = min
1≤k≤n

µ
(1)
k + µ

(1)
k+1 · · ·+ µ

(1)
n

µ
(2)
k + µ

(2)
k+1 · · ·+ µ

(2)
n

.

We will, in fact, show the stronger statement that

P
[
µ
(1)
k ∈ [(1− ε)µ

(2)
k , (1 + ε)µ

(2)
k ] for all 1 ≤ k ≤ n

]
≥ 1− δ/2.

By the union bound, it suffices to show that

P
[
µ
(1)
k ∈ [(1− ε)µ

(2)
k , (1 + ε)µ

(2)
k ]
]
≥ 1− δ/(2n) for all 1 ≤ k ≤ n. (4.2)

For s ∈ {1, 2}, let σ(s)
k =

√
µ
(s)
k be the k-th largest singular value of G(s). We can interpret σ(s)

k : Cn×m →
R as being a function of 2mn i.i.d. standard (real) Gaussian random variables (the real part and imaginary
part of each entry of G(s)), and by Weyl’s inequality (Theorem 4.4), this function is 1-Lipschitz with
respect to the Euclidean metric on Cn×m ∼= R2nm. It follows from the Gaussian concentration inequality
(Theorem 4.3) that for any 1 ≤ k ≤ n (and s ∈ {1, 2}),

P
[∣∣σ(s)

k − E[σ(s)
k ]
∣∣ ≥ t

]
≤ 2 exp(−t2/2). (4.3)

Note that our assumption m ≥ n+ C
√
n log n, together with Lemma 4.5, yields

E[σ(s)
k ] ≥ C ′

√
log n, (4.4)

where C ′ can be made arbitrary large by taking large enough C.
We now prove (4.2). Applying (4.3) with t = 10

√
log (n/δ) = O(

√
log n), and using (4.4), we see that

with probability at least 1−δ/(2n), for s ∈ {1, 2} we have σ(s)
k = Eσ(s)

k +O(
√
log n) = Eσ(s)

k (1+O(1/C ′)).
Since Eσ(1)

k = Eσ(2)
k , this implies that

µ
(1)
k = (σ

(1)
k )2 =

(
σ
(2)
k

(
1 +O(1/C ′)

))2
= µ

(2)
k (1 +O(1/C ′)).

The desired result follows, assuming C ′ is sufficiently large (which we may ensure by taking C sufficiently
large in terms of ε). □

5. Integral estimates

In this section we prove the estimates in Lemma 2.5 and Lemma 2.10, via a sequence of estimates of
various integrals. In this section we write f ≲ g to mean f = O(g).

First, for the convenience of the reader we recall the relevant parts of Definitions 2.2 and 2.6.
13



Definition 5.1. For functions f, g : R → R, let

γ(f) =
1

π

∫ 1

−1

f(x)
√
1− x2 dx,

Γ(f, g) =
1

π2

∫ 1

−1

∫ 1

−1

(
f(x)− f(y)

x− y

)(
g(x)− g(y)

x− y

)
1− xy

√
1− x2

√
1− y2

dx dy.

Then, for a± = (1±
√
c)2 and Φc(x) = 2

√
cx+ c+ 1, let

γc(f) =
1

2π

∫ a+

a−

f(x)

√
(a+ − x)(x− a−)

x
dx, Γc(f, g) = Γ(f ◦ Φc, g ◦ Φc).

Now, to begin with, we show that the kernel appearing in the definition of Γ in fact yields a density
of a probability measure on [−1, 1]2.

Fact 5.2. We have
1

π2

∫ 1

−1

∫ 1

−1

1− xy√
(1− x2)(1− y2)

dx dy = 1.

Proof. With the substitution (s, t) = (1− x, 1− y) and the symmetry between s and t, we compute

1

π2

∫ 1

−1

∫ 1

−1

1− xy√
(1− x2)(1− y2)

dx dy

=
1

π2

∫ 2

0

∫ 2

0

s+ t− ts√
st(2− s)(2− t)

ds dt

=
2

π2

∫ 2

0

∫ 2

0

√
s√

t(2− s)(2− t)
ds dt− 1

π2

∫ 2

0

∫ 2

0

√
st√

(2− s)(2− t)
ds dt = 1,

where we used the identities∫ 2

0

√
s

2− s
ds = 2

∫ 1

0

x1/2

(1− x)1/2
dx = π,

∫ 2

0

1√
s(2− s)

ds =

∫ 1

0

x−1/2

(1− x)1/2
= π

(these are Beta integrals; see for example [22, Eqns. (6.1.6) and (6.1.7)]). □

Now we proceed to study the asymptotics of the quantities appearing in Lemmas 2.5 and 2.10.

Lemma 5.3. Fix c ∈ [1,∞), and let hk(x) = (x/a+)
k. There is a constant Cc ∈ (0,∞) so that

lim
k→∞

k3/2γc(hk) = Cc.

Proof. It will be more convenient to work with hk+1. By changing variables x = c+ 1 + (2
√
c)t, we see

γc(hk+1) =
1

2π

∫ a+

a−

(
x

a+

)k+1√
(a+ − x)(x− a−)

x
dx

=
2c

πa+

∫ 1

−1

(
1− (1− t)

2
√
c

c+ 1 + 2
√
c

)k√
(1− t)(t+ 1) dt.

Writing β = 2
√
c

c+1+2
√
c

and changing variables by 1− t = s/k, we have

γc(hk+1) =
4c2k−3/2

πa+

∫ 2k

0

(
1− βs

k

)k√
s(2− s/k) ds.

We note that (1− βs/k)k ≤ e−βs and so by the dominated convergence theorem, we have

lim
k→∞

∫ 2k

0

(
1− βs

k

)k√
s(2− s/k) ds =

√
2

∫ ∞

0

e−βs
√
s ds =

√
π√

2β3/2

(the last integral is a Gamma integral; see for example [22, Eqn. (4.1.7)]). The desired result follows. □

For the next estimate, we need the following simple inequality.

Fact 5.4. For 1 ≥ b > a ≥ 0 and k > 0 we have

(1− a)k − (1− b)k ≤ e(e−ak − e−bk)
14



Proof. Bound

(1− a)k − (1− b)k =

∫ b

a

k(1− θ)k−1dθ ≤
∫ b

a

ke−θ(k−1) dθ ≤ e(e−ak − e−bk). □

Lemma 5.5. For each fixed c, A ∈ [1,∞), and hk(x) = (x/a+)
k for k ≥ 1, we have

lim
k→∞

Γc(hk, hAk) =
1

2π2

∫ ∞

0

∫ ∞

0

(
e−s − e−t

s− t

)(
e−As − e−At

s− t

)
s+ t√
st

ds dt.

Proof. Writing β = 2
√
c/a+ and changing variables (x, y) =

(
1 − s/(βk), 1 − t/(βk)

)
, recalling that

Φc(x) = 2
√
cx+ c+ 1, we see that

Γc(hk, hAk) =
1

π2

∫ 1

−1

∫ 1

−1

(
(Φc(x)/a+)

k − (Φc(x)/a+)
k

x− y

)(
(Φc(x)/a+)

Ak − (Φc(y)/a+)
Ak

x− y

)
· 1− xy
√
1− x2

√
1− y2

dx dy

=
1

π2

∫ 2βk

0

∫ 2βk

0

(
(1− s/k)k − (1− t/k)k

s− t

)(
(1− s/k)Ak − (1− t/k)Ak

s− t

)
· s+ t− st/(βk)√

st(2− s/(βk))(2− t/(βk))
ds dt.

We may bound the integrand using Fact 5.4 by a constant multiple of(
e−s − e−t

s− t

)(
e−As − e−At

s− t

)
s+ t√
st

which is integrable (see Lemma 5.7, to follow), so the dominated convergence theorem completes the
proof. □

Lemma 5.6. For A ≥ 1, we have

lim
k→∞

Γ(xk, xAk) =
1

π2

∫ ∞

0

∫ ∞

0

(
e−s − e−t

s− t

)(
e−As − e−At

s− t

)
s+ t√
st

ds dt.

Proof. We first claim that

lim
k→∞

∫ 1

0

∫ 0

−1

(
xk − yk

x− y

)(
xAk − yAk

x− y

)
1− xy√

(1− x2)(1− y2)
dx dy = 0. (5.1)

To see this, note that on the set [0, 1]× [−1, 0] we may bound(
xk − yk

x− y

)(
xAk − yAk

x− y

)
≤

{
16 if either x ≥ 1/2 or y ≤ −1/2

Ak22−2(k−1) if |x| ≤ 1/2 and |y| ≤ 1/2

by the mean-value theorem. Applying the dominated convergence theorem shows (5.1). By symmetry
of the integrand under (x, y) 7→ −(x, y) this shows that

lim
k→∞

Γ(hk, hAk) = lim
k→∞

2

π2

∫ 1

0

∫ 1

0

(
xk − yk

x− y

)(
xAk − yAk

x− y

)
1− xy√

(1− x2)(1− y2)
dx dy.

Changing variables (x, y) = (1− s/k, 1− t/k) and arguing as in Lemma 5.5 completes the proof. □

Lemma 5.7. For A ≥ 1 we have∫ ∞

0

∫ ∞

0

(
e−s − e−t

s− t

)(
e−As − e−At

s− t

)
s+ t√
st

ds dt ≲ A−1/2(1 + logA).

Proof. Since the integrand is symmetric in s and t it is sufficient to integrate over the region s < t, in
which case we may bound the integrand by a constant times∫∫

0≤s<t

(
e−s − e−t

s− t

)(
e−As − e−At

s− t

)√
t

s
ds dt.

We will further break up the region of integration depending on the value of t− s. For t− s ≤ 1, bound
the integrand by

e−s
∣∣∣∣e−As − e−At

s− t

∣∣∣∣(1 + s−1/2).
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(Here we used that (e−s− e−t)/(s− t) ≤ e−s, which follows from the classical inequality 1− ex ≤ x with
x = s− t). Then, write t = s+ h, yielding∫∫

0≤s≤t≤s+1

(
e−s − e−t

s− t

)(
e−As − e−At

s− t

)√
t

s
ds dt ≤

∫ ∞

0

e−s(1 + s−1/2)e−As
∫ 1

0

1− e−Ah

h
dh ds.

Now, observe that ∫ 1

0

1− e−Ah

h
dh =

∫ 1/A

0

1− e−Ah

h
dh+

∫ 1

1/A

1− e−Ah

h
dh

≤
∫ 1/A

0

Adh+

∫ 1

1/A

h−1 dh

= 1 + logA,

and ∫ ∞

0

e−s(1 + s−1/2)e−As ≤ 1√
A

+
√
A+ 1

∫ ∞

1/
√
A

((A+ 1)s)−1/2e−(A+1)s

=
1√
A

+
1√
A+ 1

∫ ∞

1

q−1/2e−q ≲
1√
A
. (5.2)

We deduce that ∫∫
0≤s≤t≤s+1

(
e−s − e−t

s− t

)(
e−As − e−At

s− t

)√
t

s
ds dt ≲

1 + logA√
A

.

This takes care of the region where t− s ≤ 1; we now turn to the complementary region t− s ≥ 1. With
the substitution q = (t− s)/s we first compute∫ ∞

s+1

(t− s)−2

√
1 +

(t− s)

s
dt = s

∫ ∞

1/s

q−2
√

1 + q dq ≲ s−1/2.

Combining this with (5.2), we have∫∫
t≥s+1

(
e−s − e−t

s− t

)(
e−As − e−At

s− t

)√
t

s
ds dt ≤

∫ ∞

0

e−s(1+A)

∫ ∞

s+1

(t− s)−2

√
1 +

(t− s)

s
dt ds

≲
∫ ∞

0

e−s(1+A)s−1/2 ds ≲
1√
A
. □

Proof of Lemma 2.5. Note that (1) follows from Lemma 5.3. The other two items follow by combining
Lemma 5.5 with Lemma 5.7. □

Proof of Lemma 2.10. Both items follow by combining Lemma 5.6 with the estimate from Lemma 5.7.
□
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Appendix A. A general central limit theorem for linear statistics of the
Wishart–Laguerre ensemble

In this appendix we explain how to deduce the statements of Theorems 2.3 and 2.7 from results in
[5, 6, 19]. As in the statements of these theorems, let µ1, . . . , µn be the eigenvalues of a random matrix
sampled from the complex Wishart–Laguerre ensemble with parameters n,m, and assume m/n → c ∈
[1,∞].

We recall the relevant statements from [5,6,19]. Let a± = (1±
√
c)2, let F0 be the set of all differentiable

functions f : R → R such that both f and f ′ have compact support5, and fix g ∈ F0.

5The different theorems we are citing here have slightly different assumptions, but this is a simple assumption which
certainly suffices for each of the theorems we cite.

17



First, if c <∞ then let W = g(µ1/n) + · · ·+ g(µn/n). In this case, [19, Theorem 4.1] (which is really
a restatement of results in [20]) says that

W

n

p→ 1

2π

∫ a+

a−

g(λ)

√
(λ− a−)(a+ − λ)

λ
dλ = γc(g), (A.1)

and [19, Theorem 4.2] says that W − EW d→ N (0, σ2), where

σ2 =
1

2
· 1

2π2

∫ a+

a−

∫ a+

a−

(
g(λ1)− g(λ2)

λ1 − λ2

)2
4c− (λ1 − c− 1)(λ2 − c− 1)√

4c− (λ1 − c− 1)2
√

4c− (λ2 − c− 1)2
dλ1dλ2

= Γc(g, g). (A.2)

Second, if c = ∞, then with X = g((µ1 −m)/2
√
mn)) + · · ·+ g((µn −m)/2

√
mn)), the convergence

to the semicircle law proved in [5] implies that

X

n

p→ 2

π

∫ 1

−1

g(λ)
√
1− λ2dλ = γ(g). (A.3)

With the slightly different parameterisation Y = g((µ1 − m)/
√
mn)) + · · · + g((µn − m)/

√
mn)), [6,

Theorem 1.2] says that Y − EY d→ N (0, σ2), where

σ2 =
1

2
· 1

2π2

∫ 2

−2

∫ 2

−2

(
g(λ1)− g(λ2)

λ1 − λ2

)2
4− λ1λ2√

4− λ21
√
4− λ22

dλ1dλ2 = Γ(g, g). (A.4)

Remark. The above cited papers all primarily concern the real Wishart–Laguerre ensemble; we need the
complex case. The same proofs apply to both cases (the only difference is that the variance in the real
case is a factor of 2 larger than the variance in the complex case). See [19, Remark 4.1].

These results imply the univariate cases of Theorems 2.3 and 2.7, assuming that f ∈ F0 and provided
we weaken L1-convergence to convergence in probability. We now discuss how to upgrade this to the
desired statements, using known results on concentration of singular values of Gaussian random matrices.
Specifically, we will need the following.

Lemma A.1. Let µ1 ≥ · · · ≥ µn be the eigenvalues of a random matrix sampled from the complex
Wishart-Laguerre ensemble with parameters m ≥ n. There exists an absolute constant C such that for
any t ≥ 0, √

m− C(
√
n+ t) ≤ √

µn ≤ √
µ1 ≤

√
m+ C(

√
n+ t)

except with probability at most 2 exp(−t2).

Remark. In the real case, this statement is proved in [33, Theorem 4.6.1], but the same proof extends
readily to the complex case as well.

Therefore, in the case c < ∞, it follows from the upper bound in Lemma A.1 that for all sufficiently
large s (depending on c),

P
[
max
k

µk/n ≥ s
]
= P[

√
µ1 ≥

√
sn] ≤ P[

√
µ1 ≥

√
m+ C

√
n+ C

√
sn/2] ≤ 2 exp(−sn/4),

so that if g ∈ F (i.e. g is continuously differentiable and has sub-exponential growth) then for any ε > 0,
we can (smoothly) truncate g ∈ F to some function g0 ∈ F0 with compact support, in such a way that

E
∣∣∣(g(µ1/n)

)
+ · · ·+ g

(
µn/n)

))
−
(
g0
(
µ1/n

)
+ · · ·+ g0

(
µn/n

))∣∣∣ ≤ ε.

That is to say, the effect of the truncation can be made arbitrarily small, so if the asymptotic results in
(A.1) and (A.2) hold for every g ∈ F0 they must also hold for every g ∈ F .

Further, by the upper bound in Lemma A.1 and using that g ∈ F has sub-exponential growth, it follows
that the sequence of random variables W/n is uniformly integrable. Since this sequence converges to
γc(g) in probability by (A.1), it follows by uniform integrability that it also converges in L1.

In the case c = ∞, we use both the upper and the lower bound in Lemma A.1 to see that for all
sufficiently large s,

P
[
max
k

(µk −m)/
√
mn ≥ s

]
≤ P[µ1 ≥ m+ s

√
mn] + P[µn ≤ m− s

√
mn]

≤ 2min{exp(−s2n/2), exp(−s
√
mn/2)}

≤ 2 exp(−sn/4),
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from which it follows (as before) that we can upgrade the assumption g ∈ F0 to the assumption g ∈ F
and also upgrade the convergence in (A.3) to convergence in L1.

Finally, we discuss how to deduce multivariate central limit theorems from the above univariate central
limit theorems. Given functions f1, . . . , fℓ ∈ F , for any fixed vector t⃗ = (t1, . . . , tℓ) ∈ Rℓ we can apply
the above observations to the function ft⃗ = t1f1 + . . . tℓfℓ, to see that

t1(W1 − EW1) + · · ·+ tℓ(Wℓ − EWℓ)
d→ N

(⃗
0,Γc(ft⃗, ft⃗)

)
,

in the case c <∞ and

t1(Y1 − EY1) + · · ·+ tℓ(Yℓ − EYℓ)
d→ N

(⃗
0,Γ(ft⃗, ft⃗)

)
in the case c = ∞. The desired convergence in Theorem 2.3(2). and Theorem 2.7(2) now follows from
the Cramér–Wold device (see for example [7, Theorem 29.4]).
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