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Abstract

Consider nonzero vectors a1, · · · , an ∈ Ck, independent Rademacher random variables ξ1, . . . , ξn, and a
set S ⊆ Ck. What upper bounds can we prove on the probability that the random sum ξ1a1 + · · · + ξnan

lies in S? We develop a general framework that allows us to reduce problems of this type to counting
lattice points in S. We apply this framework with known results from diophantine geometry to prove
various bounds when S is a set of points in convex position, an algebraic variety, or a semialgebraic set. In
particular, this resolves conjectures of Fox–Kwan–Spink and Kwan–Sauermann.

We also obtain some corollaries for the polynomial Littlewood–Offord problem, for polynomials that have
bounded Chow rank (i.e., can be written as a polynomial of a bounded number of linear forms). For
example, one of our results confirms a conjecture of Nguyen and Vu in the special case of polynomials
with bounded Chow rank: if a bounded-degree polynomial F ∈ C[x1, . . . , xn] has bounded Chow rank and
“robustly depends on at least b of its variables”, then P[F (ξ1, . . . , ξn) = 0] ⩽ O(1/

√
b). We also prove

significantly stronger bounds when F is “robustly irreducible”, towards a conjecture of Costello.

1 Introduction

Throughout this paper ξ1, . . . , ξn will always denote a sequence of independent Rademacher random variables
(that is, taking values 1 or −1 with probability 1/2).

In 1943, motivated by their study of random algebraic equations, Littlewood and Offord [26] considered the
following question: given a sequence of n nonzero real numbers c1, . . . , cn, what is the maximum probability
that the random variable ξ1c1 + . . . + ξncn equals a given value1? They proved an upper bound of the form
O(log n/

√
n), which was sharpened by an elegant argument of Erdős [14] to the following precise result (now

called the Erdős–Littlewood–Offord theorem):

sup
z∈R

P[ξ1c1 + . . .+ ξncn = z] ⩽ 2−n
(

n

⌊n/2⌋

)
=
(√

2/π + o(1)
) 1√

n
= O

(
1√
n

)
. (1)

Since then, the Erdős–Littlewood–Offord theorem has been generalised in many different directions, and these
results have found applications in a wide variety of different fields (e.g., random matrix theory, the theory of
Boolean functions, extremal combinatorics; see [29] for a survey). In this paper we introduce a general approach
to attack several different questions in Littlewood–Offord theory of a “geometric” flavour.

∗Institute of Science and Technology Austria (ISTA), aleksandr.grebennikov@ist.ac.at.
†Institute of Science and Technology Austria (ISTA), matthew.kwan@ist.ac.at.
Both authors are supported by ERC Starting Grant “RANDSTRUCT” No. 101076777.

1Here and for the rest of this introduction, we specialise to the “discrete” form of the Littlewood–Offord problem. (There is also
a “small-ball” form, where one assumes that the ci have absolute value at least 1, and studies the likelihood that ξ1c1 + . . .+ ξncn
falls in a given interval of radius 1.)
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1.1 Polynomial Littlewood–Offord problem

First, a natural direction of generalisation is to replace the linear form ξ1c1 + . . . + ξncn by a polynomial
F (ξ1, . . . , ξn) of higher degree. This direction was first considered by Rosiński and Samorodnitsky [33], Costello,
Tao and Vu [11], and Razborov and Viola [32] in the contexts of Lévy chaos, discrete random matrices and
Boolean functions, respectively.

It is widely believed that if F is an n-variable degree-d polynomial that is “robustly nonzero” then a bound
analogous to (1) should hold. For example, it was conjectured by Nguyen and Vu (see [27, 32]) that if F has
at least bnd−1 nonzero coefficients, then2

P[F (ξ1, . . . , ξn) = 0] ⩽ Od

(
1√
b

)
. (2)

This is known to hold for d = 1 (thanks to the Erdős–Littlewood–Offord theorem) and for d = 2 (thanks to
recent work of Kwan and Sauermann [25]). For general d, the best available bound (due to Meka, Nguyen and
Vu [27], via a result of Kane [24]) falls short of (2) by a factor of (log b)Od(1).

If true, the bound in (2) is best-possible: for example, one can see this by considering the polynomial (x1+ · · ·+
xn)

d. However, it is natural to wonder whether one can prove much stronger bounds if one makes assumptions to
rule out this kind of example. Indeed, it was conjectured by Costello [10] that (2) can be significantly improved
when the polynomial F is “robustly irreducible”. Though his original conjecture was recently disproved by
Kwan, Sah and Sawhney (see [23, Appendix B]), it is plausible that the following “repaired” version of his
conjecture still holds: consider any polynomial F ∈ C[t1, . . . , tn] of degree d ⩾ 2, and suppose that for any
reducible3 polynomial G of degree at least d, the difference F −G has at least bnd−1 nonzero coefficients. Then,

P[F (ξ1, . . . , ξn) = 0] ⩽ Od,ε(b
−1+ε).

We remark that a slight variation on this “repaired” conjecture was also suggested by Jin, Kwan, Sauermann
and Wang [23]; they observed that this bound, if true, would be best possible.

As our first results in this paper, we essentially resolve the above conjectures, under an assumption that F
has “bounded complexity”. Formally, for a polynomial F ∈ F[t1, . . . , tn] of degree d (over some field F ⊆ C),
define its Chow rank (over F) to be the minimal number c such that F can be represented as

∑c
i=1 Pi, where

each Pi is a product of d (not necessarily homogeneous) linear forms with coefficients in F. One can check that
the Chow rank of any homogeneous polynomial of a fixed degree d is “equivalent” to the tensor rank of its
coefficient tensor (in the sense that each of them is bounded by some function of the other).

Theorem 1.1. Let 1 ⩽ b ⩽ n and d, c ⩾ 1 be integers. Let F ∈ C[t1, . . . , tn] be a polynomial of degree d and
Chow rank at most c.

(1) Suppose that F “robustly depends on at least b of its variables”, in the sense that it is not possible to
make F (ξ1, . . . , ξn) identically zero by fixing fewer than b of the ξi to ±1 values. (In particular, this holds
whenever F has at least bnd−1 nonzero degree-d coefficients4.) Then

P[F (ξ1, . . . , ξn) = 0] ⩽ Od,c(b
−1/2).

(2) Suppose that d ⩾ 2 and d ̸= 3. Also, suppose that for any reducible polynomial G ∈ C[x1, . . . , xn] of
degree at most d, the difference F −G has at least bnd−1 nonzero coefficients. Then for any ε > 0,

P[F (ξ1, . . . , ξn) = 0] = Od,c,ε(b
−1+ε).

2Subscripts on asymptotic notation indicate quantities that should be treated as constants.
3In this paper, we use the convention that the zero polynomial is reducible.
4Note that the total number of terms in F with degree less than d is at most dnd−1, so these terms can be essentially ignored.
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We will discuss our proof approach properly later in this introduction, but very briefly: we prove Theorem 1.1
via a connection to diophantine geometry. Specifically, we leverage various known estimates for the number of
lattice points on algebraic varieties; the reason for the “d ̸= 3” exception in Theorem 1.1(2) is that uniform
estimates for Heath-Brown’s so-called dimension growth conjecture are available for affine algebraic varieties of
all degrees except 3.

It is worth remarking that related geometric considerations have already played an important role in the
resolution of the quadratic Littlewood–Offord problem (i.e., the proof of (2) in the case d = 2). Indeed, the
first bound of the form b−1/2+o(1), due to Costello [10], was proved via a low-rank/high-rank dichotomy, using
geometric techniques (related to the Szemerédi–Trotter theorem) in the low-rank case, and using completely
different “decoupling” techniques in the high-rank case. For Kwan and Sauermann’s recent O(1/

√
b) bound [25],

they also took a geometric point of view for low-rank quadratic polynomials (though their proof did not as
cleanly split into a low rank and high rank case). In general, it seems to us (in some very vague sense) that the
worst-case behaviour for polynomial anticoncentration is driven by geometric considerations for “low-complexity
polynomials”, and driven by statistical/mixing considerations for “high-complexity polynomials”.

Regarding the assumptions on F in Theorem 1.1: in the earliest work on the polynomial Littlewood–Offord
problem, the usual assumption was that F has many nonzero coefficients (as in the Nguyen–Vu conjecture at
the start of the section). It was first observed by Razborov and Viola [32]5 that one can state polynomial
Littlewood–Offord bounds with a much weaker assumption that F “robustly depends on many variables”,
as in Theorem 1.1(1). One can attempt to restate (the repaired version of) Costello’s conjecture with an
analogous type of assumption (namely, that it is not possible to make F reducible by fixing fewer than b
variables), but such an assumption leads to a different worst-case bound. Indeed, by considering the polynomial
(x1 + · · ·+ xn/2)

d − (xn/2+1 + · · ·+ xn), it is not hard to see that in this setting we cannot hope for a bound

stronger than about b−1+1/(2d). We are able to match this lower bound up to logarithmic factors, as follows.

Theorem 1.2. Let 2 ⩽ b ⩽ n and d, c ⩾ 1 be integers, and let F be a subfield of C. Let F ∈ F[t1, . . . , tn] be
a degree-d polynomial which is irreducible (over F) and has Chow rank at most c (over F). Suppose that F
remains an irreducible degree-d polynomial (over F) after any substitution of ±1 values into fewer than b of its
variables. Then

P[F (ξ1, . . . , ξn) = 0] ⩽ Od,c(b
−1+1/(2d)(log b)Cd,c),

for some constant Cd,c depending only on d and c.

We remark that Theorem 1.2 also illustrates that our methods are applicable for polynomials that are reducible
over C but irreducible over a smaller field F ⊆ C (provided that certain necessary lattice point enumeration
estimates are available).

1.2 Littlewood–Offord problem for algebraic varieties

It turns out that the polynomial Littlewood–Offord problem, under a bounded Chow rank assumption, can
be naturally interpreted as a geometric problem in low-dimensional space. Indeed, recall that a polynomial
F ∈ F[t1, . . . , tn] of degree d and Chow rank c can be represented as P1 + · · ·+ Pc, where each Pi is a product
of d (not necessarily homogeneous) linear forms. Alternatively, one can write this as

F (t1, . . . , tn) = f(L1(t1, . . . , tn), . . . , Lk(t1, . . . , tn)).

for k = dc, some homogeneous linear forms L1, . . . , Lk with coefficients in F, and a polynomial f ∈ F[x1, . . . , xk].
(In fact, the polynomial f obtained this way has a certain specific form, but this turns out not to be useful for
us.) Now, if we write aij ∈ F for the coefficient of tj in Li(t1, . . . , tn), and let aj = (a1j , . . . , akj) ∈ Fk, then the
event that F (ξ1, . . . , ξn) = 0 can be interpreted as the event that ξ1a1 + . . .+ ξnan lies in the algebraic variety
S = {x ∈ Ck : f(x) = 0} ⊆ Ck. This observation was implicitly leveraged in [10, 25].

5The Razborov–Viola assumption only took multilinear degree-d terms into account; the specific assumption in Theorem 1.1(1)
was first considered by Kwan and Sauermann [25].
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In connection with their work on the polynomial Littlewood–Offord problem, Kwan and Sauermann made a
general conjecture along these lines [25, Conjecture 12.1]. Specifically, they conjectured that if one can form
at least b disjoint bases of Ck from the vectors a1, . . . , an ∈ Ck (this is a measure of how “robustly” a1, . . . , an
span the space Ck), then for any affine algebraic variety S ∈ Ck of dimension ℓ and degree d, we have

P[ξ1a1 + . . .+ ξnan ∈ S] ⩽ Od,k(b
−(k−ℓ)/2).

We remark that the d = 1 case of this conjecture is essentially equivalent to a classical theorem of Halász [18],
and in the course of their resolution of the quadratic Littlewood–Offord problem (for quadratic polynomials of
not necessarily bounded Chow rank), Kwan and Sauermann proved this conjecture for quadrics inside affine-
linear subspaces [25, Theorem 4.2]. We prove this conjecture in full generality.

Theorem 1.3. Let 0 ⩽ ℓ ⩽ k and d ⩾ 1 be integers. Let S ⊆ Ck be a (possibly reducible) affine algebraic
variety of dimension at most ℓ and degree at most d. Consider vectors a1, . . . , an ∈ Ck, and assume that one
can form b disjoint bases from them. Then

P[ξ1a1 + . . .+ ξnan ∈ S] ⩽ Od,k

(
b−(k−ℓ)/2

)
.

In fact, Theorem 1.3 is deduced as a corollary of the following more refined estimate.

Theorem 1.4. Let 0 ⩽ ℓ ⩽ k and d ⩾ 2 be integers. Let S ⊆ Ck be an irreducible affine algebraic variety
of dimension ℓ and degree d. Consider vectors a1, . . . , an ∈ Ck, and assume that one can form b ⩾ 2 disjoint
bases from them. Then

P[ξ1a1 + . . .+ ξnan ∈ S] ⩽ Od,k

(
b−(k−ℓ+1− 1

d )/2(log b)Cd,k

)
,

for some constant Cd,k depending only on d and k.

We remark that although these results are stated over the field of complex numbers, one can deduce similar
results for its smaller subfields (this is necessary for the proof of Theorem 1.2). Indeed, for a real algebraic set
SR ⊆ Rk, one can consider its “complexification” SC ⊆ Ck (that is, the minimal complex variety containing
SR). It satisfies SC ∩ Rk = SR, and the (complex) dimension of SC coincides with the (real) dimension of SR.

The main ingredient in the proof of Theorem 1.4 is a general theorem (Theorem 8.1) estimating probabilities of
the form P[ξ1a1 + · · ·+ ξnan ∈ S] in terms of a certain “lattice point density” of S. Theorem 1.4 in particular
is proved using an estimate of Pila [30, 31], but in general one can plug other number-theoretic results about
counting lattice points on varieties into Theorem 8.1 to obtain analogous results (all the theorems mentioned
so far are proved in this way). The following example illustrates why the connection to number theory is not
surprising in this context.

Example 1.5. Consider the standard basis vectors e1, . . . , ek of Ck, and consider the sequence of vectors
a1, . . . , a2mk consisting of 2m copies of ei/2 for each i ∈ {1, . . . , k} (where m is sufficiently large with respect
to k). Then each coordinate of the random variable X := ξ1a1 + . . . + ξ2mka2mk is equal to t ∈ Z with
probability

(
2m
m+t

)
/22m, independently. Thus, by standard estimates on binomial coefficients, X is essentially

equidistributed (up to a multiplicative constant factor depending on k) over the integer points of the box
[−

√
m,

√
m]k. Therefore, the probability that X lies in a variety S ⊆ Ck is closely related to the proportion of

integer points in this box that lie on S.

We emphasise that the assumption in Theorem 1.4 only guarantees that the vectors a1, . . . , an “robustly span
Ck” as a vector space. In particular, they may be very far from resembling the standard generators of the
integer grid. The main goal of this paper is to establish a connection between Littlewood–Offord-type questions
and counting lattice points on varieties in this general setting.
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1.3 Littlewood–Offord problem for general sets

In the above subsection, we have been discussing probabilities of the form P[ξ1a1 + · · ·+ ξnan ∈ S], where S is
an algebraic variety. It is natural to wonder whether one can obtain similar upper bounds with more general
(or completely different) assumptions on S: what are the geometric properties of a set S which ensure that
random sums are unlikely to fall in them?

This general direction was recently initiated by Fox, Kwan and Spink [16], who investigated several very general
conditions on S: namely, the condition that S is a set of points in convex position (i.e., no point in S can
be represented as a convex combination of the others), and the condition that S is “definable with respect
to an o-minimal structure” (this is a very general model-theoretic notion which ensures that S does not have
“infinitely oscillating” structure).

First, we discuss the case when S is a set of points in convex position (which includes, in particular, boundaries
of strictly convex bodies). In this setting, Fox, Kwan and Spink proved that for any nonzero vectors a1, . . . , an
in Rk the probability that ξ1a1+. . .+ξnan lies in S is at most Ok(n

−k/2k) [16, Theorem 1.9(1)], and conjectured
that the stronger bound n−1/2+ok(1) should hold [16, Conjecture 10.1]. We show that this is indeed the case,
and provide an asymptotically sharp bound.

Theorem 1.6. Let S ⊆ Rk be a set of points in convex position. Consider arbitrary nonzero vectors a1, . . . , an ∈
Rk. Then, as k is fixed and n tends to infinity,

P[ξ1a1 + . . .+ ξnan ∈ S] ⩽
(
2
√

2/π + ok(1)
)
n−1/2.

The following example shows that this bound is asymptotically sharp: let a ∈ Rk be an arbitrary nonzero vector,
and take S = {−a, a}, a1 = a2 = . . . = a2n+1 = a. However, this example is essentially one-dimensional. We
obtain a stronger bound under the assumption that the vectors a1, . . . , an “robustly span Rk” for k ⩾ 2 (and
use it to deduce Theorem 1.6).

Theorem 1.7. Let S ⊆ Rk be a set of points in convex position. Consider vectors a1, . . . , an ∈ Rk, and assume
that one can form b ⩾ 2 disjoint bases from them. Then

P[ξ1a1 + . . .+ ξnan ∈ S] ⩽ Ok
(
b−1+1/(k+1)(log b)Ck

)
for some constant Ck depending only on k.

In the current work, we do not pursue the most general situation when S ⊆ Rk is a set “definable with respect
to an o-minimal structure”6. Instead, we highlight the special case of semialgebraic sets: sets defined by a
collection of polynomial equations and inequalities. When S is a semialgebraic set which does not contain a
line segment, Fox, Kwan and Spink proved that P[ξ1a1 + . . .+ ξnan ∈ S] ⩽ n−1/2(log n)Ok(1) [16, Theorem
1.5]. We observe that our approach allows us to remove the logarithmic factor.

Theorem 1.8. Let S ⊆ Rk be a semialgebraic set, which does not contain a line segment. Consider arbitrary
nonzero vectors a1, . . . , an ∈ Rk. Then

P[ξ1a1 + . . .+ ξnan ∈ S] ⩽ OS(n
−1/2).

This bound is sharp up to a multiplicative constant factor, but can be further improved under the assumption
that the vectors a1, . . . , an “robustly span a high-dimensional subspace”, see Remark 8.5.

6It does seem to be possible to adapt our methods to this setting by combining them with the tools from [16], but this would
require us to introduce and explain various concepts from o-minimal geometry, which are outside the scope of the present paper.
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1.4 Organization of the paper

This paper is organized as follows. In Section 2 we provide a high-level outline of the proofs of Theorems 1.4
and 1.7. In Section 3 we introduce notation that will be used throughout the paper, and prove several pre-
liminary lemmas. In Section 4, we prove a convenient intermediate result (Theorem 4.1) that reduces the case
of “polynomial point probabilities” to lattice point counting. Next, in Section 5, we present the proofs of the
results for sets of points in convex position (Theorems 1.6 and 1.7).

For the rest of the paper (Sections 6, 7 and 8) we turn to the algebraic setting. In Section 6 we review several
useful ingredients from algebraic geometry and number theory. Section 7 contains our most technical theorem
(Theorem 7.1), which provides a decomposition of the ambient vector space into subspaces via an iterative
decoupling procedure. Finally, in Section 8 we prove our general result for the algebraic setting (Theorem 8.1),
and use it to deduce Theorems 1.1, 1.2, 1.3, 1.4 and 1.8.

Basic notation. For a positive integer n, we write [n] to denote the set {1, . . . , n}. Our use of asymptotic
notation is standard: for functions f = f(n) and g = g(n), we write f = O(g) to mean that there is a constant
C such that |f | ⩽ C|g|, f = Ω(g) to mean that there is a constant c > 0 such that f(n) ⩾ c|g(n)| for sufficiently
large n, f = Θ(g) to mean that f = O(g) and f = Ω(g), and f = o(g) to mean that f/g → 0 as n → ∞.
Subscripts on asymptotic notation indicate quantities that should be treated as constants. All logarithms are
assumed to be in base 2.

Acknowledgements. We would like to thank Tim Browning and Matteo Verzobio for helpful comments and
references from the number theory literature.

2 Proof outline

In this section we provide a high-level sketch of the proofs of Theorem 1.7 for sets of points in convex position
and Theorem 1.4 for algebraic varieties (all our other main results are either deduced from one of these two
theorems, or from the intermediate lemmas in their proofs).

The proofs of Theorem 1.7 and Theorem 1.4 are based on similar ideas, though the proof of Theorem 1.7 is
simpler.

2.1 Sets of points in convex position

To prove Theorem 1.7 we need to obtain an upper bound on the probability that X := ξ1a1 + . . . + ξnan lies
in our set S of points in convex position. We separately treat the cases when

ρ := sup
x∈Rk

(X = x) < n−C

and when ρ ⩾ n−C (for some appropriately chosen C depending on the dimension k).

The “spread-out” case (ρ < n−C). In this case, we just apply a result of Fox, Kwan and Spink [16,
Theorem 1.9(2)] which implies that

P[X ∈ S] ⩽ Ok(ρ
1/(k2k−1)).

That is to say, the probability of lying in S can be bounded in terms of the maximum point concentration
probability. This directly implies the conclusion of Theorem 1.7, if C is sufficiently large. The proof of the
above bound (in [16]) is based on a reduction to a Kővári–Sós–Turán-type theorem in an auxiliary hypergraph,
and some simple combinatorial consequences of the fact that the points in S lie in convex position.

The “concentrated” case (ρ ⩾ n−C). In this second case, we take advantage of the inverse theory for the
linear Littlewood–Offord problem. Roughly speaking, the philosophy of this theory is that the only way for ρ
to be large is for the coefficients a1, . . . , an to have strong additive structure.
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Specifically, our main tool will be the “optimal inverse theorem” for the linear Littlewood–Offord problem,
proved by Nguyen and Vu ([28, Theorem 2.5], stated below as Theorem 4.3). It says that if ρ ⩾ n−C , then
almost all of the vectors a1, . . . , an are contained in a common generalized arithmetic progression (“GAP” for
short; see Definition 4.2), whose rank is bounded in terms of C, and whose volume depends in an “optimal”
way on ρ.

In Theorem 4.4, we show how to iterate this optimal inverse theorem, to prove that in fact the random variable
X = ξ1a1+ . . .+ξnan is approximately equidistributed in a certain GAP of bounded rank. In other words, if we
eliminate7 a few “exceptional” vectors ai, then up to an affine-linear transformation, we can think of X as being
approximately the uniform distribution on the integer points in a box of the form [−B1, B1]× · · · × [−Bq, Bq].

As a result, the problem of upper-bounding P[X ∈ S] reduces to the problem of upper-bounding the number
of integer points in a box [−B1, B1] × · · · × [−Bq, Bq] which lie in a certain affine-linear transformation of S.
For this, we can take advantage of classical estimates in discrete geometry (in particular, we use an estimate
due to Andrews [1], stated in this paper as Theorem 5.1).

The full details of the proof of Theorem 1.7 appear in Section 5.

2.2 Algebraic varieties

To prove Theorem 1.4 we need to obtain an upper bound on the probability that X := ξ1a1 + . . . + ξnan lies
in our algebraic variety S.

If we try to proceed via the same dichotomy as for the proof of Theorem 1.7, the “concentrated” case (ρ ⩾ n−C)
works in exactly the same way: the only change is that Andrews’ theorem should be replaced by a result of
Pila [30, 31] (stated in this paper as Theorem 6.7), counting integer points on an affine algebraic variety.

Unfortunately, we encounter some issues in the “spread-out” case (ρ < n−C). Recall that for Theorem 1.7 we
used a result of Fox, Kwan and Spink bounding P[X ∈ S] in terms of ρ. Fox, Kwan and Spink also proved
a similar result that can be applied to algebraic varieties ([16, Theorem 1.14]), but it requires the additional
assumption that the variety S does not contain any affine lines. In general, without such an assumption on S
there is no nontrivial bound8 on P[X ∈ S] in terms of ρ.

Therefore, we take a different point of view. Instead of separately considering two extreme cases, our argument
can be seen as an interpolation between these two cases. Namely, in Theorem 7.1 we obtain a decomposition
of the ambient vector space Ck into a direct sum U ⊕W of a “disordered” subspace U and a “structured”
subspace W (where the decomposition is chosen with respect to the sequence of vectors a1, . . . , an and the
variety S).

Roughly speaking, the property we will guarantee for our “structured” subspace W is that, after eliminating
a few “exceptional” vectors ai, the projection of X onto W concentrates on some point with polynomially
large probability (at least n−C for some constant C). Let πW : Ck = U ⊕W → W be the projection map,
and let S′ be the maximal subset of W such that we have π−1

W (S′) ⊆ S. Then X lies in π−1
W (S′) if and only

if its projection πW (X) lies in S′, so P
[
X ∈ π−1

W (S′)
]
can be estimated using the same approach as for the

“concentrated” case described in the previous subsection (replacing Andrews’ theorem with Pila’s theorem, as
described at the beginning of this subsection).

By construction of S′, knowing the value of the projection πW (X) cannot allow us to conclude that X lies in
S \ π−1

W (S′): this always depends on the “disordered” coordinate of X (corresponding to the subspace U) as
well. So, the property we will guarantee for our “disordered” subspace U is simply that X is very unlikely to lie
in S \ π−1

W (S′). Together with the above considerations, this gives the desired upper bound on the probability
that X lies in S.

7To “eliminate” a vector ai just means to fix an outcome of the corresponding random variable ξi, and work in the resulting
conditional probability space.

8For example, suppose that S is the line {(x, y) : x = 0} ⊆ R2, and suppose a1, . . . , an ∈ Rd are defined by ai = (1, 2i). Then
ξ1a1 + . . .+ ξnan lies in S with probability Θ(n−1/2), while ρ is exponentially small.
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The proof of Theorem 7.1 is by an iterative procedure: we begin with U = Ck, W = {0}, and then repeatedly
enlarge W while keeping it “structured” (shrinking U correspondingly). At each step of this procedure, we use
a decoupling argument (Lemma 7.2), which relates the probability that X = ξ1a1 + . . .+ ξnan lies in a variety
S with the probability that it lies in certain linear subspaces. We refer the reader to the discussion in Section 7
for more details.

3 Notation and preliminaries

Let A = (a1, . . . , an) be a sequence of vectors in a finite-dimensional vector space V (over some subfield F of
C). We note that the order of the vectors a1, . . . , an is irrelevant for us in this work, and the word “sequence”
is used as a synonym for the word “multiset”.

For a subset I ⊆ [n], I = {i1, . . . , im} we define the subsequence A[I] = (ai1 , . . . , aim). We also say that A′ is
a subsequence of A of size m if there exists I ⊆ [n], |I| = m such that A′ = A[I].

We define the basis packing number of a sequence A to be the maximum number of disjoint bases of V one can
form from the vectors of A. Formally, the basis packing number of A is the largest integer b for which there
exist b pairwise disjoint subsets I1, . . . , Ib ⊆ [n] such that for each 1 ⩽ j ⩽ b the subsequence A[Ij ] is a basis of
V .

Definition 3.1. Define the maximum point probability ρ(A) by

ρ(A) = sup
x∈V

P[ξ1a1 + . . .+ ξnan = x].

More generally, for any set S ⊆ V we define the maximum S-translate probability ρ(A,S) by

ρ(A,S) = sup
x∈V

P[ξ1a1 + . . .+ ξnan ∈ S + x],

where S + x = {s+ x : s ∈ S}.

In these terms, ρ(A) = ρ(A, {0}). This general definition turns out to be convenient for us, due to the following
simple properties.

Fact 3.2. Let S be a subset of V . If A′ is a subsequence of A then ρ(A,S) ⩽ ρ(A′, S).

Proof. Let A′ = A[I], and fix x ∈ V . Denote X =
∑
i∈I ξiai, Y =

∑
i/∈I ξiai. Conditioning on the outcome of

Y , we have

P[X + Y ∈ S − x] = EY
[
P[X ∈ S − x− Y | Y ]

]
⩽ sup
z∈V

P[X ∈ S − z] = ρ(A′, S).

Fact 3.3. Let S1, S2 be two subsets of V . Then

max(ρ(A,S1), ρ(A,S2)) ⩽ ρ(A,S1 ∪ S2) ⩽ ρ(A,S1) + ρ(A,S2).

Proof. The first inequality holds trivially. For the second one, denote X = ξ1a1 + . . . + ξnan. Then for any
x ∈ V

P[X ∈ (S1 ∪ S2)− x] = P[X ∈ (S1 − x) ∩ (S2 − x)] ⩽ sup
x∈V

P[X ∈ S1 − x] + sup
x∈V

P[X ∈ S2 − x].

Fact 3.4. Let π : V → U is a surjective linear map. Then for any sequence A = (a1, . . . , an) of vectors in V ,
and any set S ⊆ U , we have

ρ(π(A), S) = ρ(A, π−1(S)).

8



Proof. One can verify that for any outcomes of ξ1, . . . , ξn and any x ∈ V we have

ξ1π(a1) + . . .+ ξnπ(an) + π(x) ∈ S if and only if ξ1a1 + . . .+ ξnan + x ∈ π−1(S).

The statement then follows by taking the supremum over x ∈ V of the probabilities of both these events.

We also record the following “dropping to a subspace” lemma, which also appeared in [25] (in a slightly different
form). Roughly speaking, it says that any sequence of nonzero vectors in a vector space V contains a large
subsequence, which has linear basis packing number inside a possibly smaller subspace V ′ ⊆ V .

Lemma 3.5. Let n, k and b be positive integers, such that n − (b − 1)k(k + 1)/2 > 0. Consider a sequence
of nonzero vectors A = (a1, . . . , an) in a vector space V of dimension k. Then there exists a linear subspace
V ′ ⊆ V , and a subsequence A′ of A of size at least n− (b− 1)k(k+1)/2, such that all elements of A′ lie in V ′,
and the basis packing number of A′ (as a sequence in V ′) is at least b.

Proof. We argue by induction on k. In the case k = 1 each of n ⩾ b vectors forms a one-element basis.

Let b′ be the basis packing number of A. If b′ ⩾ b, then we are done. Otherwise, let I1, . . . , Ib′ be the disjoint
sets of indices corresponding to b′ ⩽ b − 1 bases. Then the subsequence A0 = A[[n] \ (I1 ∪ . . . ∪ Ib′)] of size
n− b′k does not contain a basis of V . Therefore, its vectors lie in a linear subspace V0 ⊊ V of dimension k− 1.
As

n− b′k − (b− 1)
(k − 1)k

2
⩾ n− (b− 1)

k(k + 1)

2
> 0,

we can apply the induction hypothesis to the sequence A0 in the vector space V0 to obtain the desired subse-
quence.

Note that F (which is a subfield of C) contains the integers. Much of our analysis will focus on counting lattice
points within subsets of Fk, so we introduce the following notation.

Definition 3.6. For a set S ⊆ Fk and a real number B ⩾ 0, we define the integer point counting function as

NS(B) = |{(x1, . . . , xk) ∈ Zk ∩ S : |xi| ⩽ B for 1 ⩽ i ⩽ k}|,

and the integer points density function as

dS(B) = sup
φ

(
Nφ(S)(B)

|Zk ∩ [−B,B]k|

)
= sup

φ

(
Nφ(S)(B)

(2⌊B⌋+ 1)k

)
,

where the supremum is taken over all bijective affine-linear maps φ : Fk → Fk.

Although slightly non-standard, this definition of dS(B) is convenient for our purposes. Note that dS(B) is
invariant under bijective affine-linear transformations of S. Therefore, it does not depend on the choice of basis
in Fk, and makes sense for a set S in an abstract finite-dimensional vector space V over F.

Furthermore, we observe that it is also invariant under taking preimages of projections.

Proposition 3.7. Let ψ : Fr → Fk be a surjective affine-linear map. Then for any set S ⊆ Fk and any B ⩾ 0
we have

dψ−1(S)(B) = dS(B).

Proof. By replacing B with its integer part ⌊B⌋, we can assume that B is a non-negative integer.

First, we prove the inequality dψ−1(S)(B) ⩾ dS(B). Given a bijective affine-linear map φ1 : Fk → Fk, there
exists a bijective affine-linear map φ2 : Fr → Fr such that φ1 ◦ ψ ◦ φ2 = p, where p : Fr → Fk is the projection
onto the first k coordinates. Then

φ−1
2 (ψ−1(S)) = p−1(φ1(S)),
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and therefore

(2B + 1)rdψ−1(S)(B) ⩾ Nφ−1
2 (ψ−1(S))(B) = Np−1(φ1(S))(B) = (2B + 1)r−kNφ1(S)(B).

Taking the supremum over φ1 gives the desired inequality.

Next, we prove the converse inequality dψ−1(S)(B) ⩽ dS(B). Let e1, . . . , er be the standard basis vectors of Fr.
Consider a bijective affine-linear map φ2 : Fr → Fr. The kernel of ψ ◦ φ2 has dimension r − k, thus we can
choose k standard basis vectors ej1 , . . . , ejk such that the subspace W spanned by them has trivial intersection
with this kernel.

Then the restriction of φ2 ◦ ψ to each translate of W is a bijective affine-linear map. We consider “slices” of
the box [−B,B]r by the translates of W , and bound the number of integer points on each of them in terms of
dS(B).

Let J = {j1, . . . , jk} ⊆ [r]. Then

Nφ−1
2 (ψ−1(S))(B) =

∣∣∣{(cj)j∈[r] ∈ Zr : |cj | ⩽ B,
∑
j∈[r]

cjej ∈ φ−1
2 (ψ−1(S))

}∣∣∣
=

∑
(cj)j∈[r]\J∈Zr−k,

|cj |⩽B

∣∣∣{(cj)j∈J ∈ Zk : |cj | ⩽ B,
∑
j∈J

cjej ∈W ∩
(
φ−1
2 (ψ−1(S))−

∑
j∈[r]\J

cjej

)}∣∣∣
=

∑
(cj)j∈[r]\J∈Zr−k,

|cj |⩽B

∣∣∣{(cj)j∈J ∈ Zk : |cj | ⩽ B,
∑
j∈J

cjej ∈ φ−1
(cj)

(S)
}∣∣∣,

where φ(cj) : W → Fk is the bijective affine-linear map defined by φ(cj)(w) = ψ(φ2(w +
∑
j∈[r]\J cjej)).

Recalling the definition of the density function dS , we conclude that

Nφ−1
2 (ψ−1(S))(B) ⩽

∑
(cj)j∈[r]\J∈Zr−k,

|cj |⩽B

Nφ−1
(cj)

(S)(B) ⩽ (2B + 1)r−k · (2B + 1)kdS(B) = (2B + 1)rdS(B).

Taking the supremum over φ2 implies that dψ−1(S)(B) ⩽ dS(B), completing the proof.

We also note that the value of dS(B) does not “jump too much” when B changes: namely, if B1 and B2 differ
by at most a multiplicative constant factor, then the same holds true for dS(B1) and dS(B2).

Proposition 3.8. Suppose that 0 ⩽ B1 ⩽ B2 ⩽ cB1 for some c ⩾ 1. Then for any set S ⊆ Fk we have

1

(3c)k
dS(B1) ⩽ dS(B2) ⩽ 2kdS(B1).

Proof. The first inequality follows by observing that Nφ(S)(B1) ⩽ Nφ(S)(B2) and

2⌊B2⌋+ 1 ⩽ 2B2 + 1 ⩽ c(2B1 + 1) ⩽ 3c(2⌊B1⌋+ 1).

For the second inequality, we cover the integer points of the box [−B2, B2]
k byM =

⌈
(2⌊B2⌋+1)/(2⌊B1⌋+1)

⌉k
boxes with side lengths 2⌊B1⌋ centered at points with integer coordinates. Then for any bijective affine-linear
map φ : Fk → Fk we have

Nφ(S)(B2) ⩽M · sup
x∈Zk

Nφ(S)−x(B1) ⩽M · (2⌊B1⌋+ 1)kdS(B1) ⩽ (2(2⌊B2⌋+ 1))kdS(B1).

Thus, Nφ(S)(B2)/(2⌊B2⌋+ 1)k ⩽ 2kdS(B1), and taking the supremum over φ completes the proof.
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4 Reduction to lattice point counting

In this section we prove Theorem 4.1, stated below. For a general set S, this theorem provides an upper
bound on the maximum S-translate probability ρ(A,S) in terms of the integer point density function from
Definition 3.6, under the assumption that the maximum point probability ρ(A) is polynomially large (this is
the “concentrated” case described in Section 2).

Theorem 4.1. Fix δ ∈ (0, 1) and C,C1 > 0. Let A = (a1, . . . , an) be a sequence of vectors in a finite-
dimensional vector space V (over a field F ⊆ C), such that the basis packing number of A is at least δn and
ρ(A) ⩾ n−C . Then there exists r = OC(1) such that for any subset S ⊆ V we have

ρ(A,S) ⩽ Oδ,C,C1

(
dS(
√
n log n) · (log n)r + n−C1

)
. (3)

Example 1.5 shows that the bound in this theorem is sharp up to logarithmic factors.

Definition 4.2. A subset Q of an abelian group G is called a proper symmetric generalized arithmetic pro-
gression (proper symmetric GAP, for short) of rank r if there exist v1, . . . , vr ∈ G and q1, . . . , qr ∈ N such
that

Q = {c1v1 + . . .+ crvr : ci ∈ Z, |ci| ⩽ qi for 1 ⩽ i ⩽ r},

and each element of Q can be represented as c1v1 + . . .+ crvr in a unique way.

A key ingredient in the proof of Theorem 4.1 is an inverse theorem for the linear Littlewood–Offord problem.
The first theorem of this kind was proved in seminal work of Tao and Vu [36]; it states that if ρ(A) ⩾ n−C ,
then almost all of the elements of A are contained in a common GAP whose volume is at most nB and whose
rank is at most r, for some r and B depending only on C. The quantitative aspects of this theorem were
subsequently improved in theorems of Tao and Vu [35] and Nguyen and Vu [28]; we state the latter theorem
below.

Theorem 4.3 (Optimal inverse Littlewood–Offord theorem; Nguyen and Vu [28, Theorem 2.5]). Fix ε ∈ (0, 1)
and C > 0. Let A be a sequence of n elements of an abelian torsion-free group, satisfying ρ(A) ⩾ n−C . Then
for any nε ⩽ s ⩽ n, there exists a proper symmetric GAP Q of rank r = OC,ε(1), such that it contains all but
at most s elements of A, and

|Q| = OC,ε

(
ρ(A)−1s−r/2

)
.

A significant shortcoming of Theorem 4.3 is that the bound on |Q| is in terms of ρ(A), which can be much
smaller than ρ(A′) (we wish to “discard” the elements in A \A′, and it is important to avoid a dependence on
the discarded elements). We can address this issue by iterating Theorem 4.3, yielding the following result.

Theorem 4.4. Fix ε ∈ (0, 1) and C > 0. Let A be a sequence of n elements of an abelian torsion-free group,
satisfying ρ(A) ⩾ n−C . Then for any nε ⩽ s1 ⩽ n, there exists a proper symmetric GAP Q of rank r = OC,ε(1)
and a subsequence A′ of A of size at least n− s1, such that all elements of A′ lie in Q, and

|Q| = OC,ε

(
ρ(A′)−1(s1/ log n)

−r/2
)
.

Remark. We suspect that in the setting of Theorem 4.4, a stronger bound of the form OC,ε(ρ(A)
−1s

−r/2
1 )

might hold (this would yield a common generalisation of Theorems 4.3 and 4.4).

Proof of Theorem 4.4. We assume that n is sufficiently large compared to C and ε. By decreasing s1,
we may assume that s1 ⩽ n/2. Then by increasing C, we may also assume that ρ(A) ⩾ (n − s1)

−C . Let
L = ⌈C log2 n⌉, and let s = s1/L.

11



We construct a descending chain A0, A1, . . . , AL of subsequences of A with sizes n0 ⩾ n1 ⩾ . . . ⩾ nL satisfying
ni ⩾ n− is, as follows. Set A0 = A. To obtain Ai+1 from Ai, first note that n

ε/2 ⩽ s ⩽ n, and that by Fact 3.2

ρ(Ai) ⩾ ρ(A) ⩾ (n− s1)
−C ⩾ (n− is)−C ⩾ n−Ci .

Therefore, we can apply the optimal inverse theorem (Theorem 4.3) to the sequence Ai. As a result, we obtain
a proper symmetric GAP Qi of rank ri = OC,ε(1), such that all but at most s elements of Ai lie in Qi, and

|Qi| = OC,ε

(
ρ(Ai)

−1s−ri/2
)
. (4)

Let Ai+1 be the subsequence of Ai consisting of all elements that lie in Qi. Then we indeed have

ni+1 ⩾ ni − s ⩾ n− (i+ 1)s.

Suppose that for some 0 ⩽ i < L we have ρ(Ai+1) ⩽ 2ρ(Ai). In this case we can replace ρ(Ai) by ρ(Ai+1) in
the estimate (4). Then we are done by taking A′ = Ai+1 and Q = Qi.

Otherwise, we have ρ(Ai+1) > 2ρ(Ai) for all 0 ⩽ i < L. Then

ρ(AL) > 2Lρ(A) ⩾ 2C log2 nn−C = 1.

But ρ(AL) is a supremum of probabilities, a contradiction.

We will also need a simple concentration inequality (a consequence of Hoeffding’s inequality [21]). For positive
reals q1, . . . , qr we let Qr(q1, . . . , qr) = {(x1, . . . , xr) ∈ Zr : |xi| ⩽ qi}.

Proposition 4.5. For any vectors a1, . . . , am in Qr(q1, . . . , qr) and t > 0 we have

P[ξ1a1 + . . .+ ξmam /∈ Qr(tq1, . . . , tqr)] ⩽ 2r exp

(
− t2

2m

)
.

Proof. For each 1 ⩽ j ⩽ r, the j-th coordinate of ξ1a1+. . .+ξmam is a sum ofm independent random variables;
each of them has expected value equal to zero and is supported in [−qj , qj ]. By Hoeffding’s inequality,

P[|(ξ1a1 + . . .+ ξmam)j | > tqj ] ⩽ 2 exp

(
−2 · (tqj)2

m(2qj)2

)
⩽ 2 exp

(
− t2

2m

)
.

The union bound over 1 ⩽ j ⩽ r completes the proof.

Proof of Theorem 4.1. We apply Theorem 4.4 to A with s1 = δn/2. As a result, we obtain a subsequence
A′ of size at least (1− δ/2)n and a proper symmetric GAP Q of rank r = OC(1) such that all elements of A′

lie in Q, and

|Q| ⩽ Oδ,C

(
ρ(A′)−1(n/ log n)−r/2

)
.

Let v1, . . . , vr be the generators of Q, and let e1, . . . , er be the standard basis vectors of Fr. Let ψ : Fr → V
be the linear map defined by ψ(ei) = vi for all i. Then Q is the image of the set of integer points of some box
Qr(q1, . . . , qr) under this map ψ. Since Q is proper, the restriction ψ|Qr(q1,...,qr) provides a bijection between
Qr(q1, . . . , qr) and Q. In particular,

|Qr(q1, . . . , qr)| = |Q| ⩽ Oδ,C

(
(log n)r/2

ρ(A′) · nr/2

)
. (5)

As the vectors of A′ lie in Q, we can define A∗ to be the sequence of vectors in Cr obtained by taking preimages
of the elements of A′ under this bijection.
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By assumption, the basis packing number of A is at least δn. Hence, the basis packing number of A′ is at least
δn/2 > 0. In particular, the sequence A′ = ψ(A∗) contains a basis of V , thus the map ψ is surjective.

Then by Facts 3.2 and 3.4 we have

ρ(A,S) ⩽ ρ(A′, S) = ρ(A∗, ψ−1(S)), (6)

and (by Facts 3.3 and 3.4)
ρ(A∗) ⩽ ρ(A∗, kerψ) = ρ(A′). (7)

Let a∗1, . . . , a
∗
m be the vectors of the sequence A∗, where m ⩾ (1−δ/2)n, and consider x ∈ Fr. By (6), it suffices

to estimate the probability that ξ1a
∗
1 + . . .+ ξma

∗
m lies in the set S∗

x = (ψ−1(S)− x).

By increasing C1, we may assume that
√
2C1 is a positive integer. Define the dilated box

Q∗ = Qr(
√
2C1n log n · q1, . . . ,

√
2C1n log n · qn).

By Proposition 4.5, combined with the fact that n/2 ⩽ m ⩽ n, we have

P[ξ1a∗1 + . . .+ ξma
∗
m /∈ Q∗] ⩽ 2r ·m−C1 ⩽ OC,C1(n

−C1).

This corresponds to the n−C1 term in the desired bound (3).

For the rest of the argument we focus on the probability that ξ1a
∗
1 + . . . + ξma

∗
m lies in the set S∗

x ∩ Q∗. We
estimate this probability by the union bound: that is, we view it as the sum of P[ξ1a∗1 + . . .+ ξma

∗
m = y] over

all y ∈ S∗
x ∩Q∗. By definition, ρ(A∗) is the maximum point probability. Then (7) implies that for any y ∈ Fr

P[ξ1a∗1 + . . .+ ξma
∗
m = y] ⩽ ρ(A∗) ⩽ ρ(A′). (8)

To estimate the number of points in |S∗
x ∩ Q∗|, we partition Q∗ into boxes with side lengths 2

√
n log n. The

number of points of S∗
x inside each constituent box may be expressed as a product of the total number of integer

points in this box and the proportion of them that lie in S∗
x. This proportion, in turn, is bounded above by

the relevant value of the density function dS∗
x
(
√
n log n). Recalling that S∗

x = ψ−1(S)− x and ψ is a surjective
linear map, by Proposition 3.7 we have dS∗

x
= dS .

Taking the sum over all boxes in our partition, we obtain

|S∗
x ∩Q∗| ⩽ |Q∗| · dS∗

x
(
√
n log n) = |Q∗| · dS(

√
n log n). (9)

From (5) we have
|Q∗| ⩽ (n log n)r/2 · |Qr(q1, . . . , qr)| ⩽ Oδ,C,C1

(
ρ(A′)−1(log n)r

)
. (10)

Finally, we combine the inequalities (8), (9) and (10) to conclude that

P[ξ1a∗1 + . . .+ ξma
∗
m ∈ S∗

x ∩Q∗] ⩽ ρ(A′) · |S∗
x ∩Q∗| ⩽ ρ(A′) · |Q∗| · dS(

√
n log n)

⩽ Oδ,C,C1

(
dS(
√
n log n) · (log n)r

)
.

This completes the proof.

5 Sets of points in convex position: proof of Theorem 1.7

In this section we prove Theorem 1.7 and deduce Theorem 1.6. As described in Section 2, our strategy to prove
Theorem 1.7 is to reduce the problem to counting integer points in a certain preimage of S. Therefore, we
need an estimate on the maximum possible number of integer points in convex position inside [−B,B]k. The
following theorem is due to Andrews [1] (generalising an earlier result of Jarńık [22] for the case k = 2).
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Theorem 5.1 (Andrews [1]; see also [2, Theorem 2]). Let S ⊆ Rk be a set of points in convex position. Then
for any B ⩾ 1

NS(B) ⩽ Ok(B
k− 2k

k+1 ).

Remark. Theorem 5.1 can be viewed as an upper bound on the number of vertices of a lattice polytope
contained in [−B,B]k. Bárány and Larman [2, Theorem 1] proved that this bound is tight up to a multiplicative
constant factor: a lower bound of the same order of magnitude is achieved by the convex hull of integer points
inside the ball of radius B.

As described in the outline, we use the following result of Fox, Kwan and Spink [16] to handle the “spread-out”
case.

Theorem 5.2 (Fox, Kwan and Spink [16, Theorem 1.9(2)]). Let S ⊆ Rk be a set of points in convex position,
and let A be a sequence of nonzero vectors in Rk. Then

ρ(A,S) ⩽ Ok

(
ρ(A)1/(k2

k−1)
)
.

Proof of Theorem 1.7. We have a sequence A of vectors in Rk with the basis packing number at least b.
Consider the subsequence A0 = A[I0] containing only the vectors of b disjoint bases. It has size m := bk and
basis packing number equal to b.

We need to estimate the probability that ξ1a1+ . . .+ ξnan lies in S. It is bounded by ρ(A,S), which is at most
ρ(A0, S) by Fact 3.2.

Let C = k2k−1. First, suppose that ρ(A0) < m−C . Then, by Theorem 5.2, we have

ρ(A0, S) ⩽ Ok

(
ρ(A0)

1/(k2k−1)
)
,

which is at most Ok(m
−1). Since m = bk, this gives the desired bound.

Therefore, we may assume that ρ(A0) ⩾ m−C . Applying Theorem 4.1 to A0 with F = R, δ = 1/k and C1 = 1,
we obtain

ρ(A0, S) ⩽ Ok

(
dS(
√
m logm) · (logm)r +m−1

)
(11)

for some r = Ok(1). Observe that for any bijective affine-linear map φ : Rk → Rk the set φ(S) is also in convex
position. Thus, by the definition of the density function dS combined with Andrews’ theorem (Theorem 5.1),
for any B ⩾ 1 we have

dS(B) = sup
φ

(
Nφ(S)(B)

(2⌊B⌋+ 1)k

)
⩽ Ok(B

− 2k
k+1 ).

We substitute this into (11), recalling that m = bk, to conclude that

ρ(A0, S) ⩽ Ok(b
− k

k+1 (log b)r−
k

k+1 ).

This completes the proof.

Next, we combine Theorem 1.7 with the “dropping to a subspace” argument (Lemma 3.5) to deduce Theo-
rem 1.6.

Proof of Theorem 1.6. Fix an arbitrary ε ∈ (0, 1). We will prove that if n is sufficiently large in terms of k
and ε then P[ξ1a1 + . . .+ ξnan ∈ S] ⩽ (2

√
2/π + ε)n−1/2.

We apply Lemma 3.5 to the sequence A = (a1, . . . , an) with b = ⌊εn/(k(k + 1))⌋+ 1. As a result, we obtain a
subsequence A′ = A[I] of size at least (1− ε/2)n, such that all elements of A′ lie in a linear subspace V ′ ⊆ Rk,
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and the basis packing number of A′ inside V ′ is at least b = Ωk,ε(n). Conditioning on the outcomes of the
random variables (ξi)i∈[n]\I , we have

P[ξ1a1 + . . .+ ξnan ∈ S] ⩽ sup
x∈Rk

P

[∑
i∈I

ξiai ∈ (S − x) ∩ V ′

]
.

Fix an arbitrary x ∈ Rk, and let ℓ = dimV ′. First we consider the case ℓ ⩾ 2. Applying Theorem 1.7 to A′

and (S − x) ∩ V ′, we conclude that

P

[∑
i∈I

ξiai ∈ (S − x) ∩ V ′

]
⩽ Oℓ

(
b−

ℓ
ℓ+1 (log b)Cℓ

)
.

Since 2 ⩽ ℓ ⩽ k and b = Ωk,ε(n), this bound is at most 2
√

2/π · n−1/2 when n is sufficiently large (in terms of
k and ε).

Next, we deal with the case ℓ = 1. In this case, (S−x)∩V ′ is a set of points in convex position on a line. Then it
contains at most 2 points, and the desired probability can be bounded by the classical Erdős–Littlewood–Offord
theorem:

P

[∑
i∈I

ξiai ∈ (S − x) ∩ V ′

]
⩽ 2 · 2−|I|

(
|I|⌊
|I|/2

⌋) =
(
2
√

2/π + o(1)
)
|I|−1/2.

Since |I| ⩾ (1− ε/2)n, one can check that this expression is at most (2
√
2/π + ε)n−1/2 when n is sufficiently

large (in terms of ε).

6 Algebraic preliminaries

Now, for the rest of the paper we turn our attention to Theorem 1.4 and its corollaries. We start with some
preliminaries from algebraic geometry and number theory.

6.1 Algebraic geometry

In this subsection, we review some basic concepts and facts from algebraic geometry. We loosely follow the
exposition in [8, Section 7.1], and refer to [19, Chapter 1] for more details.

An affine algebraic variety S ⊆ Ck (a variety, for short) is the set of common zeros of a finite collection of
polynomials f1, . . . , fm ∈ C[x1, . . . , xk]:

S = {(x1, . . . , xk) ∈ Ck : f1(x1, . . . , xk) = . . . = fm(x1, . . . , xk) = 0}.

A variety is called irreducible if it cannot be written as a union of two proper subvarieties. Each variety S can
be uniquely written as the union of irreducible subvarieties S1 ∪ . . . ∪ Sm, such that Si ̸⊆ Sj for any i ̸= j.
Varieties S1, . . . , Sm are called the irreducible components of S.

The dimension of an irreducible variety S is the maximal integer ℓ such that there exists a chain of non-empty
irreducible subvarieties S0 ⊊ S1 ⊊ . . . ⊊ Sℓ = S. The dimension dimS of an arbitrary variety S is defined as
the maximum dimension of its irreducible components. By convention, the empty variety is reducible and has
dimension −∞.

The codimension codimS of a variety S ⊆ Ck is defined as k − dimS.

The degree of an irreducible variety S is the cardinality of the intersection of S with a “generic” affine subspace
of dimension codimS (a well-defined positive integer). The degree degS of an arbitrary variety S is defined as
the sum of the degrees of its irreducible components. By convention, the degree of the empty variety is 0.
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Fact 6.1. For any two varieties S, T ⊆ Ck

deg(S ∪ T ) ⩽ deg(S) + deg(T ).

Fact 6.2. For any variety S ⊆ Ck and a surjective affine-linear map π : Cr → Ck we have

codimπ−1(S) = codimS, deg π−1(S) = degS.

Furthermore, if S is irreducible, then π−1(S) is also irreducible.

Fact 6.3. Let f ∈ C[x1, . . . , xk] be an irreducible (over C) polynomial of degree d ⩾ 1. Then S = {x ∈ Ck :
f(x) = 0} is an irreducible variety of dimension k − 1 and degree d.

Fact 6.4 (Generalized Bézout’s theorem [17, Example 12.3.1]; see also [8, 7]). For any two varieties S, T ⊆ Ck,

deg(S ∩ T ) ⩽ deg(S) · deg(T ).

Proposition 6.5. Let {Si}i∈I be a (not necessarily finite) collection of varieties in Ck. Suppose that deg(Si) ⩽
d for all i ∈ I. Then the set S =

⋂
i∈I Si is a variety of degree at most dk.

Proof. We will prove a stronger statement: for any irreducible variety T ⊆ Ck of dimension at most ℓ and
degree at most d0, the intersection T ∩S is a variety of degree at most d0d

ℓ. The proposition then follows from
this statement applied with T = Ck.

We argue by induction on ℓ = dimT . If T ∩ S = T , there is nothing to prove. Otherwise, there exists i ∈ I
such that T ∩ Si ⊊ T . Let T1, . . . , Tm be the irreducible components of T ∩ Si. Each of them has dimension at
most ℓ− 1, and by Bézout’s theorem (Fact 6.4) we have

m∑
j=1

deg(Tj) = deg(T ∩ Si) ⩽ d0d.

By the induction hypothesis, we know that for each 1 ⩽ j ⩽ m the set Tj ∩ S is a variety, and that

deg(Tj ∩ S) ⩽ deg(Tj) · dℓ−1.

As T ∩ S =
⋃m
j=1(Tj ∩ S), by Fact 6.1 we conclude that

deg(T ∩ S) ⩽
m∑
j=1

deg(Tj ∩ S) ⩽ dℓ−1
m∑
j=1

deg(Tj) ⩽ d0d
ℓ.

6.2 Number theory

A large area of research in number theory is concerned with counting integer solutions to polynomial equations
or, more generally, integer points on algebraic varieties. The most basic result in this direction is the Schwartz–
Zippel lemma.

Proposition 6.6 (Schwartz–Zippel lemma for varieties, see for example [7, Lemma 14]). Let S ⊆ Ck be a
variety of dimension ℓ and degree d. Then for any B ⩾ 1,

NS(B) ⩽ d · (2B + 1)ℓ.
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Since bijective affine-linear maps preserve dimension and degree (by Fact 6.2), in terms of the density function
this means dS(B) ⩽ d · (2B + 1)−(k−ℓ).

Proposition 6.6 is sharp when S is a union of d axis-parallel affine subspaces of dimension ℓ (and it can be
approximately sharp whenever S contains a dimension-ℓ affine subspace as one of its irreducible components).
However, one can obtain much stronger bounds by making certain assumptions on S. We will need a few
different results in this direction.

First, we can make the assumption that S is irreducible. The following bound in this setting was proved by
Pila [31] (improving on his slightly weaker bound in [30]). It was proved using the so-called Bombieri–Pila
determinant method (famously introduced by Bombieri and Pila [4] to prove a similar theorem for curves in
R2). We refer the reader to [3] for a recent survey on this topic.

Theorem 6.7 (Pila [30, 31]). Let S ⊆ Ck be an irreducible variety of dimension ℓ and degree d. Then for any
B ⩾ 2,

NS(B) = Od,k
(
Bℓ−1+1/d(logB)Cd

)
for some constant Cd depending only on d.

Again, Fact 6.2 allows to rewrite this in terms of the density function as

dS(B) ⩽ Od,k
(
B−(k−ℓ+1−1/d)(logB)Cd

)
.

The example S = {x ∈ Ck : x1 = xd2} shows that Theorem 6.7 is sharp up to logarithmic factors, i.e., one cannot
hope to remove the “1/d” term in the exponent, in general. However, there is a general belief that if one makes
a mild assumption ruling out examples of this type, one should expect a bound of the form NS(B) ⩽ Bℓ−1+o(1).
A conjecture along these lines was first proposed by Heath-Brown [20], and this conjecture (and its variants)
are usually collectively referred to as the “dimension growth conjecture”. Various partial results are available,
see [37] and the references therein. In this paper we use the following result, due to Vermeulen [37] for d ⩾ 4
and due to Browning and Gorodnik [5] for d = 2 (using ideas of Browning, Heath-Brown and Salberger [6]; see
also [34]), which settles the (uniform) “affine dimension growth conjecture” for affine hypersurfaces of degree
d ̸= 3.

Theorem 6.8 (Affine dimension growth conjecture for hypersurfaces; Vermeulen [37, Theorem 1.2] and Brown-
ing–Gorodnik [5, Theorem 1.11]). Consider an irreducible polynomial f ∈ C[x1, . . . , xk] of degree d ̸= 3. Sup-
pose that f cannot be represented as a polynomial of two linear forms. Then, with S ⊆ Ck as the zero set of f ,
and for any B ⩾ 1, ε > 0, we have

NS(B) ⩽ Od,k,ε(B
k−2+ε).

Note that if the assumption of Theorem 6.8 holds for a polynomial f , then it also holds for f ◦ φ for any
bijective affine-linear map φ : Ck → Ck. Therefore, we can rewrite the resulting bound in terms of the density
function as dS(B) ⩽ Od,k,ε(B

−2+ε).

Vermeulen [37] and Browning–Gorodnik [5] state their results only for polynomials with rational coefficients.
The reason is that this is the hardest case, which is also most natural to consider from number-theoretic
point of view. Since we would like to apply Theorem 6.8 to an arbitrary polynomial f , we provide a short
argument which handles the case when f is not proportional to a polynomial with coefficients in Q. Namely,
Proposition 6.9 below (applied with F = Q) implies that in this case the set of integer zeros of f lies in a variety
of codimension at least 2. Then the desired bound on its size follows directly from the Schwartz–Zippel lemma
(Proposition 6.6).

Proposition 6.9. Consider a field F ⊆ C, and consider an irreducible polynomial f ∈ C[x1, . . . , xk] of degree
d, which is not proportional to a polynomial with coefficients in F. Let S ⊆ Ck be the zero set of f . Then there
exists another variety T ⊆ S of dimension at most k − 2 and degree at most d2 such that T ∩ Fk = S ∩ Fk.
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Proof. Rescale f so that one of its coefficients is equal to 1. Then it has a coefficient z ∈ C \ F.

Recall the following simple fact: for any z ∈ C \ F there exists an automorphism σ of C which acts as the
identity on F but does not fix z. To prove this fact, one can first define this automorphism on F(z) by sending
z to a different root of the minimal polynomial of z over F if it is algebraic over F, and to (say) z + 1 if z is
transcendental over F. Then one can extend this automorphism to the whole of C (see for example [38]).

Applying this automorphism σ to each coefficient of f , we obtain a polynomial fσ, which is not proportional
to f but still satisfies f(q) = fσ(q) for any q ∈ Fk. Therefore, the variety T defined as

T = {x ∈ Ck : f(x) = fσ(x) = 0}

indeed satisfies T ∩ Fk = S ∩ Fk. By Fact 6.3, T is an intersection of two distinct irreducible varieties of
dimension k−1 and degree d. Then it has dimension at most k−2 and, by Bézout’s theorem (Fact 6.4), degree
at most d2.

7 Decomposition into subspaces

In this section we prove Theorem 7.1, stated below. As outlined in Section 2, this provides a decomposition of
Ck into a “structured” and subspace W and a “disordered” subspace U .

Theorem 7.1. Fix δ, C1 > 0. Let S ⊆ Ck be a variety of degree at most d. Consider a sequence A of vectors
in Ck with basis packing number at least δn.

Then there exists a decomposition of Ck as U ⊕W for some linear subspaces U and W , a variety S′ ⊆ W of
degree at most dk, and a subsequence A′ of A satisfying all the following conditions:

(1) The basis packing number of A′ is at least (δ/(2(2k)k)) · n;

(2) Let πW : Ck →W be the projection map. Then ρ(πW (A′)) ⩾ n−C for some constant C not depending on
n (but possibly depending on δ, C1, d, k);

(3) π−1
W (S′) ⊆ S, and ρ(A′, S \ π−1

W (S′)) ⩽ n−C1 .

Intuitively, condition (2) says that the projection of (a subsequence of) A onto W has polynomially large point
probabilities (which allows us to apply an inverse Littlewood–Offord theorem such as Theorem 4.3). The set
π−1
W (S′) ⊆ S can be viewed as “the part of S which we can control via its projection onto W”. Condition (3)

then gives us control over the complementary part of S (which cannot be studied via its projection onto W ).

Our strategy to prove Theorem 7.1 is to consider the following procedure. We begin with A′ = A and U = Ck,
where conditions (1) and (2) hold automatically. Then we show that the only way for condition (3) to fail
is if A′ contains a “linear-size” subsequence A1 for which ρ(A1, U1) remains polynomial in n for some proper
subspace U1 ⊊ U . In that case, we set A′ = A1 and U = U1 (while maintaining conditions (1) and (2)), and
repeat the process. As the dimension of U decreases on each step, the procedure terminates after at most k
steps.

Later in this section, we will state and prove Proposition 7.4, which describes a single step of the above
procedure. Its proof relies on Lemma 7.2, stated below, which allows one to bound the “variety probability”
ρ(A,S) in terms of certain “subspace probabilities” ρ(A′, V ) (for subsequences A′ of A and subspaces V
contained in a translate of S).

Lemma 7.2. Let S ⊆ Ck be a variety of dimension at most ℓ and degree at most d. Consider a sequence A of
vectors in Ck, partitioned into ℓ+ 1 subsequences A0, . . . , Aℓ. Then

ρ(A,S) ⩽ (ℓ+ 1) · d ·
(
sup
i,V

ρ(Ai, V )

)1/2ℓ

,
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where the supremum is taken over 0 ⩽ i ⩽ ℓ and over linear subspaces V ⊆ Ck, such that V ⊆ S − y for some
y ∈ Ck.

The proof of Lemma 7.2 is based on an “iterative decoupling argument”, inspired by the approach of [25]. For
context, decoupling is a general term for a large body of techniques in probability and statistics for “reducing
from dependent situations to independent ones” (see for example the monograph [13]). In Littlewood–Offord
theory, “decoupling” usually refers to a class of techniques to reduce polynomial anticoncentration to linear
anticoncentration (popularised by Costello, Tao and Vu [11]), via inequalities such as Lemma 7.3 below. The
particular statement of Lemma 7.3 appears (for example) as [12, Lemma 8.4], but for the convenience of the
reader we provide the short proof.

Lemma 7.3. If an event E(X,Y ) depends on independent random objects X,Y , and X ′ is an independent
copy of X, then

P[E(X,Y )] ⩽
(
P[E(X,Y ) and E(X ′, Y )]

)1/2
.

Proof. By the Cauchy–Schwarz inequality, we have

P[E(X,Y ) and E(X ′, Y )] = EY
[
P[E(X,Y ) and E(X ′, Y ) |Y ]

]
= EY

[
P[E(X,Y ) |Y ]

2
]

⩾ EY
[
P[E(X,Y ) |Y ]

]2
= P[E(X,Y )]

2
.

Taking square roots on both sides completes the proof.

Proof of Lemma 7.2. Let S1, . . . , Sm be the irreducible components of S. Recall that (by definition) degS =∑m
j=1 degSj , and that (by Fact 3.3) ρ(A,S) ⩽

∑m
j=1 ρ(A,Sj). Therefore, by treating each irreducible compo-

nent separately, we may assume that S is irreducible.

We argue by induction on ℓ. In the base case ℓ = 0 we consider only one subsequence A0 = A, the variety S
consists of a single point, and the only linear subspace appearing in the supremum has dimension zero. So, in
this case both sides of the inequality are equal to ρ(A).

Let n be the size of A, and let I0 ⊆ [n] be the set of indices corresponding to the subsequence A0. Consider
independent random variables

X =
∑
i∈I0

ξiai, Y =
∑

i∈[n]\I0

ξiai,

and let X ′ be an independent copy of X.

Fix any x ∈ Ck. Then by the decoupling lemma (Lemma 7.3),

P[X + Y ∈ S − x] ⩽ P[X + Y ∈ S − x and X ′ + Y ∈ S − x]
1/2

= P[Y ∈ (S − x−X) ∩ (S − x−X ′)]
1/2

Define a (random) variety T = (S − x−X) ∩ (S − x−X ′).

First we deal with the case when dimT ⩽ ℓ−1. By Bézout’s theorem (Fact 6.4), we have deg T ⩽ d2. Applying
the induction hypothesis to the variety T and the subsequences A1, . . . , Aℓ, we obtain that

PY [Y ∈ T | dimT ⩽ ℓ− 1] ⩽ ℓd2
(
sup
i′,V ′

ρ(Ai′ , V
′)

)1/2ℓ−1

. (12)

where the supremum is taken over 1 ⩽ i′ ⩽ ℓ and over linear subspaces V ′ contained in a translate of T . Since
T itself is contained in a translate of S, this supremum is bounded above by the supremum appearing in the
statement of the lemma:

sup
1⩽i′⩽ℓ,V ′⊆T−y′

ρ(Ai′ , V
′) ⩽ sup

0⩽i⩽ℓ,V⊆S−y
ρ(Ai, V ).
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Next, we consider the case when dimT = dimS = ℓ. As S is irreducible, this can happen only if S − x−X =
S − x−X ′. Define

VS = {v ∈ Ck : S = S − v}.

Equivalently, VS consists of all vectors v ∈ Ck such that for any x ∈ S the point x+ v also lies in S. We claim
that VS is a linear subspace.

It is clear that if v1, v2 lie in VS then v1 + v2 also lies in VS . Thus, for any y ∈ S and v ∈ VS the point y + tv
lies in S for any t ∈ N. So, the variety S has infinitely many intersection points with the line y + tv. Then it
contains the whole line, and y + tv ∈ S for any t ∈ C. Hence, if v ∈ VS then tv ∈ VS for any t ∈ C.

Therefore, VS is a linear subspace contained in S − y for any y ∈ S. From its definition, we have

PX,X′ [dimT = ℓ] = PX,X′ [(X + x)− (X ′ + x) ∈ VS ] = EX′

[
PX [X ∈ VS +X ′ | X ′]

]
⩽ ρ(A0, VS). (13)

Combining (12) and (13), we conclude that

P[Y ∈ T ] ⩽ PX,X′ [dimT = ℓ] + EX,X′

[
PY [Y ∈ T | dimT ⩽ ℓ− 1]

]
⩽ ρ(A0, VS) + ℓd2

(
sup

1⩽i′⩽ℓ,V ′⊆T−y′
ρ(Ai′ , V

′)

)1/2ℓ−1

⩽ (ℓ+ 1)d2

(
sup

0⩽i⩽ℓ,V⊆S−y
ρ(Ai, V )

)1/2ℓ−1

.

So, for any x ∈ Ck we have

P[X + Y ∈ S − x] ⩽ P[Y ∈ T ]
1/2 ⩽ (ℓ+ 1)d

(
sup
i,V

ρ(Ai, V )

)1/2ℓ

.

As ρ(A,S) = supx∈Ck P[X + Y ∈ S − x], this completes the proof.

Now we state and prove Proposition 7.4, which constitutes one step of the iterative procedure in the proof of
Theorem 7.1.

Proposition 7.4. Fix δ, C,C1 > 0. Let S ⊆ Ck be a variety of degree at most d. Consider a sequence A
of at most n vectors in Ck with basis packing number at least δn. Let U be a subspace of Ck satisfying
ρ(A,U) ⩾ n−C . Fix a decomposition of Ck as U ⊕W for some linear subspace W , and let πW : Ck → W be
the projection map. Then at least one of the following holds:

(a) There exists a subsequence A′ of A with basis packing number at least (δ/2)n, and a variety S′ ⊆ W of
degree at most dk, such that π−1

W (S′) ⊆ S and

ρ(A′, S \ π−1
W (S′)) ⩽ n−C1 .

(b) There exists a subsequence A′′ of A with basis packing number at least (δ/(2k))n, and a linear subspace
U ′ ⊊ U , such that

ρ(A′′, U ′) ⩾ n−C
′′

for some constant C ′′ not depending on n (but possibly depending on δ, C,C1, d, k).
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Proof. First, we define a variety S′ ⊆W in the following way:

S′ = {w ∈W : u+ w ∈ S for every u ∈ U}

In other words, S′ =
⋂
u∈U (S − u) ∩W . By Bézout’s theorem (Fact 6.4), the degree of each (S − u) ∩W is at

most d. Therefore, by Proposition 6.5, the set S′ is indeed a variety of degree at most dk.

Next we define a subsequence A′. Let πW : Ck →W be the projection map. Then by Fact 3.4,

ρ(πW (A)) = ρ(A,U) ⩾ n−C .

The basis packing number of A is at least δn, thus, in particular, it contains at least δn vectors. Since
ρ(πW (A)) ⩾ n−C ⩾ (δn)−C

′
for some constant C ′ = C ′(δ, C), we can apply the optimal inverse theorem

(Theorem 4.3) to the sequence πW (A), with s = δn/2. As a result, we obtain a proper symmetric GAP Q ⊆W
of rank r = Oδ,C(1), containing all but at most δn/2 elements of πW (A), with

|Q| ⩽ Kδ,C · ρ(πW (A))−1n−r/2

for some constant Kδ,C depending only on δ and C.

We define A′ to be the subsequence of vectors a in A whose projections πW (a) lie in Q. Since A′ is obtained
by removing at most δn/2 elements from A, its basis packing number is at least δn/2.

Let a′1, . . . , a
′
m be the vectors of A′, and let X = ξ1a

′
1 + . . .+ ξma

′
m. Suppose that condition (a) does not hold:

that is, for some x ∈ Ck
P
[
X + x ∈ S \ π−1

W (S′)
]
> n−C1 . (14)

The projection of each vector in the sequence A′ onto W lies in Q, thus for any outcomes of independent
Rademacher random variables ξ1, . . . , ξm, the sum ξ1πW (a′1) + . . . + ξmπW (a′m) lies in the dilated GAP nQ.
(In fact, with high probability it lies in the smaller dilated GAP

√
n log nQ by Proposition 4.5, but here this is

not important for us.) In particular, the random variable πW (X + x) is supported on some finite set H ⊆ W
satisfying

|H| ⩽ nr|Q| ⩽ nr ·Kδ,C · ρ(πW (A))−1n−r/2 ⩽ Kδ,C · nC+r/2. (15)

Choose C ′′ such that Kδ,C · k · d · n−C′′/2k−1+C+r/2+C1 < 1 for any n ⩾ 2. Suppose that condition (b) also
does not hold: that is, any subsequence A′′ of A with basis packing number at least (δ/(2k))n and any proper
subspace U ′ ⊊ U satisfy

ρ(A′′, U ′) < n−C
′′
.

Our goal is to show that this leads to a contradiction.

For any w ∈W let Sw be the intersection of S with the affine subspace U + w. Then

S \ π−1
W (S′) =

⊔
w∈W,w/∈S′

Sw.

Moreover, the probability that X + x lies in Sw is positive only if w = πW (Sw) lies in H. Therefore,

P
[
X + x ∈ S \ π−1

W (S′)
]
=

∑
w∈H,w/∈S′

P[X + x ∈ Sw] ⩽
∑

w∈H,w/∈S′

ρ(A′, Sw). (16)

In order to estimate each summand we use Lemma 7.2. As the basis packing number of the sequence A′ is
at least δn/2, we can partition it into k subsequences A0, . . . , Ak−1, such that each of them has basis packing
number at least δn/(2k).
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Fix w ∈ H \ S′. Then, by definition of S′, we have Sw ⊊ U + w. Note that dimSw ⩽ k − 1 and (by Bézout’s
theorem (Fact 6.4)) degSw ⩽ degS ⩽ d. Therefore, by Lemma 7.2,

ρ(A′, Sw) ⩽ k · d ·

(
sup

0⩽i⩽k−1, V⊆Sw−y
ρ(Ai, V )

)1/2k−1

.

Crucially, since Sw ⊊ U + w, the supremum in the right hand side is taken only over proper subspaces of U .
As we assumed that condition (b) does not hold, we conclude that

ρ(A′, Sw) ⩽ k · d · n−C
′′/2k−1

.

Combining this with (15) and (16), we obtain

P
[
X + x ∈ S \ π−1

W (S′)
]
⩽ |H| · k · d · n−C

′′/2k−1

⩽ Kδ,C · k · d · n−C
′′/2k−1+C+r/2.

This is less than n−C1 by our choice of C ′′, which contradicts our assumption (14).

Now we show how to iterate Proposition 7.4 to prove Theorem 7.1.

Proof of Theorem 7.1. We will describe an iterative process to construct a descending chain A0, A1, . . . of
subsequences of A, and a descending chain U0 ⊋ U1 ⊋ . . . of linear subspaces of Ck, maintaining the following
two properties:

• The basis packing number of Ai is at least (δ/(2k)
i)n;

• ρ(Ai, Ui) ⩾ n−C
′
i for some constant C ′

i not depending on n.

We start with A0 = A, U0 = Ck and C ′
0 = 1. Now, suppose we have already constructed Ai and Ui. We will

attempt to find a decomposition U ⊕W with U = Ui (and some A′, S′), satisfying the desired properties (1),
(2) and (3) (actually, only (3) is nontrivial). If this is not possible, we will show how to construct Ai+1 and
Ui+1, to continue the process. Since this process can continue for at most k steps (as it is not possible to have
a descending chain of more than k + 1 linear subspaces of Ck), this is sufficient to prove Theorem 7.1.

Let Wi be an arbitrary linear complement of Ui, and apply Proposition 7.4 to the sequence Ai and the
decomposition Ck = Ui ⊕Wi. Suppose that condition (a) of Proposition 7.4 holds. Then there exists a variety
S′ ⊆ Wi of degree at most dk, and a subsequence A′ of Ai with basis packing number at least (δ/(2(2k)i))n
such that

ρ(A′, S \ π−1
Wi

(S′)) ⩽ n−C1 .

In this case we are done by setting U = Ui, W =Wi, and C = C ′
i. Indeed, properties (1) and (3) are satisfied

by the above. Recalling Facts 3.2 and 3.4, we note that ρ(A′, Ui) ⩾ ρ(Ai, Ui) = ρ(πWi(Ai)) ⩾ n−C
′
i , thus

property (2) holds as well.

Otherwise, condition (b) of Proposition 7.4 holds, which gives us a subsequence Ai+1 with basis packing number
at least (δ/(2k)i+1)n, and a subspace Ui+1 ⊊ Ui such that

ρ(Ai+1, Ui+1) ⩾ n−C
′
i+1

for some C ′
i+1 depending only on δ, C ′

i, C1, d, k. This allows us to proceed to the next step of the process.

8 Proofs of the main results

In this section we prove a general result (Theorem 8.1 below), which allows us to reduce Littlewood–Offord-type
statements about estimating ρ(A,S) for an algebraic variety S to questions about counting lattice points on
S (in the sense of the integer point density function from Definition 3.6). We will then show how to apply
Theorem 8.1 along with the number-theoretic results presented in Section 6.2 to derive Theorems 1.1, 1.3
and 1.4. After that, we deduce Theorems 1.2 and 1.8 from Theorem 1.4.
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Theorem 8.1. Let S ⊆ Ck be a variety of dimension at most ℓ and degree at most d. Consider a sequence A
of vectors in Ck with basis packing number at least b ⩾ 2. Then there exists r = Od,k(1) such that

ρ(A,S) ⩽ Od,k

((
dS(
√
b log b) + (b log b)−(k−ℓ+1)/2

)
· (log b)r

)
.

In comparison to Theorem 4.1, note that Theorem 8.1 does not require that ρ(A) ⩾ n−C , but instead requires
that S is an algebraic variety of bounded degree (and it gives a slightly worse bound).

Proof of Theorem 8.1. Let S1, . . . , St (where t ⩽ d) be the irreducible components of S. By Fact 3.3, we
have ρ(A,S) ⩽

∑t
j=1 ρ(A,Sj). Therefore, by treating each irreducible component separately, we may assume

that S is irreducible.

We have a sequence A of vectors in Ck with basis packing number at least b. Consider a subsequence A0 of
A, which contains only the vectors of the b bases. It has size m = bk and basis packing number equal to
b. Applying Theorem 7.1 to the sequence A0 and the variety S with δ = 1/k and C1 = k + 1, we obtain a
decomposition Ck = U ⊕ W , a variety S′ ⊆ W of degree at most dk, and a subsequence A′ satisfying the
following conditions:

(1) The basis packing number of A′ is at least αm for some α = α(k) > 0;

(2) Let πW : Ck →W be the projection map. Then for some C = C(d, k) we have ρ(πW (A′)) ⩾ m−C ;

(3) π−1
W (S′) ⊆ S, and ρ(A′, S \ π−1

W (S′)) ⩽ m−(k+1).

Assuming that b is sufficiently large with respect to d and k, condition (3) guarantees that

ρ(A′, S \ π−1
W (S′)) ⩽ m−(k+1) ⩽ b−(k+1) ⩽ (b log b)−(k−ℓ+1)/2(log b)r. (17)

By Facts 3.2 and 3.3,
ρ(A,S) ⩽ ρ(A′, S) ⩽ ρ(A′, π−1

W (S′)) + ρ(A′, S \ π−1
W (S′)).

Then, by (17), the second summand ρ(A′, S\π−1
W (S′)) is small compared to the desired upper bound. Therefore,

it is sufficient to focus on the first summand ρ(A′, π−1
W (S′)). Fact 3.4 implies that

ρ(A′, π−1
W (S′)) = ρ(πW (A′), S′).

By condition (1), the basis packing number of the sequence A′ is at least αm, thus the same holds for πW (A′)
(as a sequence of vectors inW ). Let m′ be the size of A′, so we have αm ⩽ m′ ⩽ m. Condition (2) then implies
that ρ(πW (A′)) ⩾ m−C ⩾ (m′)−C

′
for some constant C ′ = C ′(C, k). Therefore, we can apply Theorem 4.1 to

the sequence πW (A′) and the variety S′ with F = C, δ = α and C1 = k + 1. As a result, we obtain a positive
integer r = Od,k(1) such that

ρ(πW (A′), S′) ⩽ Od,k

(
dS′(

√
m′ logm′) · (logm′)r + (m′)−(k+1)

)
.

Since αb ⩽ αm ⩽ m′ ⩽ m = bk and the density function does not “jump too much” by Proposition 3.8, we
conclude that

ρ(πW (A′), S′) ⩽ Od,k

(
dS′(

√
b log b) · (log b)r + b−(k+1)

)
. (18)

Again, b−(k+1) is small compared to the desired upper bound. The expression in the first summand is quite
similar to the one in the statement of the theorem, except that it involves the density function of S′ instead of
S. We consider two cases depending on whether π−1

W (S′) = S or not.

First, suppose that π−1
W (S′) = S. Then, by Proposition 3.7, we have dS′ = dS . Substituting this into (18) gives

the desired bound, completing the proof in this case.
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Otherwise, we have π−1
W (S′) ⊊ S. As S is irreducible, we combine this with Fact 6.2 to conclude that

codimS′ = codim(π−1
W (S′)) ⩾ codimS + 1 ⩾ k − ℓ+ 1.

Recall that degree of S′ is at most dk. Then from the Schwartz–Zippel lemma (Proposition 6.6) we have

dS′(
√
b log b) ⩽ Od,k

(
(b log b)−(k−ℓ+1)/2

)
.

Again, substituting this into (18) completes the proof.

Proof of Theorem 1.4. The probability P[ξ1a1 + . . .+ ξnan ∈ S] is bounded by ρ(A,S), and we would like
to prove that

ρ(A,S) ⩽ Od,k
(
b−(k−ℓ+1−1/d)(log b)Cd,k

)
.

By Theorem 8.1, for some r = Od,k(1) we have

ρ(A,S) ⩽ Od,k

((
dS(
√
b log b) + (b log b)−(k−ℓ+1)/2

)
· (log b)r

)
, (19)

Recall that S ⊆ Ck is an irreducible variety of dimension ℓ and degree d. Then, by Pila’s bound (Theorem 6.7),

dS(
√
b log b) = sup

φ

(
Nφ(S)(

√
b log b)

(2⌊
√
b log b⌋+ 1)k

)
⩽ Od,k

(
b−(k−ℓ+1−1/d)/2(log b)Cd−(k−ℓ+1−1/d)/2

)
.

Substituting this into (19) gives ρ(A,S) ⩽ Ok
(
b−(k−l+1−1/d)/2(log b)Cd+r−(k−l+1−1/d)/2

)
, completing the proof.

Next, we deduce Theorem 1.3 by combining Theorem 1.4 with the following result of Ferber, Jain and Zhao
[15] (which is a refined version of Halász’ theorem [18]).

Theorem 8.2 ([15, Theorem 1.11]). Let A be a sequence of vectors in Rk, and let I1, . . . , Is (for some even s)
be a partition of [n]. Denote t := 1

s

∑s
j=1 dimR spanR{ai : i ∈ Ij}. Then

sup
x∈Rk

P[ξ1a1 + . . .+ ξnan = x] ⩽

(
2−s
(
s

s/2

))t
.

Proof of Theorem 1.3. Let S1 be an irreducible component of S. If degS1 ⩾ 2, we apply Theorem 1.4 to
conclude that

P[ξ1a1 + . . .+ ξnan ∈ S1] ⩽ Od,k

(
b−(k−dimS1+1−1/ degS1)/2(log b)C

)
.

for some constant C depending only on degS1 and k. Since

dimS1 ⩽ dimS ⩽ ℓ and 2 ⩽ degS1 ⩽ degS ⩽ d,

this bound is at most Od,k(b
−(k−ℓ)/2). This completes the proof in this case.

If degS1 = 1 then S1 is an affine subspace of dimension at most ℓ (by enlarging it, we may assume that its
dimension is exactly ℓ). A minor technical issue we need to handle is that Theorem 8.2 is stated only for point
probabilities and only over the field R.

Let V be the linear subspace which is a translate of S1, and let π : Ck → Ck/V ≃ Ck−ℓ ≃ R2(k−ℓ) be the
quotient map. By assumption, there is a partition I1, . . . , Ib1 of [n] with b1 = 2⌊b/2⌋ ⩽ b, such that each subset
of vectors {ai : i ∈ Ij} contains a basis of Ck. Then, for any 1 ⩽ j ⩽ b1,

dimR spanR{π(ai) : i ∈ Ij} ⩾ dimC spanC{π(ai) : i ∈ Ij} = k − ℓ.
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Applying Theorem 8.2 to this partition, we conclude that

P[ξ1a1 + . . .+ ξnan ∈ S1] ⩽ sup
x∈Ck/V

P[ξ1π(a1) + . . .+ ξnπ(an) = x] ⩽

(
2−b1

(
b1
b1/2

))k−ℓ
⩽ O(b−(k−ℓ)/2).

Summing over all irreducible components of S (there are at most d of them) completes the proof.

Next, we deduce Theorems 1.1, 1.2 and 1.8 from the results proved previously in this section. All these deduc-
tions share the same first step, which is an application of the “dropping to a subspace” lemma (Lemma 3.5).

Proof of Theorem 1.1. As F has Chow rank at most c, it can be written as

F (t1, . . . , tn) = f(L1(t1, . . . , tn), . . . , Lk(t1, . . . , tn))

for k = dc, some f ∈ C[x1, . . . , xk] and homogeneous linear forms L1, . . . , Lk. Suppose that the form Li is
given by ai1t1 + . . .+ aintn for some coefficients aij ∈ C. Denoting aj = (a1j , . . . , akj) ∈ Ck, we have

F (t1, . . . , tn) = f(t1a1 + . . .+ tnan).

Let b0 = ⌊b/(k(k + 1))⌋ + 1. Then by Lemma 3.5 applied to the sequence A = (a1, . . . , an), there exists a
subsequence A′ = A[I0] of size at least

n− (b0 − 1)
k(k + 1)

2
⩾ n− b/2,

and a subspace V ′ ⊆ Ck (of dimension k′ ⩽ k) such that all the elements of A′ lie in V ′, and A′ has basis
packing number at least b0 (as a sequence of vectors in V ′).

Let I1 = [n] \ I0, so |I1| ⩽ b/2 < b. It suffices to show that for an arbitrary outcome of the Rademacher
random variables (ξi)i∈I1 , if we condition on (ξi)i∈I1 taking this particular outcome, then the desired bounds on
P[F (ξ1, . . . , ξn) = 0] hold in the resulting conditional probability space. In other words, let F∗ be a polynomial
obtained by an arbitrary substitution of ±1 instead of the variables (ti)i∈I1 ; it suffices to prove the desired
bounds with “F∗” in place of “F”.

Note that we can write

F∗((ti)i∈I0) = f∗

(∑
i∈I0

tiai

)
(20)

for some polynomial f∗ defined on V ′ (one can take f∗(x) to be a restriction of f(x + x0) to V ′, for certain
x0 ∈ Ck). Therefore, we need to estimate the probability that f∗

(∑
i∈I0 ξiai

)
= 0.

Let S ⊆ V ′ ≃ Ck′ be the variety defined by f∗.

(1) First, we prove Theorem 1.1(1). By our assumption, F∗ is not identically zero. Since b0 ⩾ 1, the vectors
(ai)i∈I0 span the vector space V ′, and thus the polynomial f∗ is also not identically zero. By Fact 6.3
(applied to each irreducible factor of f∗ over C) combined with Fact 6.1, S has dimension k′ − 1 and
degree at most deg f∗ ⩽ deg f = d.

As the basis packing number of the sequence A′ is at least b0, from Theorem 1.3 we obtain that

P

[
f∗

(∑
i∈I0

ξiai

)
= 0

]
= P

[∑
i∈I0

ξiai ∈ S

]
⩽ Od,k(b

−1/2
0 ).

Since b0 = Ωk(b), this completes the proof.
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(2) Next, we prove Theorem 1.1(2). We may assume that b > 2d (otherwise, the desired probability bound
is trivial). Let F=d

∗ be the homogeneous degree-d part of F∗. The polynomial F∗, in turn, was obtained
from F by substitution of ±1’s instead of at most b/2 of its variables. Observe that each variable of F
is part of at most nd−1 monomials of degree d, and that there are at most dnd−1 monomials of degree
less than d in total. Therefore, F=d

∗ − F has at most (b/2 + d)nd−1 < bnd−1 nonzero coefficients. So, by
our assumption on F , the polynomial F=d

∗ is irreducible (in particular, it is not zero). Recalling (22), we
conclude that the homogeneous degree-d part f=d∗ of f∗ is also irreducible and nonzero.

So, f∗ is an irreducible polynomial of degree d. Moreover, we note that f∗ cannot be written as a
polynomial of two linear forms. Indeed, otherwise f=d∗ can be represented as g(L1, L2) for a homogeneous
polynomial g ∈ C[x1, x2] and two homogeneous linear forms L1, L2. Recall that C is algebraically closed,
and let r1, . . . , rd∗ be the complex roots of g(1, z). Then

g(L1, L2) = Ld1g(1, L2/L1) = z0L
d
1

d∗∏
j=1

(L2/L1 − rj) = z0L
d−d∗
1

d∗∏
j=1

(L2 − rjL1) (for some z0 ∈ C).

So, f=d∗ splits into a product of linear forms. As d ⩾ 1, this contradicts its irreducibility.

Since the variety S ⊆ Ck′ is defined by the irreducible polynomial f∗ of degree d, it has dimension k′ − 1
and degree d by Fact 6.3. Recall that the basis packing number of the sequence A′ is at least b0. Applying
Theorem 8.1 to A′ and S, we obtain that

P

[
f∗

(∑
i∈I0

ξiai

)
= 0

]
= P

[∑
i∈I0

ξiai ∈ S

]
⩽ Od,k

((
dS(
√
b0 log b0) + (b0 log b0)

−1
)
· (log b0)r

)
(21)

for some r = Od,k(1). Since f∗ is an irreducible polynomial of degree d ̸= 3 which cannot be represented
as a polynomial of two linear forms, we can estimate the density function dS using the result of Vermeulen
and Browning–Gorodnik (Theorem 6.8). Namely, we conclude that for any ε > 0

dS

(√
b0 log b0

)
⩽ Od,k,ε

(
b−1+ε
0

)
.

Since b0 = Ωk(b), substituting this into (21) completes the proof.

Remark 8.3. In fact, the proof of Theorem 1.1(2) implies the following slightly stronger statement. Let
F ∈ C[t1, . . . , tn] be a polynomial of degree d ̸= 3 and Chow rank at most c. Suppose that after any substitution
of ±1’s instead of fewer than b variables of F , the resulting polynomial is irreducible of degree d and cannot be
written as a polynomial of two linear forms. Then for any ε > 0 we have P[F (ξ1, . . . , ξn) = 0] = Od,k,ε(b

−1+ε).

Proof of Theorem 1.2. The first half of the proof is almost identical to the first half of the proof of Theo-
rem 1.1. As F has Chow rank at most c (over F), it can be written as

F (t1, . . . , tn) = f(L1(t1, . . . , tn), . . . , Lk(t1, . . . , tn))

for k = dc, some f ∈ F[x1, . . . , xk] and homogeneous linear forms L1, . . . , Lk with coefficients in F. Suppose
that the form Li is given by ai1t1 + . . .+ aintn with aij ∈ F. Denoting aj = (a1j , . . . , akj) ∈ Fk, we have

F (t1, . . . , tn) = f(t1a1 + . . .+ tnan).

Let b0 = ⌊b/(k(k + 1))⌋ + 1. Then by Lemma 3.5 applied to the sequence A = (a1, . . . , an), there exists a
subsequence A′ = A[I0] of size at least n− b/2 and a subspace V ′ ⊆ Fk (of dimension k′ ⩽ k) such that all the
elements of A′ lie in V ′, and A′ has basis packing number at least b0 (as a sequence of vectors in V ′).

Let I1 = [n] \ I0, |I1| ⩽ b/2 < b. It suffices to show that for an arbitrary outcome of the Rademacher
random variables (ξi)i∈I1 , if we condition on (ξi)i∈I1 taking this particular outcome, then the desired bounds on
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P[F (ξ1, . . . , ξn) = 0] hold in the resulting conditional probability space. In other words, let F∗ be a polynomial
obtained by an arbitrary substitution of ±1 instead of variables (ti)i∈I1 ; it suffices to prove the desired bounds
with “F∗” in place of “F”.

Note that we can write

F∗((ti)i∈I0) = f∗

(∑
i∈I0

tiai

)
(22)

for some polynomial f∗ with coefficients in F defined on V ′ (one can take f∗(x) to be a restriction of f(x+ x0)
to V ′, for certain x0 ∈ Fk). Therefore, we need to estimate the probability that f∗

(∑
i∈I0 ξiai

)
= 0.

By our assumption, F∗ is irreducible (over F) of degree d. Since b0 ⩾ 1, the vectors (ai)i∈I0 span the vector
space V ′, and thus f∗ is also irreducible (over F) of degree d. First, we consider the case when f∗ is, furthermore,
irreducible over C.

As we have V ′ ≃ Fk′ ⊆ Ck′ , let S ⊆ Ck′ be the variety defined by f∗. By Fact 6.3, it is an irreducible variety
of dimension k′− 1 and degree d. As the basis packing number of A′ (as a sequence of vectors in V ′) is at least
b0, we apply Theorem 1.4 to conclude that

P

[
f∗

(∑
i∈I0

ξiai

)
= 0

]
= P

[∑
i∈I0

ξiai ∈ S

]
⩽ Od,k

(
b
−1+ 1

2d
0 (log b0)

Cd,k

)
.

Since b0 = Ωk(b), this completes the proof in this case.

Next, we consider the case when f∗ is reducible over C. Let g be any irreducible (over C) factor of f∗. Since
f∗ is irreducible over F, g is not proportional to a polynomial with coefficients in F. Thus, by Proposition 6.9,
there exists a variety T ⊆ Ck′ of dimension at most k′ − 2 and degree at most d2 such that T ∩ Fk′ = Sg ∩ Fk′

(where Sg ⊆ Ck′ is the variety defined by g). Note that
∑
i∈I0 ξiai always lies in Fk′ . As the basis packing

number of A′ is at least b0, from Theorem 1.3 we conclude that

P

[
g

(∑
i∈I0

ξiai

)
= 0

]
= P

[∑
i∈I0

ξiai ∈ Sg

]
= P

[∑
i∈I0

ξiai ∈ T

]
⩽ Od,k(b

−1
0 ).

Since b0 = Ωk(b), this is at most Od,k(b
−1). Taking the sum over all irreducible (over C) factors of f∗ completes

the proof.

Before proceeding to the proof of Theorem 1.8, we record the following proposition about the Zariski closure
of a semialgebraic set. Our main reference for properties of semialgebraic sets is the notes of Coste [9].

Proposition 8.4. Let S ⊆ Rk ⊆ Ck for k ⩾ 1 be a semialgebraic set which does not contain a line segment.
Then the Zariski closure of S in Ck is a variety of dimension at most k − 1 (equivalently, this Zariski closure
is not the whole Ck).

Proof. The statement follows from these three facts:

• [9, Proposition 3.15] The dimension of S as a semialgebraic set is defined as the maximum dimension of
a cell in its cell decomposition. A cell of dimension k is homeomorphic to (0, 1)k, and therefore contains
a line segment. Therefore, the dimension of S as a semialgebraic set is at most k − 1.

• [9, Theorem 3.20] The dimension of S as a semialgebraic set is equal to the dimension of its real Zariski
closure SR (as a real algebraic set).

• The dimension of SR as a real algebraic set is equal to the dimension of its complex Zariski closure SC
(as a complex algebraic variety). Since the dimension of a variety is equal to the Krull dimension of
its coordinate ring [19, Proposition 1.7], this can be seen (for example) from the Noether normalization
lemma.
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Proof of Theorem 1.8. Let b0 = ⌊n/(k(k + 1))⌋ + 1. Then by Lemma 3.5 applied to the sequence A =
(a1, . . . , an), there exists a subsequence A′ = A[I0] of size at least n/2 and a subspace V ′ ⊆ Rk such that all
the elements of A′ lie in V ′, and A′ has basis packing number at least b0 (as a sequence of vectors in V ′).
Conditioning on the outcomes of the random variables (ξi)i∈[n]\I0 , we have

P[ξ1a1 + . . .+ ξnan ∈ S] ⩽ sup
x∈Rk

P

[∑
i∈I0

ξiai ∈ (S − x) ∩ V ′

]
. (23)

As V ′ ⊆ Rk ⊆ Ck, define V ′
C ⊆ Ck as be the minimal complex subspace containing V ′. It satisfies V ′

C∩Rk = V ′

and dimC VC = dimR V
′.

Fix any x ∈ Rk. Note that (S − x) ∩ V ′ is a semialgebraic set which does not contain a line segment (since S
does not contain a line segment). Then, by Proposition 8.4, the complex Zariski closure SC ⊆ V ′

C of (S−x)∩V ′

has dimension at most dimV ′
C − 1. Recall that the basis packing number of the sequence A′ is at least b0.

Applying Theorem 1.3 to A′ and SC, we conclude that

P

[∑
i∈I0

ξiai ∈ (S − x) ∩ V ′

]
⩽ P

[∑
i∈I0

ξiai ∈ SC

]
⩽ Odeg(SC),k(b

−1/2
0 ).

Since b0 = Ωk(n), substituting this into (23) completes the proof.

Remark 8.5. The bound in Theorem 1.8 is sharp up to a multiplicative constant factor: if S = {0}, and
a1 = . . . = a2n ∈ Rk \ {0}, then P[ξ1a1 + . . .+ ξ2na2n ∈ S] =

(
2n
n

)
/22n = Θ(n−1/2). However, we sketch how

this bound can be improved under additional conditions on the vectors a1, . . . , an.

• Suppose that the vectors a1, . . . , an ∈ Rk in Theorem 1.8 satisfy the following condition: for some δ > 0
every line passing through the origin contains fewer than (1 − δ)n of them (this happens, for example,
when k ⩾ 2 and one can form δn disjoint bases from these vectors). Then one can modify the proof
above to ensure that dimV ′

C ⩾ 2. Since S does not contain a line segment, a simple argument based on
Proposition 8.4 implies that no irreducible component of its Zariski closure SC ⊆ V ′

C is a hyperplane in
V ′
C. Therefore, applying Theorem 1.4 instead of Theorem 1.3, we obtain a stronger bound

P[ξ1a1 + . . .+ ξnan ∈ S] ⩽ OS,δ(n
−3/4(log n)Ck).

• Furthermore, suppose that the vectors a1, . . . , an ∈ Rk satisfy the following condition: for some δ > 0
every two-dimensional linear subspace contains fewer than (1−δ)n of them. In this case one can similarly
ensure that dimV ′

C ⩾ 3, and that each irreducible component of the Zariski closure SC ⊆ V ′
C either has

codimension at least two, or is not a preimage of a curve under a linear map. Applying Theorem 8.1
combined with the best known results on the affine dimension growth conjecture (which is settled for
d ̸= 3, but has only partial results for d = 3) stated for varieties “not cylindrical over a curve” [37,
Theorem 1.2], we can get a bound of roughly OS,δ(n

−0.92).

9 Concluding remarks

In this paper we have introduced a general method to study certain geometric variants of the Littlewood–Offord
problem via lattice point counting, and applied this method in several different contexts. There are a number
of interesting directions for future research.

First, regarding the general polynomial Littlewood–Offord problem: one of our primary motivations to consider
the bounded-rank setting was that this setting already seems to incorporate many of the most important
difficulties of the general polynomial Littlewood–Offord problem. Indeed, the resolution of the quadratic
Littlewood–Offord problem by Kwan and Sauermann [25] was accomplished by first solving the bounded-rank
case, and then adapting and quantifying the approach for the general case.
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Unfortunately, it seems challenging to adapt the techniques in this paper to general polynomials (without a
bound on the Chow rank). We remark that we do not really need the Chow rank to be O(1): indeed, it should
be straightforward to modify our proof of Theorem 1.1(1) (by using Theorem 1.4 and the Erdős–Littlewood–
Offord theorem instead of Theorem 1.3) to show that there is a slowly growing function h(n) such that when
the Chow rank of F is at most h(n) then

P[F (ξ1, . . . , ξn) = 0] ⩽ Od(b
−1/2),

with the implicit constant not depending on the Chow rank. However, h(n) would definitely need to grow
rather slowly (e.g., it seems significant new ideas would be required to handle Chow rank as large as n0.01).

It may also be fruitful to consider different (“weaker”) notions of rank/complexity than Chow rank. Indeed,
while there is only really one sensible notion of rank for quadratic polynomials, for polynomials of higher degree
there are several fundamentally different notions of rank. One natural candidate that often arises in analytic
number theory is the Schmidt rank (also called h-invariant or strength): for a polynomial F of degree d, its
Schmidt rank is the smallest integer s such that F can be written as

∑s
i=1 Pi, where each Pi is a product of

two polynomials of degree strictly less than d (for a homogeneous polynomial of a fixed degree d, its Schmidt
rank is equivalent to the so-called partition rank of its coefficient tensor).

Finally, another interesting direction is to consider “small-ball concentration” probabilities instead of “point
concentration” probabilities. Namely, assuming that “sufficiently many” coefficients of F have absolute value
at least 1, one can sometimes obtain similar upper bounds on P[|F (ξ1, . . . ξn)| ⩽ 1] (see [18, 27, 15]). It seems
difficult to adapt our methods to this setting. One reason for this is that the decoupling techniques used in
Section 7 are not well-suited for small-ball probabilities. Another reason is that we are not aware of appropriate
number-theoretic results (analogous to Theorem 6.7) sufficient to finish the proof in the small-ball setting.
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[2] Imre Bárány and David G. Larman. The convex hull of the integer points in a large ball. Math. Ann.,
312(1):167–181, 1998.

[3] Thomas F. Bloom and Jared Duker Lichtman. The Bombieri–Pila determinant method. December 2023.
Preprint, arXiv:2312.12890.

[4] E. Bombieri and J. Pila. The number of integral points on arcs and ovals. Duke Math. J., 59(2):337–357,
1989.

[5] T. D. Browning and A. Gorodnik. Power-free values of polynomials on symmetric varieties. Proc. Lond.
Math. Soc. (3), 114(6):1044–1080, 2017.

[6] T. D. Browning, D. R. Heath-Brown, and P. Salberger. Counting rational points on algebraic varieties.
Duke Math. J., 132(3):545–578, 2006.

[7] Boris Bukh and Jacob Tsimerman. Sum-product estimates for rational functions. Proc. Lond. Math. Soc.
(3), 104(1):1–26, 2012.

[8] Alex Cohen and Guy Moshkovitz. Partition and analytic rank are equivalent over large fields. Duke Math.
J., 172(12):2433–2470, 2023.

[9] Michel Coste. An introduction to semialgebraic geometry, 2000.

[10] Kevin P. Costello. Bilinear and quadratic variants on the Littlewood-Offord problem. Israel J. Math.,
194(1):359–394, 2013.

29



[11] Kevin P. Costello, Terence Tao, and Van Vu. Random symmetric matrices are almost surely nonsingular.
Duke Math. J., 135(2):395–413, 2006.

[12] Kevin P. Costello and Van H. Vu. The rank of random graphs. Random Structures Algorithms, 33(3):269–
285, 2008.
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