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Abstract. How many points can be placed in an n × n grid so that every (affine) line contains at most k

points? We prove that for n ⩾ k ⩾ 1037 the maximum number of points is exactly kn. Our proof builds

on the recent work of Kovács, Nagy, and Szabó (who proved an analogous result when k is at least about√
n logn), incorporating ideas of Jain and Pham. Using the same approach, we also obtain new bounds for

higher-dimensional extensions of this problem.

1. Introduction

The no-three-in-line problem, posed by Dudeney at the beginning of the 20th century [7], asks for the maximum
number of points that can be placed on an n×n grid such that no three points are collinear. Despite significant
attention over the years, the problem remains open: the best known upper bound 2n comes from the observation
that each of the n horizontal lines can contain at most two points, while the best known lower bound (1.5−o(1))n
comes from the modular hyperbola construction of Hall, Jackson, Sudbery, and Wild [17]. For more history
and background, see for example the surveys by Brass, Moser, and Pach [5] and Eppstein [8], and Green’s list
of open problems [14].

Several different conjectures were made concerning the asymptotic behaviour of the answer to the no-three-in-
line problem, including suggestions that it could be roughly 1.5n [14], roughly 2n [5], or somewhere in between
[8, 15]. For small values of n, examples attaining the trivial upper bound 2n are known [2, 10, 11].

A natural generalisation of this problem, first studied by Brass and Knauer [4] in a more general context, is
to ask for the maximum size of a subset of the n× n grid containing at most k points on each line. Denoting
this maximum by fk(n), the trivial upper bound is fk(n) ⩽ kn. Lefmann [25, Proposition 2] proved that
fk(n) = Ω(kn) for every k ⩾ 2. Recently, Kovács, Nagy, and Szabó [24] showed that fk(n) = kn for each
k ⩾ C

√
n log n (when C > 12.5 and n is sufficiently large in terms of C). They also noted [24, Section 4] that,

conditionally on some strong results about random regular graphs (i.e., the bipartite version of the Kim–Vu
sandwich conjecture [21]; see [3, 12, 22] for recent progress), their approach could yield an analogous statement
for k of order at least log n.

We strengthen these results by proving that fk(n) = kn for every n ⩾ k ⩾ K0, for some absolute constant K0

(our proof gives K0 = 1037, but we did not attempt to optimise it).

Theorem 1.1. Let n, k be integers such that 1037 ⩽ k ⩽ n. Then there exists a subset S of the n× n grid of
size kn such that every line contains at most k points of S.

In a different work, Kovács, Nagy, and Szabó [23] studied this problem in the regime when k is small compared
to n, using randomised algebraic constructions. In particular, they demonstrated that fk(n) ⩾ (k − 3)n when
n is sufficiently large in terms of k, and conjectured that fk(n) = kn+o(n) when k = k(n) = ω(1) and n → ∞.
Theorem 1.1 confirms this conjecture in a strong sense.

Interestingly, all known linear-size constructions for the no-three-in-line problem are algebraic in nature (though
there are random constructions [9, 13] of size about n/

√
log n). In a related question, Green [14] asked whether

every “large” no-three-in-line set reduces to an algebraic curve modulo some prime. Although Theorem 1.1
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only gives no-(k + 1)-in-line sets for large k, we remark that our constructions are purely probabilistic and do
not exhibit any algebraic structure.

1.1. Proof ideas. Let L be the set of lines intersecting the n × n grid in at least two points. For each line
L ∈ L, define its weight as

w(L) :=
|[n]2 ∩ L|

n
∈ [2/n, 1].

The framework of Kovács, Nagy, and Szabó [24] allows us to reduce Theorem 1.1 to Theorem 1.2 below, which
permits a 0.01k excess over the expected number of points on the lines that are not horizontal or vertical.
Therefore, the main content of this paper is the proof of Theorem 1.2 (though, for the reader’s convenience,
we also present a deduction of Theorem 1.1 in Section 5).

Theorem 1.2. Let n, k be integers such that 1036 ⩽ k ⩽ 0.9 · n. Then there exists a subset S ⊆ [n]2 that
contains exactly k points on each horizontal and each vertical line, and at most k ·(w(L)+0.01) points on every
other line L ∈ L.

Kovács, Nagy, and Szabó [24] were able to prove a result along the lines of Theorem 1.2 under the much stronger
assumption that k is at least about

√
n log n. They did this by choosing the desired point set randomly, using

concentration inequalities to show that the number of points on each line is unlikely to deviate much from its
expectation. This works when k grows sufficiently fast as a function of n but breaks down for constant k: the
main issue is that a union bound over all lines becomes too inefficient.

To overcome this issue, we build on ideas from the work of Jain and Pham [18] on optimal thresholds for Latin
squares in random hypergraphs. Namely, we design an iterative subsampling procedure that uses the Lovász
Local Lemma at each step, maintaining control over the number of points on each line (roughly speaking, we
maintain tight control on the number of points on lines whose weight exceeds some threshold, gradually raising
this threshold as the procedure continues and the light lines become increasingly unimportant). Moreover, at
each step of the procedure, instead of constructing a single configuration of points, we construct a “spread”
probability distribution over suitable configurations. We then use this spread property to show that a sample
from the final distribution obtained from our procedure is likely to satisfy a certain Hall-type condition, which
provides a subset containing exactly k points on each horizontal and each vertical line.

1.2. Higher dimensions. A further generalisation of this problem, introduced by Brass and Knauer [4], is
to ask for the maximum size of a subset of the d-dimensional grid [n]d that contains at most k points in each
affine subspace of dimension t (where 1 ⩽ t ⩽ d − 1). Denoting this maximum by fk,d,t(n), the trivial upper
bound is fk,d,t(n) ⩽ knd−t.

Brass and Knauer [4, Lemma 8] proved that fk,d,t(n) = Ω(nd−t−(d(t+1))/k), which was slightly sharpened by

Lefmann [25, Lemma 2] to Ω(nd−t−(t(d+1))/k). Later, Sudakov and Tomon [29, Theorem 1.4] established the
optimal bound fk,d,t(n) = Ωd(n

d−t) when k is sufficiently large in terms of d, and Ghosal, Goenka, and Keevash
[13, Theorem 1.1] extended this result to all k ⩾ d+ 1.

However, all existing lower bounds differ from the trivial upper bound by a multiplicative factor of order k.
We close this gap asymptotically as k → ∞ by showing that in this regime fk,d,t(n) = (1− od(1))kn

d−t.

Theorem 1.3. For an integer d and ε > 0, there exists K1 = K1(ε, d) such that the following holds. For all
integers n, k, t such that K1 ⩽ k ⩽ nt and 1 ⩽ t ⩽ d − 1, there exists a subset S ⊆ [n]d that contains at most
k points in each t-dimensional affine subspace of Rd, and contains at least (1− ε)k points in each axis-aligned
t-dimensional affine subspace of Rd that intersects [n]d. As a consequence,

fk,d,t(n) ⩾ (1− ε)knd−t.

The proof of Theorem 1.3 follows the same overall scheme as the proof of Theorem 1.2, but is significantly
simpler (because it does not aim for an exact bound). So, the rest of the paper is organised as follows. After
reviewing several known results in Section 2, we present the short proof of Theorem 1.3 in Section 3. Then, we
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prove Theorem 1.2 in Section 4, use it to derive Theorem 1.1 in Section 5, and discuss related questions and
further directions in Section 6.

Acknowledgements. We would like to thank Huy Pham for insightful discussions about the proof approach.

2. Preliminaries

Notation. For a positive integer n, we write [n] = {1, . . . , n}. For non-negative reals a, b we use the shorthand
a± b to denote the interval [a− b, a+ b]. For an event E in some probability space, we denote its complement
by E . For functions f = f(n) and g = g(n), we write f = O(g) to mean that there is a constant C such that
|f | ⩽ C|g|, f = Ω(g) to mean that there is a constant c > 0 such that f(n) ⩾ c|g(n)| for sufficiently large n.
Subscripts on asymptotic notation indicate quantities that should be treated as constants. For a (hyper)graph
G, we write V (G) and E(G) for its vertex and edge sets, respectively. For a graph G and subsets A,B ⊆ V (G),
we write EG(A,B) for the set of edges between A and B in G, and eG(A,B) = |EG(A,B)|. For a vertex v of
a graph G, we write degG(v) for its degree in G.

We use the following standard version of the Chernoff bound.

Proposition 2.1. Let X1, . . . , Xn be independent Ber(p) random variables. Then, for every δ ∈ (0, 1),

P[X1 + . . .+Xn /∈ (1± δ)pn] ⩽ 2 exp

(
−δ2pn

3

)
.

The following version of the Lovász Local Lemma (also employed in [16, 18]) provides control over an ensemble
of independent random variables, conditioned on the non-occurrence of a family of “bad events”. Its proof
follows from the standard inductive proof of the Lovász Local Lemma (see [1, Chapter 5.1]).

Proposition 2.2 ([18, Proposition 6]). Given independent random variables {ξi}i∈I and events {Ej}j∈J , where
each event Ej depends on a subset Xj ⊆ I of variables. Assume each event has probability at most q, and that
each set Xj intersects at most ∆ other sets from {Xj′}j′∈J . If 4q∆ ⩽ 1, then

1. P
[⋂

j∈J Ej
]
> 0, and

2. for every event E depending on a subset of variables X ⊆ I which intersects at most M of the sets
{Xj}j∈J ,

P
[
E
∣∣∣ ⋂
j∈J

Ej
]
⩽ P[E ] · exp(6qM).

Also, we recall the classical Ore–Ryser criterion for the existence of a k-regular spanning subgraph in a bipartite
graph (see e.g. [26, §7, Ex. 16]), which also follows from the max-flow–min-cut theorem.

Proposition 2.3. A bipartite graph G with parts A0 and B0 of equal size has a k-regular spanning subgraph
if and only if for all subsets A ⊆ A0 and B ⊆ B0, we have

eG(A,B0 \B) ⩾ k(|A| − |B|).

Finally, we need the following facts about the number of integer points on lines in the plane (Proposition 2.4),
and, more generally, on t-dimensional affine subspaces in Rd (Proposition 2.5).

Proposition 2.4. Let L be the set of lines in R2 intersecting the grid [n]2 in at least two points. Then, for
every point (x1, x2) ∈ [n]2 and α ∈ (0, 1],∣∣{L ∈ L : (x1, x2) ∈ L, |[n]2 ∩ L| ⩾ αn

}∣∣ ⩽ 18α−2.
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Proof. If α ⩽ 2/n, then the total number of lines in L containing (x1, x2) is at most n2 ⩽ 4α−2. Otherwise, let
ℓ := ⌈2α−1⌉ ⩽ n. If (x1, x2) is the only integer point within the rectangle [x1, x1+ℓ−1]×[x2−(ℓ−1), x2+(ℓ−1)]
on some line L ∈ L, then

w(L) =
|[n]2 ∩ L|

n
<

n/ℓ+ 1

n
⩽

2n/ℓ

n
⩽ α.

Therefore, since every two points determine a unique line, the desired number of lines is bounded by the number
of integer points in this rectangle, which is at most 2ℓ2 ⩽ 2(2α−1 + 1)2 ⩽ 18α−2. □

Proposition 2.5. Let n, d, t be integers such that 1 ⩽ t ⩽ d − 1, and let Fd,t denote the set of t-dimensional
affine subspaces of Rd. Then, for every point x ∈ [n]d and α ∈ (0, 1],∣∣{F ⊆ [n]d : x ∈ F, |F | ⩾ αnt, F = F ′ ∩ [n]d for some F ′ ∈ Fd,t

}∣∣ = Od(α
−d). (1)

Proof. Consider a set F = F ′ ∩ [n]d satisfying the conditions in (1), and let Γ ⊆ Zd be the lattice generated
by F − x. Note that F ⊆ (Γ + x) ∩ [n]d ⊆ F ′ ∩ [n]d = F , and hence F = (Γ + x) ∩ [n]d. In particular, F is
uniquely determined by Γ, and

|Γ ∩ [−n, n]d| ⩾ |F | ⩾ αnt. (2)

Denote the rank of Γ by t′ ⩽ t, and let v1, . . . , vt′ ∈ F − x ⊆ [−n, n]d be some generating vectors of Γ. Also

let V = spanR(v1, . . . , vt′), let D =
{∑t′

i=1 civi : c1, . . . , ct′ ∈ [0, 1)
}
⊆ V be the fundamental domain of Γ, and

let det Γ = volt′(D) be the determinant1 of Γ. Then, for every two distinct points y1, y2 ∈ Γ ∩ [−n, n]d, the
translates y1+D and y2+D are disjoint and contained in [−(t′+1)n, (t′+1)n]d∩V . Hence,

⊔
y∈Γ∩[−n,n]d(y+D)

is contained in the t′-dimensional Euclidean ball in V of radius
√
d(t′ + 1)n centred at the origin. Therefore,

as t′ ⩽ t ⩽ d,

|Γ ∩ [−n, n]d| ⩽ volt′(B(0,
√
d(t′ + 1)n))

volt′(D)
= Od

(
nt

det Γ

)
.

Combining this with (2), we conclude that det Γ = Od(α
−1). The statement now follows from a result of

Schmidt [28, Theorem 2], which states that for every M ⩾ 0, the number of lattices Γ ⊆ Zd with det Γ ⩽ M is
Od(M

d). □

3. Proof of Theorem 1.3

It might be possible to prove the bound fk,d,t ⩾ (1 − ε)knd−t (for k sufficiently large in terms of ε, d) using
some type of probabilistic deletion method, in the spirit of [13]. However, we take a different approach based
on repeated applications of the Lovász Local Lemma. This gives the stronger “almost regularity” property in
the statement of Theorem 1.3 (that every axis-aligned subspace has about k points), and serves as a warm-up
for the proof of Theorem 1.2.

Our proof of Theorem 1.3 does not rely heavily on the specific structure of affine subspaces intersecting the
integer grid. The following definition captures the property of main importance to us.

Definition 3.1 (polynomial tails). We say that a hypergraph H (of mixed uniformity) has polynomial tails
(with parameters N,C ∈ N), if every edge of H contains at most N vertices, and for every vertex v ∈ V (H)
and α ∈ (0, 1],

|{F ∈ E(H) : v ∈ F, w(F ) ⩾ α}| ⩽ Cα−C ,

where w(F ) := |F |/N is the weight of an edge F .

1Recall that the determinant det Γ of a rank-t′ lattice Γ is the t′-dimensional volume of its fundamental domain. Equivalently,

det Γ =
√
detG, where G = (⟨vi, vj⟩)1⩽i,j⩽t′ is the Gram matrix of some generating vectors v1, . . . , vt′ of Γ.
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Definition 3.2. Let n, d, t be integers such that 1 ⩽ t ⩽ d − 1, and let Fd,t denote the set of t-dimensional
affine subspaces of Rd. Define Hn,d,t as the hypergraph on the vertex set [n]d with

E(Hn,d,t) = {F ⊆ [n]d : F = F ′ ∩ [n]d for some F ′ ∈ Fd,t}.

Since every t-dimensional affine subspace of Rd intersects [n]d in at most nt points, Proposition 2.5 immediately
implies that Hn,d,t has polynomial tails with N = nt and some C = C(d).

Definition 3.3 (good set). Let H be a hypergraph having polynomial tails (with parameters N and C). For
a real number m ∈ [1, N ], we say that a set S ⊆ V (H) is m-good if it satisfies the following conditions:

(1) (concentration for “heavy” edges) For every edge F ∈ E(H) with w(F ) ∈ (m−2/3, 1], we have

|S ∩ F | ∈ (1±m−1/12)m · w(F ).

(2) (upper bound for “medium” edges) For every edge F ∈ E(H) with w(F ) ∈ (m−2,m−2/3], we have

|S ∩ F | ⩽ (1 +m−1/12)m1/3.

(3) (very few vertices in “light” edges) For every edge F ∈ E(H) with w(F ) ⩽ m−2, we have

|S ∩ F | ⩽ 6C + 3.

Theorem 3.4. Let H be a hypergraph having polynomial tails (with parameters N and C). Then there is
K = K(C) such that for every m with K ⩽ m ⩽ N , there exists an m-good subset of V (H).

Proof of Theorem 1.3 assuming Theorem 3.4. Recall from Definition 3.2 that the hypergraphHn,d,t has
polynomial tails with parameters N = nt and some C = C(d). We may assume that ε < 1/2, and that k is
sufficiently large in terms of ε, d, C. Then, by Theorem 3.4, there exists an (1− ε/2)k-good subset of S ⊆ [n]d.

We claim that S has the desired properties. Indeed, if F ′ is a t-dimensional affine subspace, then F = F ′ ∩ [n]d

is an edge of Hn,d,t. Thus, by conditions (1), (2), (3) from Definition 3.3,

|S ∩ F | ⩽ max
(
(1 + ((1− ε/2)k)−1/12)(1− ε/2)k, 6C + 3

)
⩽ k.

For the lower bound, we note that if F ′ is an axis-aligned t-dimensional affine subspace intersecting [n]d, then
the corresponding edge F = F ′ ∩ [n]d of Hn,d,t has weight 1. Therefore, by condition (1) from Definition 3.3,

|S ∩ F | ⩾ (1− ((1− ε/2)k)−1/12)(1− ε/2)k ⩾ (1− ε)k.

This completes the proof. □

To prove Theorem 3.4, we consider a sequence of real numbers m(1) < m(2) < . . . < m(r) defined as

m(1) = m, m(i+1) = m3
(i), N1/3 < m(r) ⩽ N. (3)

Then, we prove the existence of an m(i)-good set for each i = r, r − 1, . . . , 1 via a downward induction,
applying the Lovász Local Lemma (Proposition 2.2(1)) at each step. This way, Theorem 3.4 easily follows from
Lemma 3.5 below.

Lemma 3.5. Let H be a hypergraph having polynomial tails (with parameters N and C). Let m0,m be real
numbers such that K ⩽ m ⩽ m0 ⩽ N for some K = K(C). Suppose that either

(a) (induction step) m0 = m3 and S0 is an m0-good subset of V (H), or

(b) (base case) m0 = N ⩽ m3 and S0 = V (H) (which is trivially m0-good).

Then there exists an m-good set S ⊆ S0.
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Proof. Let δ := m−1/12. We will assume that m is sufficiently large in terms of C (and, in particular, that
δ ⩽ 0.01). We claim that for an edge F ∈ E(H),

|S0 ∩ F | ∈ (1± δ3)m0 · w(F ) if w(F ) ∈ (m−2, 1]; (4)

|S0 ∩ F | ⩽ (1 + δ3)m0 ·m−2 if w(F ) ∈ (m−2
0 ,m−2]. (5)

Indeed, in case (a), since m0 = m3 and δ3 = m
−1/12
0 , this follows from conditions (1) and (2) from the

definition of an m0-good set. On the other hand, in case (b) we have m0 = N and S0 = V (H), and hence
|S0 ∩ F | = m0 · w(F ) for every edge F ∈ E(H) by the definition of weight.

Let p := m/m0, and let S be a random subset of S0 obtained by including each vertex independently with
probability p. We will show that S is m-good with positive probability, through an application of the Lovász
Local Lemma (Proposition 2.2(1)). First, we identify the bad events and estimate their probabilities.

Heavy edges. For an edge F ∈ E(H) with w(F ) ∈ (m−2/3, 1], let E1(F ) denote the bad event that S does
not satisfy condition (1) for this edge F : that is, |S ∩ F | /∈ (1± δ)m · w(F ). By (4), for such edges F we have
|S0 ∩ F | ∈ (1± δ3)m0 · w(F ). Thus, if E1(F ) occurs, then

|S ∩ F | /∈ (1± δ/2)p|S0 ∩ F |.
Therefore, by the Chernoff bound (Proposition 2.1),

P[E1(F )] ⩽ 2 exp

(
− (δ/2)2p|S0 ∩ F |

3

)
⩽ 2 exp

(
− (δ/2)2(1− δ3)m · w(F )

3

)
⩽ 2 exp

(
−m1/6/13

)
.

Medium edges. For an edge F ∈ E(H) with w(F ) ∈ (m−2,m−2/3], let E2(F ) denote the bad event that S
does not satisfy condition (2) for this edge F . By (4), for such edges F we have

|S0 ∩ F | ⩽ m′ := ⌊(1 + δ3)m0 ·m−2/3⌋.
Let X be a sum of m′ independent Ber(p) random variables. Then, by the Chernoff bound (Proposition 2.1),

P[E2(F )] = P
[
|S ∩ F | > (1 + δ)m1/3

]
⩽ P

[
X > (1 + δ)m1/3

]
⩽ P[X /∈ (1± δ/2)pm′]

⩽ 2 exp

(
− (δ/2)2pm′

3

)
⩽ 2 exp

(
− (δ/2)2(m1/3 − 1)

3

)
⩽ 2 exp

(
−m1/6/13

)
.

Light edges. Note that for edges F with w(F ) ⩽ m−2
0 , condition (3) for S is implied by condition (3) for

S0, so it suffices to consider only edges with w(F ) ∈ (m−2
0 ,m−2]. Let E3(F ) denote the bad event that S does

not satisfy condition (3) for such an edge F . By (5), we have |S0 ∩ F | ⩽ (1 + δ3)m0m
−2. Therefore, denoting

C1 := 6C + 4,

P[E3(F )] = P[|S ∩ F | ⩾ C1] ⩽

(
|S0 ∩ F |

C1

)
· pC1 ⩽

(
(1 + δ3)m0m

−2 ·m/m0

)C1 ⩽ (2/m)
C1 .

Since m is sufficiently large in terms of C, the maximum probability q of a bad event then satisfies

q ⩽ max
(
2 exp(m−1/6/13), (2/m)6C+4

)
= (2/m)6C+4.

Degree of the dependency graph. So, we have exactly one bad event (E1, E2, or E3) for each edge F ∈ E(H)
with w(F ) ∈ (m−2

0 , 1]. Note that each of these events depends only on the Bernoulli random variables associated
with the underlying vertices of S0 ∩ F , and the number of such vertices satisfies |S0 ∩ F | ⩽ (1 + δ3)m0 by (4)
and (5).

Recall that H has polynomial tails (with parameters N and C). Therefore, for every vertex v ∈ V (H) we can
bound the number of edges with large weight containing v as follows:∣∣{F ∈ E(H) : v ∈ F, w(F ) ⩾ m−2

0 }
∣∣ ⩽ Cm2C

0 .

As m0 ⩽ m3, the maximum degree ∆ of the dependency graph of our bad events then satisfies

∆ ⩽ (1 + δ3)m0 · Cm2C
0 ⩽ 2Cm6C+3, and thus 4q∆ ⩽ C26C+7/m.
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Since m is sufficiently large in terms of C, Proposition 2.2(1) completes the proof. □

Proof of Theorem 3.4. Consider a sequence of real numbers m = m(1) < m(2) < . . . < m(r) satisfying (3).
By Lemma 3.5(b), there exists an m(r)-good subset of V (H). Iteratively applying Lemma 3.5(a), we conclude
that there exists an m(1)-good subset of V (H), as required. □

4. Proof of Theorem 1.2

In this section, our goal is to prove Theorem 1.2. Here we do not use the language of hypergraphs with
polynomial tails: though some parts of our argument can be translated to that setting, other parts substantially
rely on the fact that the grid [n]2 can be interpreted as the complete bipartite graph Kn,n. Definition 4.1 below
provides a suitable analogue of good sets from Definition 3.3.

Recall that L denotes the set of lines in R2 intersecting the grid [n]2 in at least two points, and that for every
line L ∈ L,

w(L) =
|[n]2 ∩ L|

n
.

Definition 4.1 (nice set). For real number m ∈ [1, n], we say that a set S ⊆ [n]2 is m-nice if it satisfies the
following conditions:

(1) (concentration for “heavy” lines) For every line L ∈ L with w(L) ∈ (m−2/3, 1], we have

|S ∩ L| ∈ (1±m−1/12)m · w(L).

(2) (upper bound for “medium” lines) For every line L ∈ L with w(L) ∈ (m−2,m−2/3], we have

|S ∩ L| ⩽ (1 +m−1/12)m1/3.

(3) (very few points on “light” lines) For every line L ∈ L with w(L) ⩽ m−2, we have

|S ∩ L| ⩽ C := 14.

(4) (quasirandomness) For every pair of subsets I, J ⊆ [n] of size at least n/10, we have

|S ∩ (I × J)| ∈ (1±m−1/12)|I||J | ·m/n.

For the rest of this section, we fix K := 1036 and ε := 0.005.

Conditions (1), (2), (3) from Definition 4.1 imply that, for k ⩾ K, a (1 + ε)k-nice set contains at most
k · (w(L) + 0.01) points on each line L ∈ L. To prove Theorem 1.2, we will take such a set and “regularise” it:
that is, we will find a subset containing exactly k points on each horizontal and each vertical line.

This regularisation step is the reason we need the quasirandomness condition in Definition 4.1. However, this
quasirandomness condition is not enough on its own, and we need a further idea of Jain and Pham [18]. Indeed,
instead of constructing a single nice set, we construct a sufficiently “spread” probability distribution supported
on nice sets, and prove that a sample from this distribution can be regularised with positive probability.

Formally, we say that a probability distribution on subsets of [n]2 is p-spread if, for every subset T ⊆ [n]2 and
a sample S from this distribution,

P[T ⊆ S] ⩽ p|T |.

Our proof of Theorem 1.2 follows the same general strategy as the proof of Theorem 1.3. Namely, given
n ⩾ k ⩾ K, we consider a sequence of real numbers m(1) < m(2) < . . . < m(r) such that

m(1) = (1 + ε)k, m(i+1) = m3
(i), n1/3 < m(r) ⩽ n, (6)

and find (m(i) + 1)/n-spread distributions supported on m(i)-nice sets for i = r, r − 1, . . . , 1 via a downward
induction. We handle the base case and the induction step of this procedure in Lemma 4.2(b) and Lemma 4.2(a),
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respectively. Then, in Lemma 4.3, we perform the final regularisation step: specifically, we show that a sample
from the (m(1) +1)/n-spread distribution supported on m(1)-nice sets has a subset containing exactly k points
on each horizontal and each vertical line with positive probability.

Lemma 4.2. Let n be an integer and m0,m be real numbers such that K ⩽ m ⩽ m0 ⩽ n. Suppose that either

(a) m0 = m3 and there exists an (m0 + 1)/n-spread distribution supported on m0-nice sets, or

(b) m0 = n ⩽ m3 (in this case, we have the trivial 1-spread distribution supported on the m0-nice set [n]2).

Then there exists an (m+ 1)/n-spread distribution supported on m-nice sets.

Proof. Let δ := m−1/12 ⩽ 0.001. Let S0 be a random m0-nice set sampled from the “original distribution”
(provided by (a) or (b)). We claim that for each line L ∈ L,

|S0 ∩ L| ∈ (1± δ3)m0 · w(L) if w(L) ∈ (m−2, 1]; (7)

|S0 ∩ L| ⩽ (1 + δ3)m0 ·m−2 if w(L) ∈ (m−2
0 ,m−2]. (8)

Indeed, in case (a), since m0 = m3 and δ3 = m
−1/12
0 , this follows from conditions (1) and (2) from the definition

of an m0-nice set. On the other hand, in case (b), we have m0 = n and S0 = [n]2, and hence |S0∩L| = m0 ·w(L)
for every line L by the definition of weight.

Let p := m/m0, and let S be a random subset of S0 obtained by including each point with probability p
(independently of each other and of the randomness of S0). To apply the Lovász Local Lemma (Proposition 2.2),
we first identify the bad events and estimate their probabilities (these calculations are almost identical to those
in the proof of Lemma 3.5).

Heavy lines. For a line L ∈ L with w(L) ∈ (m−2/3, 1], let E1(L) denote the bad event that S does not satisfy
condition (1) from Definition 4.1 for this line L: that is, |S ∩ L| /∈ (1± δ)m ·w(L). By (7), for such lines L we
have |S0 ∩ L| ∈ (1± δ3)m0 · w(L). Thus, if E1(L) occurs, then

|S ∩ L| /∈ (1± δ/2)p|S0 ∩ L|.

Therefore, by the Chernoff bound (Proposition 2.1),

P[E1(L)] ⩽ 2 exp

(
− (δ/2)2p|S0 ∩ L|

3

)
⩽ 2 exp

(
− (δ/2)2(1− δ3)m · w(L)

3

)
⩽ 2 exp

(
−m1/6/13

)
.

Medium lines. For a line L ∈ L with w(L) ∈ (m−2,m−2/3], let E2(L) denote the bad event that S does not
satisfy condition (2) for this line L. By (7), for such lines L we have

|S0 ∩ L| ⩽ m′ := ⌊(1 + δ3)m0 ·m−2/3⌋.

Let X be a sum of m′ independent Ber(p) random variables. Then, by the Chernoff bound (Proposition 2.1),

P[E2(L)] = P
[
|S ∩ L| > (1 + δ)m1/3

]
⩽ P

[
X > (1 + δ)m1/3

]
⩽ P[X /∈ (1± δ/2)pm′]

⩽ 2 exp

(
− (δ/2)2pm′

3

)
⩽ 2 exp

(
− (δ/2)2(m1/3 − 1)

3

)
⩽ 2 exp

(
−m1/6/13

)
.

Light lines. Note that for lines with w(L) ⩽ m−2
0 , condition (3) for S is implied by condition (3) for S0, so it

suffices to consider only lines with w(L) ∈ (m−2
0 ,m−2]. Let E3(L) denote the bad event that S does not satisfy

condition (3) for such line L. By (8), we have |S0 ∩ L| ⩽ (1 + δ3)m0m
−2. Therefore, recalling that C = 14,

P[E3(L)] = P[|S ∩ L| ⩾ C + 1] ⩽

(
|S0 ∩ L|
C + 1

)
· pC+1 ⩽

(
e · (1 + δ3)m0m

−2

C + 1
· p

)C+1

⩽

(
1

5m

)15

.

(Here we used the standard estimate
(
n
k

)
⩽ (en/k)k.)
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Since m ⩾ K = 1036, the maximum probability q of a bad event then satisfies

q ⩽ max(2 exp(−m1/6/13), (1/(5m))15) = (1/(5m))15.

Passing to the conditional distribution. So, we have exactly one bad event (E1, E2, or E3) for each line L
with weight in (m−2

0 , 1]. Note that each of the events E1(L), E2(L), and E3(L) depends only on the Bernoulli
random variables associated with the underlying points of S0 ∩ L, and the number of such points satisfies
|S0 ∩L| ⩽ (1+ δ3)m0 by (7) and (8). Furthermore, by Proposition 2.4, there are at most D := 18m4

0 lines with
weight larger than m−2

0 passing through each point of the grid [n]2. Therefore, since m0 ⩽ m3, the maximum
degree ∆ of the dependency graph satisfies

∆ ⩽ (1 + δ3)m0 ·D ⩽ 20m5
0 ⩽ 20m15, and thus q∆ ⩽ (1/(5m))15 · 20m15 < 1/4.

Let E denote the event that none of the bad events occur. Then P[E ] > 0 by Proposition 2.2(1), and we can
consider the conditional distribution of S given E .

Quasirandomness. If E occurs, then S clearly satisfies conditions (1), (2), and (3). Next, we check that, in
the conditional probability space given E , our random set S also satisfies condition (4) with high probability
(denote the event that condition (4) fails by E4).

Since each of the n horizontal lines contains at most (1 + δ3)m0 points of S0, the total number of events N in
our application of the local lemma satisfies

N ⩽ n · (1 + δ3)m0 ·D ⩽ 20m15n, and thus qN ⩽ (1/(5m))15 · 20m15n < n.

In case (a), condition (4) for S0 gives that

|S0 ∩ (I × J)| ∈ (1± δ3)|I||J | ·m0/n

for every pair of sets I, J ⊆ [n] of size at least n/10. On the other hand, in case (b) we trivially have
|S0 ∩ (I × J)| = |I||J |. Either way, by the Chernoff bound (Proposition 2.1),

P
[
|S ∩ (I × J)| /∈ (1± δ)|I||J | ·m/n

]
⩽ P

[
|S ∩ (I × J)| /∈ (1± δ/2)p · |S0 ∩ (I × J)|

]
⩽ 2 exp

(
− (δ/2)2p|S0 ∩ (I × J)|

3

)
⩽ 2 exp

(
− (δ/2)2(1− δ3)mn

3 · 102

)
⩽ 2 exp

(
−m5/6n

1300

)
.

Therefore, by the union bound and Proposition 2.2(2),

P[E4 | E ] ⩽ P[E4] · exp(6qN) ⩽ 22n · 2 exp(−m5/6n/1300) · exp(6qN)

⩽ exp(n · (2 + 1− (m5/6/1300) + 6)) ⩽ exp(−n).
(9)

(Here we again used that m ⩾ K = 1036.)

Spreadness. We claim that the conditional distribution of S given E and E4 has the desired properties. It is
supported on m-nice sets by construction, hence it only remains to check that it is (m+ 1)/n-spread.

Consider a non-empty set T ⊆ [n]2. In both cases (a) and (b), our original distribution is ((1 +m−3)m0/n)-
spread, and thus

P[T ⊆ S] = p|T | · P[T ⊆ S0] ⩽
(
p · (1 +m−3)m0/n

)|T |
.

The event “T ⊆ S” depends on at most D · |T | bad events. Therefore, by Proposition 2.2(2),

P[T ⊆ S | E ] ⩽ P[T ⊆ S] · exp(6qD|T |) ⩽
(
p · (1 +m−3)m0/n · exp(6qD)

)|T |

⩽
(
(1 +m−3) · exp(m−3/2) ·m/n

)|T |
⩽

(
(1 +m−3)2 ·m/n

)|T |
.

Since n ⩾ m, combining this with (9) gives that

P
[
T ⊆ S | E4 ∩ E

]
⩽

P[T ⊆ S | E ]
1− P[E4 | E ]

⩽
((1 +m−3)2 ·m/n)|T |

1− exp(−n)

⩽
(
(1 + 2 exp(−m)) · (1 +m−3)2 ·m/n

)|T |
⩽

(
(m+ 1)/n

)|T |
.
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This means precisely that the conditional distribution of S given E and E4 is (m+1)/n-spread, completing the
proof. □

In Lemma 4.3 below, we carry out the final regularisation step. The case analysis in its proof is similar to that
in [18, Proposition 11].

Lemma 4.3. Let n, k be integers such that K ⩽ k ⩽ n. Consider a ((1 + ε)k + 1)/n-spread distribution
supported on (1+ε)k-nice sets, and let S ⊆ [n]2 be a random sample from this distribution. Then, with positive
probability, there exists a subset S′ ⊆ S that contains exactly k points on each horizontal and each vertical line.

Proof. Our random subset S ⊆ [n]2 naturally corresponds to a random bipartite graph G with two parts of
size n. Call these two parts A0 and B0. We need to prove that G has a k-regular spanning subgraph. By
Proposition 2.3, it suffices to check that, with positive probability, for every choice of subsets A ⊆ A0, B ⊆ B0,
we have

eG(A,B0 \B) ⩾ k(|A| − |B|). (10)

We cover all possible choices of A ⊆ A0 and B ⊆ B0 by seven “types” (a pair of sets (A,B) may have more
than one type):

• (A,B) is of type 0 if |B| ⩾ |A|;

• (A,B) is of type 1 if |A| > 2|B|;

• (A,B) is of type 2 if |A| ⩾ n/10 and |B| ⩽ n/2;

• (A,B) is of type 3 if |B| < |A| ⩽ 2|B| and |B| ⩽ n/10;

• (A,B) is of type 1* if |B0 \B| > 2|A0 \A|;

• (A,B) is of type 2* if |B0 \B| ⩾ n/10 and |A0 \A| ⩽ n/2;

• (A,B) is of type 3* if |A0 \A| < |B0 \B| ⩽ 2|A0 \A| and |A0 \A| ⩽ n/10.

First, we check that every pair of sets has at least one type. Indeed, if a pair of sets (A,B) is not of type 0
then |B| < |A|, and hence |B| ⩽ n/2 or |A0 \A| ⩽ n/2. Consider the case when |B| ⩽ n/2: if |A| ⩾ n/10 then
this pair is of type 2; otherwise, |B| < |A| < n/10, and thus this pair is of type 1 or of type 3. Similarly, in the
case when |A0 \A| ⩽ n/2, this pair is of type 1*, 2*, or 3*.

Note that pairs of sets (A,B) of type 0 trivially satisfy (10). We will show that

• with probability 1, all pairs of types 1, 1*, 2, and 2* satisfy (10);

• with probability greater than 1/2, all pairs of type 3 satisfy (10);

• with probability greater than 1/2, all pairs of type 3* satisfy (10).

This will immediately imply that, with positive probability, (10) holds for all choices of A ⊆ A0 and B ⊆ B0.

Note that (10) can be equivalently written as eG(B0 \B,A0 \ (A0 \A)) ⩾ k(|B0 \B| − |A0 \A|). Therefore, by
symmetry, it suffices to consider types 1, 2, and 3.

Since k ⩾ K = 1036 and ε = 0.005, we have ε/4 > k−1/12. Thus, by condition (1) from Definition 4.1, every
vertex in G has degree in (1± ε/4)(1 + ε)k.

Type 1 pairs: For a pair (A,B) of type 1 (with |A| > 2|B|), we have

eG(A,B0 \B) ⩾
∑
v∈A

degG(v)−
∑
v∈B

degG(v) ⩾ |A| · (1− ε/4)(1 + ε)k − |B| · (1 + ε/4)(1 + ε)k

⩾ k(|A| − |B|) + k((3ε/4− ε2/4)|A| − (5ε/4 + ε2/4)|B|) ⩾ k(|A| − |B|).



11

Type 2 pairs: For a pair (A,B) of type 2 (with |A| ⩾ n/10 and |B0 \B| = n−|B| ⩾ n/2), condition (4) from
Definition 4.1 implies that

eG(A,B0 \B) ⩾ (1− ε/4) · (1 + ε)k/n · |A|(n− |B|) ⩾ k|A|n− |B|
n

⩾ k(|A| − |B|).

Type 3 pairs: Consider a pair (A,B) of type 3 (with |B| < |A| ⩽ 2|B| and |B| ⩽ n/10). Note that if
eG(A,B0 \B) < k(|A| − |B|), then

eG(A,B) >
∑
v∈A

degG(v)− k(|A| − |B|) ⩾ ((1− ε/4)(1 + ε)− 1)k|A|+ k|B| ⩾ k|B|.

For a set of possible edges E ⊆ A×B of size k|B|, let E(A,B,E) be the event that E ⊆ EG(A,B). Since our
distribution is ((1 + ε)k + 1)/n-spread, we have∑
E⊆A×B, |E|=k|B|

P[E(A,B,E)] ⩽

(
|A||B|
k|B|

)
·
(
(1 + ε)k + 1

n

)k|B|

⩽

(
e|A|
k

· (1 + ε)k + 1

n

)k|B|

⩽

(
6|B|
n

)k|B|

.

For every b ⩽ n/10, we sum these probabilities over all pairs of sets (A,B) with |B| = b and b < |A| ⩽ 2b, to
obtain that ∑

|B|=b
b<|A|⩽2b

∑
E⊆A×B,
|E|=kb

P[E(A,B,E)] ⩽

(
n

b

)
· b
(
n

2b

)
·
(
6b

n

)kb

⩽
(en

b

)3b

·
(
6b

n

)kb

⩽
(
(6e)3 · (6/10)k−3

)b

⩽ (1/4)b.

Therefore, the probability that there is a pair of type 3 violating (10) is at most

∞∑
b=1

(1/4)b < 1/2. □

Proof of Theorem 1.2. Recall that K = 1036, ε = 0.005, and K ⩽ k ⩽ 0.9n. Let (1 + ε)k = m(1) < m(2) <
. . . < m(r) be the sequence of real numbers from (6).

Then, by Lemma 4.2(b), there exists an (m(r)+1)/n-spread distribution supported onm(r)-nice sets. Iteratively
applying Lemma 4.2(a), we obtain an (m(1) + 1)/n-spread distribution supported on m(1)-nice sets. Next,
Lemma 4.3 implies that there exists an m(1)-nice set S containing a subset S′ ⊆ S with exactly k points on
each horizontal and each vertical line.

We claim that S′ has the desired properties. For this, we need to check that for every line L ∈ L, we have

|S′ ∩L| ⩽ k · (w(L)+ 0.01). Let δ := m
−1/12
(1) ⩽ 0.001. Since S is m(1)-nice, condition (1) implies that for every

line L with w(L) ∈ (m
−2/3
(1) , 1],

|S ∩ L| ⩽ (1 + δ)m(1) · w(L) = (1 + δ)(1 + ε)k · w(L) ⩽ k · (w(L) + 0.01).

On the other hand, conditions (2) and (3) imply that for every line L with w(L) ⩽ m
−2/3
(1) ,

|S ∩ L| ⩽ max
(
(1 + δ)m

1/3
(1) , 14

)
⩽ 0.01 · k.

This completes the proof, because S′ is a subset of S. □

5. Proof of Theorem 1.1

In this section, we deduce Theorem 1.1 from Theorem 1.2 using the results of Kovács, Nagy, and Szabó [24].
The key observation behind this deduction is that the only lines with weight close to 1 are horizontal lines,
vertical lines, and the lines of slope ±1 near the main diagonals of the n× n grid.
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Proof of Theorem 1.1. An explicit construction [24, Proposition 3.1] takes care of the case k ⩾ 2
3n. So, we

may assume that k < 2
3n, and hence 3

10k < 0.9 · 1
4n.

First, we additionally assume that 4 | n and 10 | k. As in [24, Definition 3.2], we partition the n× n grid into
sixteen blocks of size n/4× n/4. Formally, for each 1 ⩽ i, j ⩽ 4, we define

Gi,j :=
{
(x, y) ∈ [n]2 : (i− 1)

n

4
< x ⩽ i

n

4
, (j − 1)

n

4
< y ⩽ j

n

4

}
.

We also set

ki,j :=

{
2
10k, if i = j or i+ j = 5 (i.e., if Gi,j intersects one of the main diagonals);
3
10k, otherwise,

and let wi,j(L) := |Gi,j ∩ L|/(n/4) for each line L ∈ L.

For each i, j, we apply Theorem 1.2 (with parameters n/4 and ki,j) to obtain a subset Si,j ⊆ Gi,j with exactly
ki,j points on each horizontal and each vertical line, and at most ki,j · (wi,j(L) + 0.01) points on every other
line L. Let S :=

⊔
1⩽i,j⩽4

Si,j be the union of all these sets.

Since each Si,j contains exactly ki,j points on each horizontal line and each vertical line, S contains exactly k
points on each horizontal and each vertical line. Crucially, by [24, Lemma 3.5], for every line L which is not
horizontal or vertical, we have ∑

1⩽i,j⩽4

ki,jwi,j(L) ⩽
4

5
k,

so

|S ∩ L| =
∑

1⩽i,j⩽4

|Si,j ∩ L| ⩽
∑

1⩽i,j⩽4

ki,j(wi,j(L) + 0.01) ⩽
4

5
k + 0.01

∑
1⩽i,j⩽4

ki,j = 0.84 · k.

Since k ⩾ 1037, this implies, in particular, that |S ∩ L| ⩽ k − 15.

This completes the proof of Theorem 1.1 in the case 4 | n and 10 | k. The general case now follows from [24,
Lemma 3.12 and Lemma 3.13], making use of the “reserve” of 15 points per line. □

6. Concluding remarks

Smaller values of k? We did not try to optimise the constant K0 = 1037 in Theorem 1.1, and our argument
provides a lot of room for optimisation. However, making any progress on the classical no-three-in-line problem
(i.e., the case k = 2) would likely require new ideas. Note that, even for “light” lines, our argument can only
guarantee that they contain at most C = 14 points of our set (see condition (3) in Definition 4.1).

Partitioning the grid into no-(k+1)-in-line sets. In [18], Jain and Pham constructed an optimally spread
probability distribution over decompositions of the edge-set of Kn,n into perfect matchings (i.e., over Latin
squares of order n). It is plausible that, modifying our approach in a suitable way, one also might be able to
prove that for a sufficiently large k and every n divisible by k, the grid [n]2 can be partitioned into n/k sets of
size kn, each containing no k + 1 points on a line.

Exact bound in higher dimensions? A natural further direction is to obtain an exact bound in Theorem 1.3,
analogous to Theorem 1.1. In order to achieve this using our approach, one would need to come up with a
suitable version of the regularisation step (Lemma 4.3). Note that a set S′ ⊆ [n]d that contains exactly k points
in each axis-aligned affine subspace of dimension t is a (multipartite) (n, d, d− t, k)-design, and that one would
need to find such set S′ inside a “random-like” configuration S ⊆ [n]d that contains (1 + o(1))k points in each
axis-aligned affine subspace of dimension t. This appears to be related to the challenging problem of finding
designs inside Erdős–Rényi random hypergraphs of appropriate density (see [6, 18, 19, 20, 27] for partial results
in this direction).
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