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Abstract

An n-vertex graph is called C-Ramsey if it has no clique or independent set of size C log n.
All known constructions of Ramsey graphs involve randomness in an essential way, and there is
an ongoing line of research towards showing that in fact all Ramsey graphs must obey certain
“richness” properties characteristic of random graphs. More than 25 years ago, Erdős, Faudree
and Sós conjectured that in any C-Ramsey graph there are Ω

(
n5/2

)
induced subgraphs, no pair

of which have the same numbers of vertices and edges. Improving on earlier results of Alon,
Balogh, Kostochka and Samotij, in this paper we prove this conjecture.

1 Introduction

An induced subgraph of a graph is said to be homogeneous if it is a clique or independent set. A
classical result in Ramsey theory, proved in 1935 by Erdős and Szekeres [18], is that every n-vertex
graph has a homogeneous subgraph with at least 1

2 log2 n vertices. On the other hand, Erdős [14]
famously used the probabilistic method to prove that, for all n, there exists an n-vertex graph with no
homogeneous subgraph on 2 log2 n vertices. Despite significant effort (see for example [24, 8, 12, 11]),
there are no non-probabilistic constructions of graphs with comparably small homogeneous sets.

For some fixed C, say an n-vertex graph is C-Ramsey if it has no homogeneous subgraph of
size C log2 n. It is widely believed that C-Ramsey graphs must in some sense resemble random
graphs, and this belief has been supported by a number of theorems showing that certain “richness”
properties characteristic of random graphs hold for all C-Ramsey graphs. The first result of this
type was due to Erdős and Szemerédi [19], who showed that C-Ramsey graphs have density bounded
away from 0 and 1. This basic result was the foundation for a large amount of further research;
over the years many conjectures have been proposed and resolved as our understanding of Ramsey
graphs has improved. Improving a result of Erdős and Hajnal [16], Prömel and Rödl [32] proved
that for every constant C there is c > 0 such that every n-vertex C-Ramsey graph contains every
possible graph on c log2 n vertices as an induced subgraph. Shelah [33] proved that every n-vertex
C-Ramsey graph contains 2Ω(n) non-isomorphic induced subgraphs. Answering a question of Erdős,
Faudree and Sós [20, 21], Bukh and Sudakov [10] showed that every n-vertex C-Ramsey graph has
an induced subgraph with Ω(

√
n) different degrees.

Despite this progress, there are several problems that have remained open for quite some time.
Two of them deal with the variation in the numbers of edges and vertices of induced subgraphs of
Ramsey graphs. For a graph G, let

Φ(G) = {e(H) : H is an induced subgraph of G}.
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Erdős and McKay [20, 21] conjectured that for any C there is δ > 0 such that for every n-vertex
C-Ramsey graph G, the set Φ(G) contains the interval

{
0, . . . , δn2

}
. Progress on this conjecture

has come from two directions. First, Alon, Krivelevich and Sudakov [5] proved a weaker result with
nδ in place of δn2. Second, recently Narayanan, Sahasrabudhe and Tomon [30] proposed a natural
relaxation of the Erdős–McKay conjecture, that Φ(G) contains at least Ω

(
n2
)
values (not necessarily

forming an interval). They showed that |Φ(G)| = n2−o(1), and in [27] we proved their conjecture
that Ramsey graphs induce subgraphs of quadratically many sizes.

Next, for a graph G let

Ψ(G) = {(v(H), e(H)) : H is an induced subgraph of G}.

Strengthening a conjecture of Alon and Bollobás, it was conjectured by Erdős, Faudree and Sós
that for any fixed C and any n-vertex C-Ramsey graph G, we have |Ψ(G)| = Ω

(
n5/2

)
. This

problem appeared in several of Erdős’ problem papers [20, 15, 21]. Of course, since |Ψ(G)| ≥ |Φ(G)|,
our result in [27] implies that |Ψ(G)| = Ω

(
n2
)
, which was also proved much earlier by Alon and

Kostochka [4]. Until now, the best progress on the Erdős–Faudree–Sós conjecture was due to Alon,
Balogh, Kostochka and Samotij [1], who proved it with the exponent 2.369 in place of 5/2.

In this paper we establish the Erdős–Faudree–Sós conjecture, combining ideas from many of the
aforementioned papers.

Theorem 1.1. For any fixed C > 0, there is γ > 0 such that every n-vertex C-Ramsey graph G has
|Ψ(G)| = γn5/2.

As mentioned in [15], we remark that the order of magnitude n5/2 is best-possible. This can
be seen by considering a random graph G(n, 1/2) where each edge is present independently with
probability 1/2 (it is well known that this is an O(1)-Ramsey graph with probability 1 − o(1)).
Briefly, one can use a concentration inequality to show that with probability 1− o(2n), the number
of edges in any fixed vertex subset of G(n, 1/2) lies in an interval of length O

(
n3/2

)
, and by the union

bound it follows that with probability 1−o(1), for each 0 ≤ ` ≤ n there are at most O
(
n3/2

)
different

numbers of edges among `-vertex induced subgraphs. This proves that |Ψ(G(n, 1/2))| = O
(
n5/2

)
with probability 1− o(1). See also [4, Section 4] for further discussion of Ψ(G(n, 1/2)).

The rest of the paper is organised as follows. In Section 2 we give a very high-level outline of the
basic ideas of our proof and briefly compare it to previous work. In Section 3 we collect a number
of basic tools which will be useful for our proof (some of which are standard, and some of which are
new), and in Section 4 we present the technical details of our proof. Finally, in Section 5 we discuss
some potential further directions of research.

1.1 Notation and basic definitions

We use standard asymptotic notation throughout. For functions f = f(n) and g = g(n) we write
f = O(g) to mean that there is a constant C such that |f | ≤ C|g|, we write f = Ω(g) to mean
there is a constant c > 0 such that f ≥ c|g| for sufficiently large n, we write f = Θ(g) to mean that
f = O(g) and f = Ω(g), and we write f = o(g) or g = ω(f) to mean that f/g → 0 as n→∞. All
asymptotics are as n→∞ unless stated otherwise. Floor and ceiling symbols will be systematically
omitted where they are not crucial.

For two multisets A and B, let A4B be the set of elements which have different multiplicities
in A and B (so if A and B are ordinary sets, then A4B is the ordinary symmetric difference
(A \B) ∪ (B \A)). For a set A, we denote by

(
A
k

)
the set of all k-subsets of elements of A.
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We also use standard graph theoretic notation throughout. In particular, in a graph, e(A) is the
number of edges which are contained inside a vertex subset A, and e(A,B) is the number of edges
between two disjoint vertex subsets A and B. For a vertex v and a set of vertices A, we denote
the set of neighbours of v in A by NA(v) = N(v) ∩ A and we denote the degree of v into A by
dA(v) = |NA(v)|.

We also make some less standard graph theoretic definitions that will be convenient for the
proof. For a set of vertices v = {v1, . . . , vk}, let N(v) (respectively NU (v)) be the multiset union
of N(v1), . . . , N(vk) (respectively, of NU (v1), . . . , NU (vk). Let d(v) = d(v1) + · · · + d(vk) (respec-
tively dU (v) = dU (v1) + · · · + dU (vk)) be the size of N(v) (respectively, of NU (v)), accounting for
multiplicity.

Finally, we remark that we will often use variable names of the form nA to denote the size of a
set A. (This is really only a convention, not a definition; we will often introduce nA before the set
A has actually been defined).

2 Discussion and main ideas of the proof

According to Erdős [20], at the time the problem was proposed, he and Sós had already proved
the weaker bound that |Ψ(G)| = Ω

(
n3/2

)
for O(1)-Ramsey graphs. In fact, there are at least two

reasonably simple ways to prove this weak bound, and both are instructive for our proof. To describe
these, we define

Ψ(`,G) = {e(H) : H is an `-vertex induced subgraph of G}.

To prove that |Ψ(G)| = Ω
(
n3/2

)
, it suffices to prove that |Ψ(`,G)| = Ω(

√
n) for each of Ω(n) different

choices of `.
One way to do this, described by Alon and Kostochka [4], is to use a discrepancy theorem

and a switching argument. Erdős, Goldberg, Pach and Spencer [22] proved that in any n-vertex
graph G with density bounded away from 0 and 1, and any α ∈ (0, 1) bounded away from 0
and 1, there are two induced subgraphs G[W−] and G[W+], with |W−| = |W+| = αn, such that
e(W+)−e(W−) = Ω

(
n3/2

)
. Recalling the Erdős–Szemerédi theorem that O(1)-Ramsey graphs have

density bounded away from 0 and 1, we can find such W− and W+ in any n-vertex O(1)-Ramsey
graph G. One can then obtain a sequence of induced subgraphs G[W0], . . . , G[Wαn] by starting
with W0 = W− and switching vertices one-by-one from W− into W+. Formally, fix an ordering
w−1 , . . . , w

−
αn of W− and an ordering w+

1 , . . . , w
+
αn of W+ and let

Wi =
{
w−1 , . . . , w

−
αn−i

}
∪
{
w+

1 , . . . , w
+
i

}
.

Then, we have |e(G[Wi])− e(G[Wi−1])| =
∣∣dWi

(
w+
i

)
− dWi−1

(
w−αn−i+1

)∣∣ ≤ αn, so as e(G[Wi]) varies
over an interval of length Ω

(
n3/2

)
, it must attain Ω(

√
n) different values. This proves |Ψ(αn,G)| =

Ω(
√
n), and we can apply this fact for Ω(n) different choices of α = `/n, proving that |Ψ(G)| =

Ω
(
n3/2

)
. We remark that this basic approach was refined by Alon and Kostochka [4] and by Alon,

Balogh, Kostochka and Samotij [1], to prove stronger bounds.
A second completely different way to prove that |Ψ(G)| = Ω

(
n3/2

)
, due to Bukh and Sudakov [10,

Proposition 3.1], is to make use of the fact that Ramsey graphs have induced subgraphs with many
distinct degrees. Specifically, what Bukh and Sudakov proved was that in any O(1)-Ramsey graph,
there is an induced subgraph with Ω(n) vertices which is diverse in the sense that most pairs
of vertices have very different neighbourhoods (to be precise, the symmetric difference of their

3



neighbourhoods has size Ω(n)). In an n′-vertex diverse graph (with n′ = Ω(n)), consider a random
subset U of αn′ vertices (with α ∈ (0, 1) bounded away from 0 and 1). By the diversity assumption,
for most pairs of vertices u, v their degrees dU (u), dU (v) into U are not too strongly correlated, and
the probability they are exactly equal turns out to be O(1/

√
n). (A simple intuitive reason for this

probability is that dU (u) − dU (v) is approximately normally distributed with standard deviation
Θ(
√
n)). A simple linearity-of-expectation argument then shows that there is an outcome of G[U ]

with Ω(
√
n) different degrees. Finally, given an αn′-vertex graph with Ω(

√
n) different degrees,

we can obtain (αn′ − 1)-vertex graphs with Ω(
√
n) different numbers of edges, simply by choosing

different vertices to delete. This proves that |Ψ(αn′ − 1, G)| = Ω(
√
n), and again applying this fact

for Ω(n) different choices of α = `/n′, it follows that |Ψ(G)| = Ω
(
n3/2

)
.

Observe that both the approaches described above seem to be somewhat complementary. The
discrepancy/switching argument, in its most basic form, gives Ω(

√
n) different values of e(G[U ])

that are distributed fairly evenly over a range of length Ω
(
n3/2

)
. On the other hand, the diver-

sity/anticoncentration argument gives Ω(
√
n) values of e(G[U ]) contained in an interval of length

O(n). It is natural to try to combine both types of arguments to obtain better bounds.
In fact, recent developments bounding |Φ(G)| due to Narayanan, Sahasrabudhe and Tomon [30],

and ourselves [27], make this idea seem even more promising. In [30], the authors made the simple
observation (using the pigeonhole principle) that in any n-vertex graph G, there is a set A of

√
n

vertices with degrees lying in an interval of length
√
n. If G is diverse, and U is a random vertex

set of linear size, then the degrees dU (x), for x ∈ A, are likely to take n1/2−o(1) different values,
very tightly packed in an interval of length O(

√
n). By augmenting U with different combinations of

vertices in A, we can obtain subgraphs of many different sizes, all lying in a fixed interval of length
O(n). Adapting these ideas to our context, and using the further refinements in [27], one can prove
that we can actually obtain Ω(n) values of e(G[U ∪ Y ]) among subsets Y ⊆ A of a certain fixed size,
tightly packed in an interval of length O(n).

So, as a rough plan to prove Theorem 1.1, one might start with vertex subsets W−,W+ of fixed
size ` = Θ(n) such that e(W+)− e(W−) = Ω

(
n3/2

)
, provided by a discrepancy theorem. We would

then switch between W− and W+ to obtain subsets W1, . . . ,Wt such that among the e(Wi) there
are Ω(

√
n) different values e(Wi1), e(Wi2), . . . each separated by a distance of Ω(n). One might then

hope to somehow use diversity and anticoncentration to show that each suchWij has an “augmenting
set” Aj such that e

(
Wij ∪ Y

)
takes Ω(n) different values as Y varies over subsets of Aj with some

fixed size f(n). We would moreover hope that for each j, the augmented values e
(
Wij ∪ Y

)
fall in

a specific interval of length O(n) that does not intersect the corresponding interval for any other j.
This would prove that |Ψ(`+ f(n), G)| = Ω

(
n3/2

)
, and this fact could be applied for Ω(n) different

choices of ` to prove that |Ψ(G)| = Ω
(
n5/2

)
.

There are several serious challenges associated with this kind of approach. First, we need some
way to introduce a random set U of linear size in order to use anticoncentration for our augmenting
sets. We have very little control over the number of edges in such a random set (this number has
variance Θ

(
n3
)
), so it seems we must use the same random set for each Wi, and apply our switching

argument after our random set has been exposed. However, it seems that doing this would introduce
new complications: the anticoncentration probabilities we are interested in are of order O(1/

√
n),

which is not small enough to apply the union bound over all i, given a single source of randomness.
(It does not suffice to prove things for most i, because the subsequence (ij) arising from the switching
argument comprises a negligible fraction of all i).

Our approach is to first prepare vertex sets U0,W−,W+, each of a certain linear size, such that(
e
(
W+

)
+ αe

(
W+, U0

))
−
(
e
(
W−

)
+ αe

(
W−, U0

))
= Ω

(
n3/2

)
,
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for some α ∈ (0, 1). Then, as above, we switch between W− and W+ to obtain a sequence of sets
Wi, and identify a well-separated subsequence of Ω(

√
n) sets Wij such that(

e
(
Wij

)
+ αe

(
Wij , U

0
))
−
(
e
(
Wij−1

)
+ αe

(
Wij−1 , U

0
))

= Ω(n)

for each j. Only then do we choose a random subset U ⊆ U0 of size α
∣∣U0
∣∣, which we may use

for anticoncentration. By construction, the e
(
Wij ∪ U

)
are well-separated in expectation, and the

added randomness does not too severely disturb the increments e(Wi ∪ U)− e(Wi−1 ∪ U). Because
we do not have any real control over the spacing of the ij , we must additionally carefully compensate
for the buildup of deviations caused by “large gaps” between the ij .

Of course, before we even expose the random set U we need to decide which vertices should
be in the augmenting sets Aj . Recall that we would like to be able to use anticoncentration to
obtain Ω(n) subgraph sizes of the form e

(
Wij ∪ U ∪ Y

)
, for Y ⊆ Aj of a fixed size. Provided that

we have been carefully maintaining appropriate diversity properties through the construction, the
only real requirement for this is that the Aj are sufficiently large (of size at least Ω(

√
n)). However,

ensuring that the different Aj do not “interfere” with each other is a much more delicate task.
With the pigeonhole principle, for each j we can show that there are

√
n vertices v such that each

dWij
(v) + αdU0(v) is contained in an interval Ij of length

√
n, and we might hope to use such a set

of vertices as our augmenting set Aj . However, the pigeonhole principle gives us no guarantee of
“consistency” between different j, and it might happen that the intervals Ij jump around in such a
way that there is a lot of overlap between the augmented values e

(
U ∪Wij ∪ Y

)
for different j. It

seems to be quite difficult to carefully choose the Aj in such a way that the Ij are well-behaved.
Instead, we sidestep this issue, with the insight that it is not actually necessary for all the

vertices in Aj to have similar degrees into Wij ∪ U ; it suffices that Aj has a large hypergraph
matching Mj ⊆

(Aj

k

)
, such that the sums dWij

∪U (v) = dWij
∪U (v1) + · · · + dWij

∪U (vk) are similar
for each v = {v1, . . . , vk} ∈ Mj . We may treat the edges of Mj as we would treat single vertices,
forming our augmented values e

(
U ∪Wij ∪

⋃
v∈Z v

)
from subsets Z ⊆Mj .

Being able to use a hypergraph matching instead of a set of vertices affords us a lot of flexibility.
For fixed K ∈ N, there are Ω

(
nK
)
sets of K vertices, and by the pigeonhole principle, Ω

(
nK−3

)
of

these K-sets v have exactly the same values of dW−(v), the same values of dW+(v) and the same
values of dU0(v). If we obtain the Wi by switching randomly between W− and W+, then we can
show that the degrees dWi(v) are concentrated around a certain convex combination of dW−(v) and
dW+(v). In this way we can produce a collection of K-sets v such that the degrees dWij

∪U (v) are
quite well-behaved.

Of course, these K-sets are not disjoint, but for large K we may apply a weak form of the
sunflower lemma of Erdős and Rado, to produce a hypergraph matching M ⊆

(
V
k

)
(with k ≤ K)

of almost linear size, which has similarly well-behaved degrees. With this as a starting point, it
becomes feasible to use the pigeonhole principle to obtain appropriate sub-matchings M ′j ⊆M , and
modulo a lot of technical details we are able to more or less implement the plan described above. To
summarise, for each of

√
n choices of j we use anticoncentration and a generalised notion of diversity

to produce Ω(n) values of e
(
U ∪Wij ∪

⋃
v∈Z v

)
among Z ⊆M ′j of a certain fixed size, in such a way

that there is little overlap between the values for different j. This gives us Ω
(
n3/2

)
subgraphs with

the same number of vertices and different numbers of edges, and varying the size of U allows us to
prove that |Ψ(G)| = Ω

(
n5/2

)
, as desired.
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3 Basic tools

3.1 Diverse neighbourhoods in Ramsey graphs

In [10] Bukh and Sudakov introduced the notion of diversity : an n-vertex graph is said to be diverse
if |N(x)4N(y)| = Ω(n) for most pairs of distinct vertices x, y. We will need a slightly stronger notion
than diversity, which we introduced in [27]. Say an n-vertex graph is (δ, ε)-rich if for any vertex
subset W with |W | ≥ δn, at most n1/5 vertices v have |N(v) ∩W | < ε|W | or

∣∣∣N(v) ∩W
∣∣∣ < ε|W |.

Note that a graph which is (δ, ε)-rich is also (δ′, ε)-rich, if δ′ > δ. We remark that a slightly different
definition of richness appeared in the published version of this paper, which was not quite suitable
for our application. We thank Mantas Baksys and Xuanang Chen for bringing this to our attention.
The next lemma appears as [27, Lemma 4], showing that Ramsey graphs contain large rich induced
subgraphs.

Lemma 3.1. For any C, δ > 0, there exist ε = ε(C) > 0 and c = c(C, δ) > 0 and n0 = n0(δ) such
that if n ≥ n0 then every n-vertex C-Ramsey graph contains a (δ, ε)-rich induced subgraph on at
least cn vertices.

In [27], the reason we introduced (δ, ε)-richness was to derive a type of diversity for pairs of
vertices. Here we will need a type of diversity for larger sets of vertices. (recall from Section 1.1 the
non-standard multiset definitions of N(x), N(y) and N(x)4N(y)).

Lemma 3.2. Fix k ∈ N and let G be a (δ, ε)-rich graph on an n-vertex set V . Then, for each
x ∈

(
V
k

)
with

∣∣⋂
v∈xN(v)

∣∣ ≥ δn, one cannot find a collection of n1/5 vertex subsets y ∈
(
V
k

)
(disjoint

from x and each other) such that |N(x)4N(y)| < δεn.

Proof. Let W =
⋂
v∈xN(v). Suppose the statement of the lemma were false, and such a collection

Y of vertex subsets existed. Then, for each y ∈ y, for y ∈ Y , we would have
∣∣∣N(y) ∩W

∣∣∣ ≤
|N(x)4N(y)| < ε|W |, and the set of all such y would contradict (δ, ε)-richness.

Lemma 3.2 only applies to x ∈
(
V
k

)
such that

⋂
v∈xN(v) is large. In order to apply it, we next

show that in a rich graph,
⋂
v∈xN(v) is large for almost all x ∈

(
V
k

)
.

Lemma 3.3. Fix k ∈ N and let G be a (δ, ε)-rich graph on an n-vertex set V , for δ ≤ εk−1. Then
there are at most nk−1+1/5 subsets v ∈

(
V
k

)
such that

∣∣⋂
v∈vN(v)

∣∣ < εkn.

Proof. We will prove by induction that there are at most qnq−1+1/5 “bad” ordered q-tuples v ∈
V q such that

∣∣⋂
v∈vN(v)

∣∣ < εqn, for all 1 ≤ q ≤ k. This will prove that there are at most
knk−1+1/5/k! ≤ nk−1+1/5 subsets v ∈

(
V
k

)
such that

∣∣⋂
v∈vN(v)

∣∣ < εkn.
First note that the base case q = 1 follows directly from (δ, ε)-richness, with W = V . Then,

assume for induction that our desired bound holds for q − 1; we will prove it for q. First, there are
at most (q − 1)nq−1+1/5 bad q-tuples obtained by appending a vertex to a bad (q − 1)-tuple. Then,
for each (q − 1)-tuple v which is not bad (meaning

∣∣⋂
v∈vN(v)

∣∣ ≥ εq−1n), by (δ, ε)-richness there
are at most n1/5 vertices w with

∣∣N(w) ∩
⋂
v∈vN(v)

∣∣ < ε
∣∣⋂

v∈vN(v)
∣∣, meaning that there are at

most nq−1+1/5 bad-q-tuples that can be obtained by appending a vertex to a not-bad (q − 1)-tuple,
and at most qnq−1+1/5 bad q-tuples total.
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3.2 Tools from extremal (hyper)graph theory

We will make frequent use of Turán’s theorem to find large independent sets in various auxiliary
graphs. The following form of the theorem appears, for example, in [6].

Proposition 3.4. Every n-vertex graph G contains an independent set of size at least∑
v∈V (G)

1

d(v) + 1
≥ n2∑

v∈V (G)(d(v) + 1)
= Ω

(
min

{
n,

n2

e(G)

})
.

Next, a sunflower in a hypergraph is a subgraph in which every pair of edges has the same
intersection (this common intersection is called the kernel, and removing the kernel from each edge
gives the petals). We will need the following weak form of the Erdős–Rado sunflower lemma [17],
which one can easily prove by induction on the uniformity of a hypergraph.

Lemma 3.5. Fix k ∈ N and let H be a k-uniform hypergraph with m edges. Then H contains an
Ω
(
m1/k

)
-edge sunflower.

3.3 Probabilistic tools

We will need concentration and anticoncentration inequalities for random variables arising from
random subsets of given sizes. Say a random variable X is of (n, p, b)-hypergeometric type if it can
be expressed in the form X =

∑
i∈I ai, where a1, . . . , an ∈ R are fixed, |ai| ≤ b for each i, and I

is a uniformly random subset of {1, . . . , n} of size pn. The following concentration lemma follows
directly from [25, Corollary 2.2].

Lemma 3.6. Suppose X is of (n, p, b)-hypergeometric type. Then, for any t ∈ R,

Pr(|X − EX| ≥ t) = exp

(
−Ω

(
t2

nb2 min{p, 1− p}

))
.

Next, say that X as above (of (n, p, b)-hypergeometric type) is of (n, p, b, r)∗-hypergeometric
type if moreover |ai| ≥ 1/b for at least r indices i (that is, many ai are bounded away from zero as
well as being bounded in size). The following central limit theorem directly follows from a classical
quantitative central limit theorem first proved by Bikelis [9] (see also [26]).

Lemma 3.7. Fix b > 0 and suppose X is of (n, p, b, n/b)∗-hypergeometric type, with |EX| ≤ n/(2b2).
Let F be the distribution function of (X − EX)/

√
VarX and let G be the standard Gaussian distri-

bution function. Then for all z ∈ R,

|F (z)−G(z)| = O

(
1√

p(1− p)n

)
.

We only need Lemma 3.7 for anticoncentration, so we state a simple corollary for later use.

Lemma 3.8. Suppose X is of (n, p,O(1),Ω(n))∗-hypergeometric type. Then, for any −
√
n < x <√

n,

Pr(X = x) = O

(
1√

p(1− p)n

)
.
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Proof. If say |EX| ≤ n2/3 then the desired result follows from Lemma 3.7. Otherwise, the desired
result follows from Lemma 3.6, since with probability 1 − e−Ω(n1/3), X does not even fall in the
interval between −

√
n and

√
n.

We also make the following simple observation, which will be convenient to show that various
discrepancy properties we are able to establish will persist with positive probability through certain
kinds of random sampling. If a random variable is of (n, 1/2, b)-hypergeometric type for some n and
b, say it is of (1/2)-hypergeometric type.

Lemma 3.9. Suppose X is of (1/2)-hypergeometric type. Then, X −EX has the same distribution
as EX −X, and in particular, X ≥ EX with probability at least 1/2.

Proof. Suppose that X =
∑

i∈I ai, and let X =
∑

i/∈I ai. Since I is a random subset of exactly
half the indices {1, . . . , n}, it has the same distribution as its complement I, so X has the same
distribution as X ′. But observe that(

X +X ′
)
/2 =

n∑
i=1

ai/2 = EX = EX ′,

so EX −X = X ′ − EX ′.

We remark that Lemma 3.6 (respectively Lemma 3.9) trivially remains true when the rele-
vant random variables are translated by a fixed constant. We will therefore frequently abuse
notation and say that translations of random variables of (n, p, b)-hypergeometric type (respec-
tively (1/2)-hypergeometric type) are themselves of (n, p, b)-hypergeometric type (respectively (1/2)-
hypergeometric type).

Throughout the proof we will also frequently use Markov’s inequality; the statement and proof
can be found, for example, in [6].

3.4 Switching analysis

In this subsection we collect some simple lemmas that will be useful for tracking how certain pa-
rameters change as we gradually switch from one vertex subset to another. First, we show that if
we move between two distant values, and most of the incremental steps are not too extreme, then
there are many intermediate steps with “well-separated” values.

Lemma 3.10. Consider a sequence p0, . . . , pτ with pτ − p0 ≥ λ. Let ∆i = pi − pi−1 and suppose
that for some ρ we have ∑

i:∆i>ρ

∆i ≤ κ.

Then, for any σ ≤ ρ there is an increasing subsequence 0 = i1, . . . , is = τ , with s ≥ λ/(ρ+ σ)−κ/ρ,
such that pij − pij−1 ≥ σ for all 1 ≤ j ≤ s.

Proof. We view pi as the position of a “particle” at “time” i. In the interval from p0 to pτ , consider
λ/(ρ+ σ) sub-intervals of length ρ separated by a distance of at least σ, with the first sub-interval
containing p0 and the last containing pτ . We say a sub-interval I is “further” than a sub-interval I ′

if I is closer to pτ than I ′.
Let i1 = 0 and let I1 be the sub-interval containing p0. For j > 1 let ij > ij−1 be the first time i

that pi is in a sub-interval further than Ij−1 and let Ij be this sub-interval. This process terminates
when there is no sub-interval further than Ij (let s = j for this value of j, and redefine is = τ).
Observe that at most κ/ρ intervals were skipped, so s ≥ λ/(ρ+ σ)− κ/ρ.
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Next, the following lemma shows that if an ensemble of values move slowly in a bounded region,
then at least one value “follows the crowd” for quite a long time.

Lemma 3.11. Consider an interval I ⊆ Z with |I| = λ, and consider a “time horizon” τ ∈ N.
Consider a set of “particles” R, and for each a ∈ R let pi(a) ∈ I represent the “position” of a at
time i, in such a way that |pi(a)− pi−1(a)| ≤ ρ for each 0 < i ≤ τ (that is, the particles move with
“speed” at most ρ). For σ, µ > 0, say a particle a is lonely at time 0 ≤ i ≤ τ if

|{b ∈ R : |pi(b)− pi(a)| ≤ σ}| < µ.

(That is, a particle is lonely if there are few other particles close to it). Now, if τ ≤ |R|σ2/(8µρλ)

then there is a particle a which is never lonely.

Proof. Say a particle a is crowded if

|{b ∈ R : |pi(b)− pi(a)| ≤ σ/2}| ≥ µ.

At any time i, fewer than 2µλ/σ particles are not crowded. To see this, divide I into 2λ/σ sub-
intervals of length σ/2. If a sub-interval contains at least µ particles then all particles in that
sub-interval are crowded.

Now, if a particle is crowded for every time jσ/(4ρ) (among j ∈ N with j ≤ 4ρτ/σ), then it is
never lonely. To see this, observe that it takes at least σ/(4ρ) time steps for a crowded particle to
become lonely. This is because the separation between that particle and the particles within distance
σ/2 must increase by σ/2, and if two particles are moving away from each other their separation
increases by at most 2ρ per time step. By this fact and the preceding paragraph, there are fewer
than (4ρτ/σ)(2µλ/σ) particles that are ever lonely, and if 8ρτµλ/σ2 ≤ |R| then there is a particle
that is never lonely.

4 Proof of Theorem 1.1

As in Section 2, define

Ψ(`,G) = {e(H) : H is an `-vertex induced subgraph of G}.

As discussed in Section 2, in the previous bounds on |Ψ(G)| in [10, 4, 1], the approach was to show
that Ψ(`,G) is large for each of Ω(n) specific choices of `. In this paper it will be convenient to have
slightly more flexibility: we show that Ψ(`′, G) is large for Ω(n) different choices of `′, but we do not
specify precisely which choices they are. We will prove the following lemma, which suffices to prove
Theorem 1.1.

Lemma 4.1. For any fixed C, there is c > 0 such that the following holds. For any n-vertex C-
Ramsey graph G, there are f, h ∈ N such that for any cn ≤ ` ≤ 2cn, either |Ψ((`− f) + h,G)| =

Ω
(
n3/2

)
or |Ψ(2(`− f) + h,G)| = Ω

(
n3/2

)
.

Proof of Theorem 1.1 given Lemma 4.1. We have

|Ψ(G)| ≥ 1

2

2cn∑
`=cn

(|Ψ((`− f) + h,G)|+ |Ψ(2(`− f) + h,G)|) = Ω
(
n5/2

)
.

The first ingredient for the proof of Lemma 4.1 will be the following lemma asserting the existence
of a collection of vertex sets with certain discrepancy, regularity and diversity properties.
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Lemma 4.2. For any fixed C, there are K ∈ N and c > 0 such that the following holds. For any
n-vertex C-Ramsey graph G, any α = α(n) ≥ 1/2 and any cn ≤ ` ≤ 2cn, there are disjoint vertex
sets W−,W+, U0, A, and a k-uniform hypergraph perfect matching M ⊆

(
A
k

)
of A for some k ≤ K,

satisfying the following properties.

1. |W−| = |W+| = cn, |A| = Ω
(
n3/4

)
, and either

∣∣U0
∣∣ = ` or

∣∣U0
∣∣ = 2`;

2.
(
e(W+) + αe

(
U0,W+

))
−
(
e(W−) + αe

(
U0,W−

))
= Ω

(
n3/2

)
;

3. there are dW− , dW+ , dU0 ∈ N such that dW−(v) = dW− , dW+(v) = dW+ and dU0(v) = dU0 for
all v ∈M ;

4. for each {x,y} ∈
(
M
2

)
we have |NU0(x)4NU0(y)| = Ω(n).

(Here, the implied constants in all asymptotic notation depend on C but not α).

We will prove Lemma 4.2 in Section 4.1. We remark that our proof can be easily modified to
give |A| = Ω(n1−η) for any η > 0, and all that we actually need for the proof of Lemma 4.1 is that
|A| = Ω(n1/2+η) for some η > 0. The choice of the exponent 3/4 is merely for concreteness.

The next ingredient is the following lemma, showing that with positive probability we can aug-
ment a random set of vertices in many different ways to get induced subgraphs with many different
numbers of edges.

Lemma 4.3. Consider any nD = nD(n) ∈ N with nD = ω(log n), and suppose in a graph G we have
disjoint vertex subsets W,A,U0 and a hypergraph perfect matching M ⊆

(
A
k

)
for some k = O(1),

satisfying the following properties.

1.
∣∣U0
∣∣ ≥ 3nD, and |M | = Ω

(√
nD
)
;

2. |NU0(x)4NU0(y)| = Ω
(∣∣U0

∣∣) for each {x,y} ∈
(
M
2

)
;

3. there are dW , dU0 ∈ N such that dU0(v) = dU0 and dW (v) = dW + o
(√
nD
)
for all v ∈M .

Then, there are B = O(1) and δ = Ω(1) (depending on the implied constants in the above asymptotic
notation, but not depending on nD) such that the following holds. Consider any nZ ≤ δ

√
nD, let

D be a uniformly random subset of nD elements of U0, let U = U0 \ D and define α to satisfy
nD = (1− α)|U0|. With probability at least 1/4,∣∣∣∣∣
{
e

(
W ∪ U ∪

⋃
z∈Z

z

)
: Z ⊆M, |Z| = nZ ,

∣∣∣∣∣e
(
U,
⋃
z∈Z

z

)
− αnZdU0

∣∣∣∣∣ ≤ BnD
}∣∣∣∣∣ = Ω(nZ

√
nD).

We will prove Lemma 4.3 in Section 4.2, using some ideas from [27, 30]. To interpret its conclusion
in words, it says that one can obtain Ω

(
nZ
√
nD
)
induced subgraphs with different numbers of edges,

by augmenting W ∪ U with different subsets Z ⊆ M of size nZ . Moreover, this is still true if we
restrict our attention to those subsets Z such that there are about the expected number of edges
αnZdU0 between U and Z.

Finally, we show how to combine Lemma 4.2 and Lemma 4.3 to prove Lemma 4.1.

Proof of Lemma 4.1. Apply Lemma 4.2 with α = (`− c′n)/`, for some small c′ (depending on c)
that will be chosen later to satisfy certain inequalities. Until we finally determine the value of c′, the
constants implied by all asymptotic notation in this section will be independent of c′ (that is, if say
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f ≤ c′n, we may write f = O(c′n) but not f = O(n)). Choose nD to satisfy nD = (1 − α)|U0| (so
nD = c′n or nD = 2c′n, and in particular nD ≤ 2c′n). Let nW = cn and consider uniformly random
orderings w−1 , . . . , w

−
nW

of W− and w+
1 , . . . , w

+
nW

of W+. For 0 ≤ i ≤ nW let

W−i =
{
w−1 , . . . , w

−
nW−i

}
, W+

i =
{
w+

1 , . . . , w
+
i

}
, Wi = W−i ∪W

+
i .

This means each individual W−i (respectively W+
i ) is a uniformly random subset of nW − i elements

of W− (respectively, i elements of W+). Define

dW−i
=
nW − i
nW

dW− , dW+
i

=
i

nW
dW+ , dWi = dW−i

+ dW+
i
.

Now, for each 0 ≤ i ≤ nW and v ∈M , the random variable dW−i (v) (respectively dW+
i

(v)) is of
(nW , p, O(1))-hypergeometric type, for p = (nW − i)/nW (respectively, for p = i/nW ), and has mean
dW−i

(respectively, mean dW+
i
). By Lemma 3.6 (with t =

√
n log n) and the union bound, we can

fix an outcome of the orderings w−1 , . . . , w
−
nW

and w+
1 , . . . , w

+
nW

such that |dWi(v)− dWi | ≤
√
n log n

for each 0 ≤ i ≤ nW and v ∈ M . (Note that if p = o(1) the estimate in Lemma 3.6 only becomes
stronger).

This concentration would suffice to prove an approximate version of Theorem 1.1, that |Ψ(G)| =
n5/2/ logO(1) n (simply using the single matching M to augment each Wi). However, in order to
obtain an exact result we need to eliminate the logarithmic factor in the estimate for |dWi(v)− dWi |.
We have the freedom to do this because M (coming from Lemma 4.2, of size Ω(n3/4)) is much larger
than the necessary size Θ(

√
n) of our “augmenting sets” (as outlined in Section 2). In fact, we could

use the pigeonhole principle to easily show that for each i there is a subset Mi ⊆ M of size Θ(
√
n)

such that the degrees dWi(v), for v ∈Mi, are contained in a tiny interval of length only O(n1/4 log n),
centered at some point di. But because we require consistency between the i (in particular, we do
not want the di to vary too much), things are a bit more delicate, and we will apply Lemma 3.11.

Claim 4.4. There are d0, . . . , dnW
∈ N and M1, . . . ,MnW

⊆M such that the following hold.

(i) Each |Mi| ≥
√
n;

(ii) For each 0 ≤ i ≤ nW and each v ∈Mi, we have |dWi(v)− di| = o(
√
n);

(iii) For each 0 < i ≤ nW we have |di − di−1| = O(
√
n log n), and actually |di − di−1| = o(

√
n) for

all but O
(
n1/4 log3 n

)
indices i.

Proof. The indices i will represent points in time. Let µ =
√
n, let σ =

√
n/ log n = o(

√
n), let

λ = 2
√
n log n and let I be the interval of integers between −λ/2 and λ/2. Let R = M (recalling

that |M | = Ω
(
n3/4

)
) and for each 0 ≤ i ≤ nW and v ∈ R let pi(v) = dWi(v)− dWi ∈ I.

Note that each v ∈M has size k, so for each 0 < i ≤ nW , we have
∣∣∣dv(w+

i

)
− dv

(
w−nW−i+1

)∣∣∣ ≤ k
and therefore

∣∣dWi(v)− dWi−1(v)
∣∣ ≤ k. Also, we can compute

∣∣dWi − dWi−1

∣∣ =

∣∣∣∣dW+ − dW−
nW

∣∣∣∣ ≤ k. (1)

So, with ρ = 2k, we have |pi(v)− pi−1(v)| ≤ ρ. Divide the range of “times” between 0 and nW
into nW/τ sub-ranges of lengths τ = |R|σ2/(8ρµλ) = O(n3/4/ log3 n). For each such sub-range
T , by Lemma 3.11 there is some vT ∈ R which is never lonely in that range; fix such a vT and
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for each i ∈ T let di = dWi(vT ). For each 0 ≤ i ≤ nW let Mi ⊆ M be a set of µ elements
v ∈ M satisfying |dWi(v)− di| ≤ σ, which exists by the definition of loneliness. Recalling (1),
observe that |di − di−1| ≤ λ = O(

√
n log n) for all 0 < i ≤ nW . Moreover, for all i except the

nW/τ = O
(
n1/4 log3 n

)
times where there is a “transition” between sub-ranges, there is v such that

|di − di−1| =
∣∣dWi(v)− dWi−1(v)

∣∣ ≤ k = o(
√
n).

Next, (more or less) as described in Section 2, we identify a subsequence of indices i leading to
subgraph sizes that are “well-separated” in a certain sense. Let ei = e(Wi) + αe

(
U0,Wi

)
+ nZdi,

where nZ = δ
√
c′n/k ≤ δ√nD for some small δ = δ(C) > 0 (not depending on c′) to be determined.

The precise significance of these quantities ei will become clear later, but the rough idea (as sketched
in Section 2) is that we will eventually want to consider subgraphs consisting of some Wi, a random
α-proportion of the elements of U0, and nZ vertices of Mi. Note that each di was defined to be
equal to some dWi(v) ≤ kn, so |dnW

− d0| ≤ kn = O(n), and recall that nZ ≤
√
c′n. So, for small

c′, by property 2 of Lemma 4.2, we have

enW
− e0 =

(
e
(
W+

)
+ αe

(
U0,W+

))
−
(
e
(
W−

)
+ αe

(
U0,W−

))
+ nZ(dnW

− d0) = Ω
(
n3/2

)
.

Now, for 0 < i ≤ nW let ∆i = ei − ei−1. Observe that∣∣(e(Wi) + αe
(
U0,Wi

))
−
(
e(Wi−1) + αe

(
U0,Wi−1

))∣∣
=
∣∣∣(dWi

(
w+
i

)
+ αdU0

(
w+
i

))
−
(
dWi−1

(
w−nW−i+1

)
+ αdU0

(
w−nW−i+1

))∣∣∣ ≤ (1 + α)n ≤ 2n,

so the only way to have ∆i > 3n is if |di − di−1| = Ω(
√
n). By (iii) of Claim 4.4,∑

i:|∆i|>3n

|∆i| = O
(
nZ

(
n1/4 log3 n

)(√
n log n

))
= o
(
n3/2

)
.

By Lemma 3.10 (with τ = nW = Θ(n), λ = Ω(n3/2), ρ = 3n, κ = o(n3/2) and σ = n) there is an
increasing subsequence of indices 0 = i1, . . . , it = nW , with t = Ω(

√
n), such that eij − eij−1 ≥ n for

each 1 < j ≤ t.
Now, let D be a uniformly random subset of nD elements of U0, and let U = U0 \ D. For a

collection Z of vertex sets we write VZ =
⋃

z∈Z z, and for each 0 ≤ i ≤ nW and some B to be
determined, define

Ψi = {e(Wi ∪ U ∪ VZ) : Z ⊆Mi, |Z| = nZ , |e(U, VZ)− αnZdU0 | ≤ BnD}.

Now the significance of the quantities ei should be more clear: we expect the values in Ψi to be
about e(U) + ei + αnZdU0 , so the idea is that the separation we have established between the eij
should translate to the Ψij not interfering too much with each other.

Note that we can apply Lemma 4.3 to determine δ = Ω(1) and B = O(1) such that for each
0 ≤ i ≤ nW , |Ψi| = Ω

(
nZ
√
nD
)

= Ω(nD) with probability at least 1/4. Indeed, the first condition of
Lemma 4.3 follows from (i) in Claim 4.4 and a sufficiently small choice of c′, the second condition
follows from property 4 of Lemma 4.2, and the third condition follows from (ii) in Claim 4.4 and
property 3 of Lemma 4.2. We will next show that there is an outcome of U for which many Ψij

are large, and in addition the cumulative deviations introduced by the randomness of U do not too
severely affect the separation we established so far. To this end, for each 0 < i ≤ nW define

gi =
(
dU

(
w+
i

)
− dU

(
w−nW−i+1

))
−
(
αdU0

(
w+
i

)
− αdU0

(
w−nW−i+1

))
.

12



Basically, |gi| measures the deviation of the separation e(U,Wi) − e(U,Wi−1) from its expected
value αe(U0,Wi) − αe(U0,Wi−1). We will control the cumulative deviation

∑nW
i=1|gi|; the absolute

deviations
∣∣e(U,Wi)− αe(U0,Wi)

∣∣ are unfortunately too large to control directly.

Claim 4.5. The following hold together with positive probability.

(i) There is a subset J of (0.1)t indices j for which
∣∣Ψij

∣∣ = Ω(nD) (that is, a positive proportion
of Ψij are large);

(ii)
∑nW

i=1|gi| ≤ O
(
n
√
nD
)
.

Proof. First we show that (i) holds with probability at least 1/6. As discussed above, for each
1 ≤ j ≤ t, by Lemma 4.3 we have

∣∣Ψij

∣∣ = Ω(nD) with probability at least 1/4. Let J be the set of
j for which this fails, so E

∣∣J ∣∣ ≤ 3t/4 and by Markov’s inequality,
∣∣J ∣∣ ≤ (0.9)t with probability at

least 1/6.
Next we show that (ii) holds with probability at least 0.9, meaning that we can use the union

bound to show that (i) and (ii) hold simultaneously with positive probability. For this, note that for
each 0 < i ≤ nW , gi is of

(∣∣U0
∣∣, nD/∣∣U0

∣∣, O(1)
)
-hypergeometric type and has mean zero (because

EdU (w) = αdU0(w) for any w ∈W ), so by Lemma 3.6 we have

Pr(|gi| ≥ r) ≤ e−Ω(r2/nD).

For a sufficiently large constant Q we have

E|gi| =
∞∑
r=1

Pr(|gi| ≥ r) ≤ Q
√
nD +

∞∑
r=Q

√
nD

e−Ω(r2/nD) ≤ 2Q
√
nD,

E
nW∑
i=1

|gi| ≤ 2QnW
√
nD,

and by Markov’s inequality
∑nW

i=1|gi| ≤ 20QnW
√
nD = O

(
n
√
nD
)
with probability at least 0.9.

Fix an outcome of U such that the above properties hold.
We now take a moment to summarise the situation so far. We have c′n ≤ nD ≤ 2c′n and nZ =

Θ(
√
nD) for some small constant c′ (and the constants in all asymptotic notation are independent of

c′). With ei = e(Wi) +αe
(
U0,Wi

)
+nZdi, we have a subsequence of indices 0 = i1, . . . , it = nW , for

t = Ω(
√
n), such that eij − eij−1 ≥ n for each 1 < j ≤ t. We also have matchings Mi such that the

degrees dWi(v), for 0 ≤ i ≤ nW and v ∈Mi, are very tightly controlled (to be precise, Claim 4.4 (ii)
says that |dWi(v)− di| = o(

√
n)). Moreover, Claim 4.5 shows that many

∣∣Ψij

∣∣ are large (specifically,∣∣Ψij

∣∣ = Ω(nD) for Ω(
√
n) different j), and the cumulative deviation

∑nW
i=1|gi| ≤ O

(
n
√
nD
)
caused

by dropping to a random subset U = U0 \D is not too severe. We next show that many of the Ψij

are disjoint, which essentially completes the proof of Theorem 1.1.

Claim 4.6. For sufficiently small c′, there is a subset J ′ ⊆ J of Ω
(
n1/2

)
indices j among which

each Ψij is disjoint.

Proof. For 1 ≤ j < t, let Σj = n(j − 1) −
∑ij

i=1|gi|, so that Σ1 = 0 and Σt ≥
(

1−O
(√

c′
))
tn,

by (ii) in Claim 4.5. The significance of these quantities is that we have established the separation
eij − eij−1 ≥ n, but this may be offset by the buildup of deviations |gi|. That is, each increment
Σj−Σj−1 = n−

∑ij
i=ij−1+1|gi| is a lower bound on the separation between e

(
Wij−1

)
+ e
(
U,Wij−1

)
+
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nZdij−1 and e
(
Wij

)
+ e
(
U,Wij

)
+ nZdij , which approximates the separation between the values in

Ψij−1 and the values in Ψij .
By Lemma 3.10 (with τ = t = Ω(n), λ = Σt = (1−O(c′))tn, σ = (0.01)t, ρ = n and κ = 0), for

small c′ we can find an increasing sequence j0
1 , . . . , j

0
s0 , for s

0 ≥ ((1−O(c′))/1.01)t ≥ (0.95)t, such
that Σj0q

− Σj0q−1
≥ (0.01)n for each 1 < q ≤ s0. By (i) in Claim 4.5, deleting the indices not in J

gives an increasing sequence j1, . . . , js, with s ≥ (0.05)t, also satisfying Σjq − Σjq−1 ≥ (0.01)n for
each 1 < q ≤ s.

To avoid too many layered subscripts, for 1 ≤ q ≤ s define W ′q = Wijq , d
′
q = dijq , M

′
q = Mijq ,

e′q = eijq , i
′
q = ijq . Also, for 1 < q ≤ s define Γq =

∑i′q
i=i′q−1+1

|gi|.
Our goal is now to show that quantities of the form e

(
W ′q ∪ U ∪ VZ

)
arising from the definition

of |Ψijq | are well-separated for different q. This will basically follow from the fact that Σjq −Σjq−1 =

Ω(n), our control over the dWi(v) for v ∈Mi, and the definition of the Ψi′q .
First, for each 1 < q ≤ s observe that

e
(
W ′q, U

)
− e
(
W ′q−1, U

)
=

i′q∑
i=i′q−1+1

(
dU

(
w+
i

)
− dU

(
w−nW−i+1

))

≥ α
i′q∑

i=i′q−1+1

(
dU0

(
w+
i

)
− dU0

(
w−nW−i+1

))
− Γq

= αe
(
W ′q, U

0
)
− αe

(
W ′q−1, U

0
)
− Γq.

Next, for Z ⊆M ′q and Z ′ ⊆M ′q−1 satisfying |Z| = |Z ′| = nZ and

|e(U, VZ)− αnZdU0 |, |e(U, VZ′)− αnZdU0 | ≤ BnD = O(nD),

we also have

e
(
W ′q ∪ U, VZ

)
− e
(
W ′q−1 ∪ U, VZ′

)
+ e(VZ)− e(VZ′)

=
∑
v∈Z

dW ′q(v)−
∑
v∈Z′

dW ′q−1
(v) +O(nD)

=
∑
v∈Z

(
d′q + o(

√
nD)

)
−
∑
v∈Z′

(
d′q−1 + o(

√
nD)

)
+O(nD)

= nZd
′
q − nZd′q−1 +O(nD).

Recall that Σjq − Σjq−1 = Ω(n) and nD ≤ 2c′n. For small c′, it follows that

e
(
W ′q ∪ U ∪ VZ

)
− e
(
W ′q−1 ∪ U ∪ VZ′

)
= e
(
W ′q
)
− e
(
W ′q−1

)
+ e
(
W ′q, U

)
− e
(
W ′q−1, U

)
+ e
(
W ′q ∪ U, VZ

)
− e
(
W ′q−1 ∪ U, VZ′

)
+ e(VZ)− e(VZ′)

≥
(
e
(
W ′q
)

+ αe
(
W ′q, U

0
)

+ nZd
′
q

)
−
(
e
(
W ′q−1

)
+ αe

(
W ′q−1, U

0
)

+ nZd
′
q−1

)
− Γq −O(nD)

= e′q − e′q−1 − Γq −O(nD)

≥ (jq − jq−1)n− Γq −O(nD) = Σjq − Σjq−1 −O(nD) = Ω(n) > 0.

We conclude that the minimum value in Ψi′q is greater than the maximum value in Ψi′q−1
. Since this

is true for all 1 < q ≤ s, it follows that each Ψijq is disjoint, so we may take J ′ = {j1, . . . , js}.
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Finally, let f = c′n and h = nW + knZ = cn + δ
√
c′n. For 1 ≤ i ≤ nW observe that if Z ⊆ Mi

satisfies |Z| = nZ then Wi ∪U ∪ VZ has exactly
∣∣U0
∣∣− nD + h vertices, and this number is equal to

(`− f) + h or 2(`− f) + h. Therefore, for `′ = (`− f) + h or `′ = 2(`− f) + h, we have∣∣Ψ(`′, G)∣∣ ≥ ∑
j∈J ′

∣∣Ψij

∣∣ = Ω
(
c′n3/2

)
.

4.1 Proof of Lemma 4.2

As outlined in Section 2, we will first construct W−, W+ and U0 satisfying properties 1 and 2,
and we will then use richness (Lemma 3.1) and the sunflower lemma (Lemma 3.5) to construct M
satisfying properties 3 and 4. We remark that it would be possible to use an existing discrepancy
theorem (for example, a theorem in [22], as mentioned in Section 2) to construct sets W−, W+

and U0 satisfying property 2, using only the fact that G has density bounded away from 0 and
1. However, since we are already using Lemma 3.1 for property 4, it is convenient to instead use
richness and anticoncentration.

So, consider ε = ε(C) from Lemma 3.1, note that we can assume ε < 1/8, and let δ = εK for
some large absolute constant K which we will determine later. Let G[V ′] be a (δ, ε)-rich induced
subgraph of G, with n′ := |V ′| ≥ 15cn vertices, which exists for small c > 0 by Lemma 3.1. We will
only work inside V ′, so all degrees and neighbourhoods should be interpreted as being restricted to
V ′.

First, let U1 be a uniformly random subset of V ′ with size 2` ≤ 4cn. Let H ⊆
(
V ′

2

)
be the

auxiliary graph with an edge {x, y} ∈
(
V ′

2

)
whenever dU1(x) = dU1(y). We show that with positive

probability, the diversity of neighbourhoods in G[V ′] is maintained for neighbourhoods in U1, and
simultaneously H is quite sparse, which implies that there is a lot of variation between degrees into
U1 (this will be the starting point from which we obtain our discrepancy for property 2).

Claim 4.7. The following hold together with positive probability.

(i) For each k ≤ K and x,y ∈
(
V
k

)
with |N(x)4N(y)| ≥ εKn′, we have |NU1(x)4NU1(y)| ≥ εK`;

(ii) there is a set W of at least 7cn vertices such that dH(x) = O(
√
n) for each x ∈W .

Proof. We will show that (i) and (ii) each hold with probability greater than 1/2. The proofs will
be quite routine, using the concentration and anticoncentration theorems in Section 3.3.

For (i), observe that for each x,y ∈
(
V
k

)
, |NU1(x)4NU1(y)| =

∣∣(N(x)4N(y)) ∩ U1
∣∣ is of

(n′, 2`/n′, 1)-hypergeometric type, and apply Lemma 3.6 and the union bound. (Recall from Sec-
tion 1.1 the nonstandard multiset definition of A4B).

For (ii), note that each dU1(x) − dU1(y) is of (n′, 2`/n′, 1, |N(x)4N(y)|)∗-hypergeometric type,
so if |N(x)4N(y)| = Ω(n) then by Lemma 3.8, Pr(dU1(x) = dU1(y)) = O(1/

√
n). By Lemma 3.3

(taking k = 1), there are at most n1/5 vertices x ∈ V ′ with N(x) < εn′, and by Lemma 3.2, for
every other vertex x ∈ V ′ there are at most n1/5 vertices y 6= x with |N(x)4N(y)| < ε2n′. For each
x ∈ V ′ of the latter type, we have EdH(x) = O

(
n1/5 +

√
n
)

= O(
√
n), so by Markov’s inequality,

dH(x) = O(
√
n) (for a sufficiently large constant implied by the big-oh notation) with probability at

least 7/8. LetW be the set of all x ∈ V ′ for which this holds, so that E|V ′ \W | ≤ n′/8+n1/5 < n′/4.
Therefore, |W | ≥ n′/2 ≥ 7cn with probability greater than 1/2.

Fix an outcome of U1 satisfying both the properties in the above claim, and note that
∣∣W \ U1

∣∣ ≥
3cn. Order the vertices x ∈ W \ U1 by their values of dU1(x) (breaking ties arbitrarily), let W 1
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contain the first cn vertices in this ordering and let W 2 contain the last cn. By (ii) in Claim 4.7, for
the (at least cn) vertices x between W 1 and W 2 in this ordering, we have dH(x) = O(

√
n), so there

are at least Ω(
√
n) values of dU1(x), and

min
x∈W 2

dU1(x)− max
x∈W 1

dU1(x) = Ω
(√
n
)
.

Recalling that α ≥ 1/2, this implies that

αe
(
W 2, U1

)
− αe

(
W 1, U1

)
= Ω

(
n3/2

)
.

Now, if(
e
(
W 2
)

+ αe
(
W 2, U1

))
−
(
e
(
W 1
)

+ αe
(
W 1, U1

))
≥
(
αe
(
W 2, U1

)
− αe

(
W 1, U1

))
/4

then let W− = W 1 and W+ = W 2 and U0 = U1; property 2 is satisfied. Otherwise, there must be
a large discrepancy between e

(
W 1
)
and e

(
W 2
)
. To be specific, we must have(

e
(
W 1
)

+ αe
(
W 1, U1

)
/2
)
−
(
e
(
W 2
)

+ αe
(
W 2, U1

)
/2
)
≥
(
αe
(
W 2, U1

)
− αe

(
W 1, U1

))
/4. (2)

In this case, let U0 be a random subset of ` =
∣∣U0
∣∣/2 elements of U1, let W− = W 2 and let

W+ = W 1. Then (
e
(
W+

)
+ αe

(
W+, U0

))
−
(
e
(
W−

)
+ αe

(
W−, U0

))
=
(
e
(
W+

)
− e
(
W−

))
+ α

∑
u∈U0

(dW+(u)− dW+(u))

is of (1/2)-hypergeometric type and has mean Ω
(
n3/2

)
, given by (2). So, by Lemma 3.9, this

random value is Ω
(
n3/2

)
with probability at least 1/2. Also, for each k ≤ K and x,y ∈

(
V
k

)
with

|N(x)4N(y)| ≥ εKn′, the random variable |NU0(x)4NU0(y)| is of (Ω(n), 1/2, 1)-hypergeometric
type with mean Ω(n), so by Lemma 3.6 and the union bound, with probability 1 − o(1) we have
|NU0(x)4NU0(y)| = Ω(n) for all such k,x,y. So, we can fix an outcome of U0 satisfying both of
these properties.

In either of the above two cases, property 2 is satisfied and |NU0(x)4NU0(y)| = Ω(n) for each
x,y ∈

(
V
k

)
with |N(x)4N(y)| ≥ εKn′. We also have |U0| = ` or |U0| = 2`, satisfying property 1.

Now, fix some Ω(n)-vertex subset A0 disjoint from U1 and W , and let M0 ⊆
(
A0

K

)
contain every

v ∈
(
A0

K

)
with

∣∣⋂
v∈vN(v)

∣∣ ≥ εKn′. By Lemma 3.3, we have
∣∣M0

∣∣ = Ω
(
nK
)
.

Observe that there are only (kn+ 1)3 possible values of the tuples (dW+(x), dW+(x), dU0(x)),
so by the pigeonhole principle there are d′W− , d

′
W+ , d

′
U0 ∈ N, and a collection M1 ⊆ M0 of size

Ω
(
nK−3

)
, such that for each x ∈ M1 we have dW−(x) = d′W− , dW+(x) = d′W+ and dU0(x) = d′U0 .

For sufficiently large K, by Lemma 3.5,M1 has a sunflower with Ω
(
n(K−3)/K

)
= Ω

(
n3/4+1/5

)
petals;

take M2 as this set of petals, and let k be the common size of these petals. Let v be the kernel of
the sunflower, and let dW− = d′W− − dW−(v), dW+ = d′W+ − dW+(v) and dU0 = d′U0 − dU0(v), so
for x ∈M2 we have dW−(x) = dW− , dW+(x) = dW+ and dU0(x) = dU0 .

Finally, consider the auxiliary graph F ⊆
(
M2

2

)
which has an edge {x,y} ∈

(
M2

2

)
whenever

|N(x)4N(y)| < εKn′. By Lemma 3.2, the degrees in F are at most n1/5 so by Proposition 3.4
(Turán’s theorem) there is M ⊆ M2 with |M | = Ω

(
n3/4

)
such that |N(x)4N(y)| ≥ εKn′, and

therefore |NU0(x)4NU0(y)| = Ω(n), for all pairs {x,y} ∈
(
M
2

)
.
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4.2 Proof of Lemma 4.3

As in the deduction of Theorem 1.1 in Section 4, for a collection Z of vertex sets let VZ =
⋃

z∈Z z.
Our proof of Lemma 4.3 will be quite similar to the proof of the main theorem in [27]. Roughly

speaking, we will first expose a random superset D1 of D (we may view this as “partially exposing”
the random subsetD). Using this randomness for anticoncentration, we will construct sub-matchings
S−, S+ ⊆ M of size Ω

(√
nD
)
, such that all the degrees from elements of S+ into D1 are higher by√

nD than the degrees from S− into D1. Starting with any S0 ⊆ S+ of some size nZ − 1, we can
therefore obtain nZ subsets S0, . . . , SnZ−1 such that the values e

(
W ∪ U0 ∪ VSi

)
are separated by a

distance of Ω
(√
nD
)
, simply by switching elements ofM one-by-one from S+ into S−. Then, we fully

expose the random set D (therefore exposing U = U0 \D), and show that the values e(W ∪ U ∪ VSi)

remain fairly well-separated. We use this further randomness, and anticoncentration, to show that
for most i, there is a set Xi of

√
nD elements of M which have different degrees into W ∪ U ∪ VSi ,

still concentrated in a known interval of length O
(√
nD
)
. This will prove that there are Ω

(
nZ
√
nD
)

values e(W ∪ U ∪ VSi ∪ z), for x ∈ Xi. (So, our sets Z in the lemma statement are of the form
Si ∪ {x}, for x ∈ Xi). The additional requirement that there are about the expected number of
edges between U and Z will follow from our proof basically for free.

We now proceed with this plan to prove Lemma 4.3. Arbitrarily split M into two subsets S0

and X0 each of size Ω
(√
nD
)
. Let D1 be a uniformly random subset of U0 of size 2nD, so that we

may realise the desired distribution of D as a uniformly random subset of D1 of size nD. We will
first observe some regularity and discrepancy properties that hold with probability at least 3/4 with
respect to the random choice of D1. Let H ⊆

(
S0

2

)
be the auxiliary random graph (depending on

D1) with an edge {x,y} ∈
(
S0

2

)
if dD1(x) = dD1(y). Also, let dD = (1 − α)dU0 , recalling from the

statement of Lemma 4.3 that 1− α = nD/
∣∣U0
∣∣.

Claim 4.8. The following hold together with probability at least 3/4.

(i) |ND1(x)4ND1(y)| = Ω(nD) for each {x,y} ∈
(
X0

2

)
;

(ii) there are X ⊆ X0 and S1 ⊆ S0, each with size Ω
(√
nD
)
, such that dD1(x) = 2dD + O

(√
nD
)

for each x ∈ X ∪ S1;

(iii) H has O
(√
nD
)
edges.

Proof. We will prove that each of (i)-(iii) individually hold with high probability, then apply the
union bound. The proofs will be rather routine, using the concentration and anticoncentration
theorems in Section 3.3 in a similar way to the proof of Claim 4.7.

For (i), observe that for each {x,y} ∈
(
X0

2

)
, the random variable

|ND1(x)4ND1(y)| =
∣∣NU0(x)4NU0(y) ∩D1

∣∣
is of

(∣∣U0
∣∣, 2(1− α), 1

)
-hypergeometric type with mean Ω(nD), so by the second assumption of this

lemma, Lemma 3.6 and the union bound, (i) holds with probability 1−
∣∣X0

∣∣2e−Ω(nD) = 1− o(1).
We next show that (ii) holds with probability at least 7/8. For each x ∈ X0, the random variable

dD1(x) is of
(∣∣U0

∣∣, 2(1− α), k
)
-hypergeometric type, so by Lemma 3.6 (with t a large multiple of√

nD), with probability at least 31/32 we have dD1(x) = EdD1(x) + O
(√
nD
)

= 2dD + O
(√
nD
)
.

Therefore the expected number of x ∈ X0 failing to satisfy this bound is at most
∣∣X0

∣∣/32, and the
probability more than

∣∣X0
∣∣/2 fail to satisfy this bound is at most 1/16. If this does not occur, we

can find an appropriate subset X ⊆ X0 of size
∣∣X0

∣∣/2. A very similar argument shows that an
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appropriate subset S1 ⊆ S0 with size
∣∣S0
∣∣/2 exists with probability at least 15/16, and by the union

bound we can simultaneously find suitable X,S1 with probability at least 7/8.
Finally, we show that (iii) holds with probability at least 15/16. This will suffice to ap-

ply the union bound over parts (i)-(iii). Note that the random variable dD1(x) − dD1(y) is of(
|U0|, 2(1− α), O(1), |NU0(x)4NU0(y)|

)∗-hypergeometric type. Recalling the second assumption
of this lemma that |NU0(x)4NU0(y)| = Ω

(∣∣U0
∣∣), we may apply Lemma 3.8 to see that for any

{x,y} ∈
(
S0

2

)
, the probability {x,y} is an edge in H is O

(
1/
√

(1− α)|U0|
)

= O
(
1/
√
nD
)
, and the

expected number of edges is O
(√
nD
)
. The desired result then follows from Markov’s inequality.

Condition on an outcome of D1 satisfying all the above properties (we will treat D1 as fixed for
the remainder of the proof). By Proposition 3.4, the graph H (which has |S0| = Ω(

√
nD) vertices)

has an independent set S2 of size Ω
(√
nD
)
, meaning that the values of dD1(x), for x ∈ S2, are all

different. Now, let nS = nZ − 1, and note that for small δ we have nS < δ
√
nD ≤

∣∣S2
∣∣/3. Order the

vertices x ∈ S2 by their values of dD1(x), let S− contain the first nS elements of this ordering and
let S+ contain the last nS elements. By construction, we have

min
x∈S+

dD1(x)− max
x∈S−

dD1(x) = Θ(
√
nD). (3)

(Here and from now on, the constants implied by all asymptotic notation are independent of δ).
Now, fix orderings v−1 , . . . ,v

−
nS

of S− and v+
1 , . . . ,v

+
nS

of S+. For 0 ≤ i ≤ nS , define

Si =
{
v−1 , . . . ,v

−
i

}
∪
{
v+

1 , . . . ,v
+
nS−i

}
,

let Ui = W ∪ U ∪ VSi , and let ei = e(VSi) + e(VSi ,W ∪ U) = e(Ui) − e(W ∪ U). For 0 < i ≤ nS
define

∆i = ei − ei−1

= e(VSi ,W ∪ U)− e
(
VSi−1 ,W ∪ U

)
+ e(VSi)− e

(
VSi−1

)
= dW∪U

(
v−i

)
− dW∪U

(
v+
nS−i+1

)
+ e(VSi)− e

(
VSi−1

)
=
(
dW∪U0

(
v−i

)
− dD

(
v−i

))
−
(
dW∪U0

(
v+
nS−i+1

)
− dD

(
v+
nS−i+1

))
+ e(VSi)− e

(
VSi−1

)
. (4)

Next we observe that with probability at least 1/3, our discrepancy properties are to some extent
maintained, while for many i we can find many vertices in X with distinct degrees into Ui. Recall
that D is a random subset of half the elements of |D1|.

Claim 4.9. There are γ1, γ3 = Ω(1) and Q2, Q4 = O(1) such that the following hold together with
probability at least 1/3.

(i) there is a set I1 of (1− γ1/(8Q2))nS indices i such that for each i ∈ I1, we have e(D,VSi) =

nSdD +O(nD);

(ii) There is a set I2 of (1− γ1/(8Q2))nS indices i, each with a set Xi ⊆ X of size 2γ3|X|, such
that the dUi(x), for x ∈ Xi, are distinct;

(iii) there is a set X∗ of size (1− γ3)|X| such that for each x ∈ X∗ we have |dD − dD(x)| ≤ Q4
√
nD;

(iv) enS
− e0 ≥ 3γ1nS

√
nD;
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(v)
∑

i:|∆i|≥Q2
√
nD
|∆i| ≤ γ1nS

√
nD.

Proof. We will prove that each part holds with probability at least 0.99, except (iv), which holds
with probability at least 1/2. The values of γ1, Q2, γ3, Q4 will be determined in order, and will
depend on each other.

For (iv), recalling (4) we observe

E∆i = E[ei − ei−1]

=
(
dW∪U0

(
v−i

)
− dD1

(
v−i

)
/2
)
−
(
dW∪U0

(
v+
nS−i+1

)
− dD1

(
v+
nS−i+1

)
/2
)
−O(nS).

Recall from the third assumption of this lemma that dW∪U0(v) = dU0 + dW + o
(√
nD
)
for all

v ∈M , and recall from (3) that the degrees from S+ into D1 are larger by Θ
(√
nD
)
than the degrees

from S− into D1. Also, recall that nS < δ
√
nD. For small δ it follows that

E[ei − ei−1] = Θ(
√
nD)− o(√nD)−O(nS) = Θ(

√
nD).

So, E[enS
− e0] = Θ

(
nS
√
nD
)
. Since enS

− e0 is of (1/2)-hypergeometric type, we may apply
Lemma 3.9 to show that for small γ1 it is at least as large as its expectation Ω

(
nS
√
nD
)
≥ 3γ1nS

√
nD,

with probability at least 1/2.
For (v), observe that for each 0 < i ≤ nS , the random variable ∆i is of (2nD, 1/2, k)-hypergeometric

type, because it is a translation of the random variable dD
(
v+
nS−i+1

)
− dD

(
v−i

)
. We have just com-

puted that E∆i = O
(√
nD
)
, so by Lemma 3.6 we therefore have Pr(|∆i| ≥ t) = exp

(
−Ω
(
t2/nD

))
.

Now, for any nonnegative integer random variable ξ, we have Eξ =
∑∞

t=1 Pr(ξ ≥ t), so

E
[
|∆i|1|∆i|≥Q2

√
nD

]
=
∞∑
t=1

Pr
(
|∆i|1|∆i|≥Q2

√
nD
≥ t
)

= Q2
√
nD Pr(|∆i| ≥ Q2

√
nD) +

∞∑
t=Q2

√
nD

Pr(|∆i| ≥ t)

= Q2
√
nDe

−Ω(Q2
2) +

∞∑
t=Q2

√
nD

exp
(
−Ω
(
t2/nD

))
= e−Ω(Q2

2)√nD.

For sufficiently large Q2, this is at most (γ1/100)
√
nD, so

E
∑

i:|∆i|≥Q2
√
nD

|∆i| ≤ (γ1/100)nS
√
nD

and (v) holds with probability at least 0.99 by Markov’s inequality.
For (i), recall from (ii) of Claim 4.8 that each x ∈ S1 has degree 2dD + O

(√
nD
)
into D1.

Therefore, for each 0 ≤ i ≤ nS , e(D,VSi) is of
(
2nD, 1/2, O

(√
nD
))
-hypergeometric type, and has

mean nSdD +O
(
nS
√
nD
)

= nSdD +O(nD). So, applying Lemma 3.6 with t a large multiple of nD,
we have e(D,VZ) = nSdD +O(nD) with probability at least 1− γ1/(800Q2). The expected number
of indices i for which this fails is (γ1/(800Q2))nS , so by Markov’s inequality, the probability it fails
for more than (γ1/(8Q2))nS indices i is at most 0.99.

Next we consider (ii). For each i and each {x,y} ∈
(
X
2

)
, let

di =
(
dW (x) + dU0(x) + dVSi

(x)
)
−
(
dW (y) + dU0(y) + dVSi

(y)
)

= o(
√
nD) +O(nZ),
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so |di| ≤
√
nD for small δ. Then, observe that the random variable

dUi(x)− dUi(y)− di = dD(y)− dD(x)

is of (2nD, 1/2, O(1), |ND1(x)4ND1(y)|)∗-hypergeometric type. So, by part (i) of Claim 4.8 and
Lemma 3.8, Pr(dUi(x) = dUi(y)) = O

(
1/
√
nD
)
. Let Hi be the graph of pairs {x,y} ∈

(
X
2

)
satisfying

dUi(x) = dUi(y), so we have Ee(Hi) = O
(√
nD
)
. By Markov’s inequality, with probability at least

1− γ1/(800Q2) we have e(Hi) = O
(√
nD
)
, in which case by Proposition 3.4, Hi has an independent

set Xi of size 2γ3
√
n, for some γ3 > 0. The expected proportion of indices i for which this fails to

occur is γ1/(800Q2), and by Markov’s inequality again, with probability at least 0.99 it fails for only
a γ1/(8Q2) proportion.

Finally we consider (iii). For each x ∈ X, dD(x) is of (2nD, 1/2, O(1))-hypergeometric type, and
by (ii) in Claim 4.8, it has mean dD + O(

√
nD). Therefore, by Lemma 3.6, with large enough Q4,

we have |dD − dD(x)| ≤ Q4
√
nD with probability at least 1 − γ3/100, and by Markov’s inequality

the probability this fails for more than γ3|X| vertices is at most 0.99.

Now it is a relatively simple matter to put everything together to prove Lemma 4.3. Fix
γ1, Q2, γ3, Q4 and U such that all parts of the above claim are satisfied. By (iii), for any 0 ≤ i ≤ nS ,
any x ∈ X∗, and small δ, we have

|dUi(x)− (αdU + dW )| ≤ dVSi
(x) +Q4

√
nD + o(

√
nD) = O(nS) +Q4

√
nD < 2Q4

√
nD. (5)

By Lemma 3.10 (with λ = 3γ1nS
√
nD, ρ = Q2

√
nD, κ = γ1nS

√
nD and σ =

√
nD) and parts (iv)

and (v) of the above claim, for large enough Q2 there is an increasing subsequence i1, . . . , it, with
t ≥ γ1nS/(2Q2), such that ei−1 − ei ≥

√
nD for each 1 < i ≤ t. Delete all indices not in I1 ∩ I2

(there are at most γ1nS/(4Q2) such) to obtain a subsubsequence i′1, . . . , i′s with s ≥ γ1nS/(4Q2).
Let I contain every 4Q4th element of this subsubsequence, so that |I| = Θ(nS) = Θ(nZ) and

|ei − ei′ | = |e(Ui)− e(Ui′)| ≥ 4Q4
√
nD

for every pair of distinct indices i, i′ ∈ I. Recalling (5), this means that for different i ∈ I, there is
no overlap between the sets of values {e(Ui) + dUi(x) : x ∈ X∗}. By the definition of Xi in (ii) of
Claim 4.9, this means that for each of the Θ

(
nZ
√
nD
)
choices of i ∈ I and x ∈ Xi ∩X∗, the values

e
(
W ∪ U ∪ VSi∪{x}

)
= e(Ui) + dUi(x) are in fact distinct. It remains to show that the e

(
U, VSi∪{x}

)
are close to their expectations αnZdU0 . We have e

(
U0, VSi∪{x}

)
= nZdU0 , dD = (1 − α)dU0 and

nS = nZ − 1, so by (i) and (iii) in Claim 4.9, for sufficiently large B,∣∣e(U, VSi∪{x}
)
− αnZdU0

∣∣ =
∣∣e(U0, VSi∪{x}

)
− e(D,VSi)− dD(x)− nZdU0 + nSdD + dD

∣∣
≤ O(nD +

√
nD) ≤ BnD.

We have proved that the statements of Claims 4.8 and 4.9 hold together with probability at least
(3/4)(1/3) = 1/4, in which case the desired conclusion holds.

5 Concluding remarks

We have proved the Erdős–Faudree–Sós conjecture that for any fixed C, if G is an n-vertex graph
with no homogeneous subgraph on C log n vertices, then G contains Ω

(
n5/2

)
induced subgraphs,

no pair of which have the same numbers of vertices and edges. We feel that this area is still a
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long way from maturity, and there is much more room for further research towards understanding
the structure of C-Ramsey graphs. We hope that such research will inform future work on explicit
constructions of Ramsey graphs.

Regarding specific open questions, of course the Erdős–McKay conjecture remains an intriguing
problem. We would also like to draw attention to the subject of subgraphs with many different
degrees: as mentioned in the introduction, answering a different conjecture of Erdős, Faudree and
Sós [20, 21], Bukh and Sudakov [10] proved that C-Ramsey graphs have induced subgraphs with
Ω(
√
n) different degrees. However, in random graphs one can actually find induced subgraphs with

Ω
(
n2/3

)
distinct degrees (this was proved in an unpublished paper of Conlon, Morris, Samotij and

Saxton [13]), and it is not clear whether such an improved bound also holds for C-Ramsey graphs.
Additionally, observe that the main result of this paper can be rephrased as the fact that in an

O(1)-Ramsey graph, for most choices of `, there are many possibilities for the number of edges in a
subset of ` vertices. We believe a natural next step would be to study statistical properties of the
number of edges in a random set of ` vertices. For example, is this random variable anticoncentrated?
For general graphs this question was first studied by Alon, Hefetz, Krivelevich and Tyomkyn [3] (see
[28, 23, 29] for further work). Regarding Ramsey graphs, as we recently proposed in a paper with
Tuan Tran [28], could it be true that in any O(1)-Ramsey graph G, if A is a uniformly random set
of n/2 vertices, then Pr(e(G[A]) = x) = O(1/n) for all x? In [27] we also formulated a version of
this question for random subsets where the presence of each vertex is chosen independently, which
may be more tractable.

Finally, we believe an interesting further direction of research would be to consider regimes where
larger homogeneous subgraphs are forbidden (see [2, 7, 5, 31] for some examples of theorems of this
type). In [27] we proposed the conjecture that |Φ(G)| = Ω(e(G)) for graphs G which have no
homogeneous subgraph on n/4 vertices; we do not know a good counterpart of this conjecture for
|Ψ(G)|, but it seems likely that some nontrivial bound should hold.

Acknowledgment. The authors would like to thank the referee for their careful reading of the
manuscript and their valuable comments. We would also like to thank Mantas Baksys and Xuanang
Chen for carefully reading the paper and finding an oversight in the proof (related to the definition
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