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Abstract. In a Latin square, every row can be interpreted as a permutation, and therefore has a
parity (even or odd). We prove that in a uniformly random n × n Latin square, the n row parities
are very well approximated by a sequence of n independent unbiased coin flips: for example, the total
variation error of this approximation tends to zero as n → ∞. This resolves a conjecture of Cameron.
In fact, we prove a generalisation of Cameron’s conjecture for the joint distribution of the row parities,
column parities and symbol parities (the latter are defined by the symmetry between rows, columns
and symbols of a Latin square).

Along the way, we introduce several general techniques for the study of random Latin squares,
including a new re-randomisation technique via “stable intercalate switchings”, and a new approximation
theorem comparing random Latin squares with a certain independent model.

1. Introduction

An n × n Latin square is an n × n array filled with n different “symbols” (usually taken to be the
integers 1, . . . , n), with the property that each symbol appears exactly once in each row and each column.
For example, the multiplication table of a group is always a Latin square; in general, Latin squares can be
interpreted as multiplication tables of a class of algebraic structures called quasigroups. See for example
[35] for an introduction to this vast subject.

Each row or column of an n × n Latin square L can be interpreted as a permutation of order n,
which can be either even or odd. Let Nrow(L) be the number of odd row permutations, and let Ncol(L)
be the number of odd column permutations. If L is the multiplication table of a group, then either
Nrow(L) = Ncol(L) = 0 or Nrow(L) = Ncol(L) = n/2. However, for general Latin squares, the row
and column parities can have much richer behaviour, and much is still unknown. For example, one of
the most important conjectures in this direction is the Alon–Tarsi conjecture, which (in probabilistic
language) says that if n is even, and L is a uniformly random n× n Latin square, then

P
[
Nrow(L) is even

]
= P

[
Nrow(L) +Ncol(L) is even

]
̸= 1

2
.

(The first equality is not part of the original conjecture; it was observed by Huang and Rota [30], in a
paper where they also observed that the Alon–Tarsi conjecture has a number of surprising consequences
in seemingly unrelated areas of mathematics; see [26] for a modern survey). It was first proved by
Alpöge [3] that

P
[
Nrow(L) is even

]
=

1

2
+ o(1). (1.1)

as n → ∞. In other words, if the Alon–Tarsi conjecture is true, then it is true “just barely”.
Going far beyond (1.1), it has been suggested by Peter Cameron (in a variety of different sources;

see for example [7, 10, 11, 12, 13, 14, 15]) that the row parities of a Latin square might be statistically
completely unconstrained, in the sense that one can model the n row parities of a random Latin square
by simply making n independent coin flips.

Conjecture 1.1. Let L be a uniformly random n× n Latin square. Then the distribution of Nrow(L) is
approximately the binomial distribution Bin(n, 1/2), as n → ∞.

(Note that exchanging rows does not affect the distribution of L, so the sequence of row parities
ξ⃗row(L) ∈ (Z/2Z)n has a permutation-invariant distribution. This means that if we condition on Nrow(L),
then ξ⃗row(L) ∈ (Z/2Z)n is a uniformly random sequence in (Z/2Z)n, constrained to have exactly Nrow(L)

“1”s. That is to say, in order to understand the distribution of ξ⃗row(L), it is enough to understand the
distribution of Nrow(L).)

MK was supported by ERC Starting Grant “RANDSTRUCT” No. 101076777. KP was supported by the Euro-
pean Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement
No. 101034413 . This research was conducted during the period MS served as a Clay Research Fellow.
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To elaborate on the attribution/history of Conjecture 1.1: the starting point seems to have been
the problem session at the British Combinatorial Conference in 1993, where Cameron asked a related
question that was extended by Jeannette Janssen. However, at that time they did not seem to be very
confident that the statement of Conjecture 1.1 was actually true (in the BCC problem list [10] they
phrase the question as “is it true that...”). Cameron later posed the problem more assertively in a 2002
survey on permutations and permutation groups [7], and it seems he first referred to it as a “conjecture”
in a 2003 lecture on random Latin squares [11]. However, as far as we can tell, he never stated the
problem in a fully precise form (always using language like “approximately”).

There are many different ways to compare distributions, to make rigorous sense of the word “approx-
imately”; in this paper we confirm Conjecture 1.1 in many different senses. For example, one strong way
to compare distributions is in terms of total variation distance: for two probability distributions µ, ν on
the same space, write dTV(µ, ν) = supA |µ(A) − ν(A)| (so for any event A, the probabilities of A with
respect to µ and ν differ by at most dTV(µ, ν)). The following theorem is a consequence of our main
(technical) result.

Theorem 1.2. Let L be a uniformly random n× n Latin square. Then

lim
n→∞

dTV

(
Nrow(L), Bin(n, 1/2)

)
= 0.

Equivalently, writing ξ⃗row(L) ∈ (Z/2Z)n for the sequence of parities of rows of L, and writing Unif((Z/2Z)n)
for the uniform distribution on (Z/2Z)n, we have

lim
n→∞

dTV

(
ξ⃗row(L), Unif((Z/2Z)n)

)
= 0.

We can actually prove much more than Theorem 1.2; we will discuss this momentarily, but first it is
worthwhile to briefly discuss why this conjecture took so long to be resolved (and, in our opinion, why
it is so interesting). Generally speaking, it is quite easy to make plausible predictions about uniformly
random Latin squares, by making various kinds of approximate independence assumptions (for example,
Cameron’s conjecture can be justified from the point of view that there is “no obvious reason” for the
parities of different rows to be correlated). However, it is surprisingly difficult to rigorously prove anything
nontrivial about uniformly random Latin squares, or even to study them empirically.

The main issues are that Latin squares do not enjoy any neat recursive structure, and they are very
“rigid” objects, in the sense that there are only very limited ways to make a “local perturbation” to
change a Latin square into another one. To highlight the difficulties here, we remark that (despite some
very ambitious conjectures; see [1, Section 4.1]) we still have a rather poor understanding of the total
number of n × n Latin squares (the best known upper and lower bounds differ by exponential factors;
see [56, Section 17]), and there is no rigorously justified way to efficiently sample a uniformly random
Latin square (there are certain ergodic Markov chains on the space of n × n Latin squares [31, 51], but
these are not known to be rapidly mixing). By now, there are quite a few known results about random
Latin squares; the proofs of many of these results have required fundamental new additions to a very
limited toolbox of techniques, and Theorem 1.2 is no exception (we discuss existing and new techniques
in Section 2).

1.1. Row, column and symbol permutations. Our proof techniques actually allow us to go beyond
Cameron’s conjecture, to approximate not just the distribution of Nrow(L) but also the joint distribution
between Nrow(L), Ncol(L) and a third parameter Nsym(L), which counts the number of odd symbol
permutations. Perhaps the most natural way to define a symbol permutation is to reinterpret a Latin
square in a way that emphasises the natural symmetry between rows, columns and symbols: indeed,
observe that an n × n Latin square (with symbols 1, . . . , n) can be interpreted as an n × n × n array
in which every entry is “0” or “1”, such that every two-dimensional “slice” of this array is a permutation
matrix1. So, the row and column permutations correspond to slices in two of the three possible directions,
and the symbol permutations correspond to slices in the third direction.

The row, column and symbol parities cannot vary completely freely: it was proved by Janssen [34]
and Zappa [58] that for any Latin square L of order n, we have

Nrow(L) +Ncol(L) +Nsym(L) = f(n) (mod 2),

1The correspondence is that if the Latin square has symbol s in the (i, j)-entry, then we put a “1” in the (i, j, s)-entry
of the corresponding n× n× n array.
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where

f(n) =

{
0 if n = 0 or 1 (mod 4)

1 if n = 2 or 3 (mod 4).

Subject to this constraint, we are able to prove the natural extension of Cameron’s conjecture to
row, column and symbol parities. Specifically, let µ∗ be the conditional distribution of three inde-
pendent Bin(n, 1/2) random variables, given that their sum is f(n) mod 2. We are able to prove that
(Nrow(L), Ncol(L), Nsym(L)) approximately has the distribution µ∗ as n → ∞, in many different senses.

Theorem 1.3. Let L be a uniformly random n× n Latin square, and let

X⃗ = (X1,X2,X3) = (Nrow(L), Ncol(L), Nsym(L)).

Then, the following hold as n → ∞.
(1) (Law of large numbers) We have the convergence in probability

1

n
(X1, X2, X3)

p→ (1/2, 1/2, 1/2),

i.e., X⃗ satisfies the same law of large numbers as µ∗.
(2) (Central limit theorem) We have the convergence in distribution

1√
n/4

(X1 − n/2, X2 − n/2, X3 − n/2)
d→ N (0, I3),

i.e., X⃗ satisfies the same trivariate central limit theorem as µ∗.
(3) (Local central limit theorem) For all x⃗ = (x1, x2, x3) satisfying x1 + x2 + x3 = f(n) (mod 2), we

have

P[X⃗ = x⃗] = 2 · 1

(2π(n/4))3/2
exp

(
− (x1 − n/2)2 + (x2 − n/2)2 + (x3 − n/2)2

2(n/4)

)
+ o(n−3/2),

i.e., X⃗ satisfies the same local central limit theorem as µ∗.
(4) (Total variation convergence) We have

dTV(X⃗, µ∗) → 0.

(5) (Large deviation principle) Let H2 : α 7→ −α log2 α − (1 − α) log2(1 − α) be the base-2 binary
entropy function, and let I(x1, x2, x3) = 3−H2(x1)−H2(x2)−H2(x3). We have

− inf
x⃗∈E◦

I(x⃗) ≤ lim inf n−1 log2 P[n−1X⃗ ∈ E] ≤ lim supn−1 log2 P[n−1X⃗ ∈ E] ≤ − inf
x⃗∈E

I(x⃗)

for all Borel E ⊆ R3, where E and E◦ denote the closure and interior of E. That is to say, X⃗
satisfies the same large deviation principle as µ∗.

Actually, all parts of Theorem 1.3 are really consequences of a single master theorem (Theorem 6.4),
but we feel the statement of that master theorem is a little too technical for this introduction.

1.2. Previous work. We end this introduction with a brief discussion of previous work on Cameron’s
conjecture. The first theorem in this area was due to Häggkvist and Janssen [29], who proved that

P[Nrow(L) = 0] ≤ (
√

3/4 + o(1))n ≈ 0.87n (1.2)

(note that Theorem 1.3(5) implies that2 P[Nrow(L) = 0] ≤ (1/2 + o(1))n). Second, generalising (1.1),
Cavenagh and Wanless [18] proved that (Nrow(L), Ncol(L)) is asymptotically equidistributed modulo 2
(this is a special case of Theorem 1.3(4)). Third, Cavenagh, Greenhill and Wanless [17] proved that the
probability that the first two rows of L have the same parity lies between 1/4−o(1) and 3/4+o(1) (note
that Theorem 1.3(1) implies that this probability is 1/2+o(1), using the invariance of the distribution of
L under permutations of the rows). Until now, these were the only rigorous pieces of evidence towards
Cameron’s conjecture.

Surprisingly, empirical evidence for small Latin squares has run counter to Cameron’s conjecture
(and therefore Theorem 1.3): it seems that the approximations in Theorem 1.3 only start to “kick in”
for reasonably large n (though, there is a limit to what can be done empirically, because randomly

2Curiously, the methods in this paper do not directly imply the corresponding lower bound P[Nrow(L) = 0] ≥ (1/2 +
o(1))n. However, this does seem to be provable with some additional tricks; we intend to explore this in future work with
Catherine Greenhill and Lenka Kopfová.
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sampling Latin squares is a notoriously difficult problem). Cameron himself [15] observed that “evidence
supports this conjecture fairly well, but the tails of the distribution seem a little heavier than it would
predict”, suggesting that there might be good reason that the Häggkvist–Janssen bound mentioned
above is significantly larger than 2−n. Alimohammadi, Diaconis, Roghani and Saberi [1] attempted
to test Conjecture 1.1 using sequential importance sampling (in the same paper, they gave rigorous
grounding to this method). They were not able to find any evidence of the total variation convergence3

dTV(Nrow(L),Bin(n, 1/2)) → 0, with random Latin squares of size n ≤ 15.

1.3. Notation. We use standard asymptotic notation throughout: for functions f = f(n) and g = g(n),
we write f = O(g) or g = Ω(f) to mean that there is a constant C such that |f(n)| ≤ C|g(n)| for
sufficiently large n, we write f = Θ(g) to mean that f = O(g) and f = Ω(g), and we write f = o(g) or
g = ω(f) to mean that f/g → 0 as n → ∞. We will often want to treat certain quantities as constants,
for the purpose of asymptotic notation; we will always make this clear with phrasing like “fix a constant
α > 0”.

Somewhat less standardly, for ε > 0 we write f ± ε to denote a quantity that differs from f by at
most ε.

Regarding basic mathematical notation: for a real number x, the floor and ceiling functions are
denoted ⌊x⌋ = max(i ∈ Z : i ≤ x) and ⌈x⌉ = min(i ∈ Z : i ≥ x). We will however generally omit floor
and ceiling symbols and assume large numbers are integers, wherever divisibility considerations are not
important. We write [n] = {1, . . . , n}, and all logarithms are base e unless explicitly stated otherwise.

Finally, since this paper features so many objects of different types, we adopt some typographical
conventions: random objects are printed in bold (e.g., a random variable X or a random Latin square
L), and “ordered” objects are decorated with an arrow (e.g., vectors x⃗, and later in the paper we will
consider ordered partial Latin squares P⃗ ).

1.4. Acknowledgements. The authors would like to thank Lenka Kopfová for helpful feedback on an
earlier draft of this paper.

2. Discussion of proof techniques

In this section we give a high-level overview of the techniques which have previously been brought to
bear on random Latin squares, and with this context we describe the new ideas that go into the proof
of Theorem 6.4. (We end the section with an outline of the structure of the rest of the paper.)

As far as we know, all the rigorous work on random Latin squares uses one of three general classes of
techniques.

(1) Permutation-invariance. The distribution of a uniformly random n × n Latin square is in-
variant under random permutation of the rows, columns, and symbols. So, one can attempt to
study random Latin squares purely by considering the effect of such random permutations. This
type of reasoning is rather limited, but does have some applications (see e.g. [9, 47]).

(2) Enumeration. The most obvious way to study the probability that a random Latin square
satisfies a property P is to simply count the number of Latin squares satisfying P, and divide
by the total number of Latin squares. Unfortunately, we only have very crude methods to
enumerate n × n Latin squares (the best known upper and lower bounds differ by a factor of
about exp(n log2 n)), so generally speaking this can only be used to study properties that are
extremely unlikely (i.e., that occur with probability less than about exp(−n log2 n)). Even for
such properties, actually proving the necessary estimates is often a highly nontrivial matter (and
often involves consideration of auxiliary random models, as we discuss in Section 2.1). For some
examples of properties of random Latin squares proved by enumeration, see e.g. [5, 8, 28, 40, 42,
43,44,46,50].

(3) Cycle switching. A common technique in probabilistic combinatorics is to study a random
object by studying the effect of local “switching” operations. Unfortunately, it is very difficult
to make a controlled local change to a Latin square. To give some idea of the difficulty, it is an
open question to understand the minimum number f(n) such that every n× n Latin square can
be transformed into some different Latin square by changing f(n) entries (all we know is that
f(n) has order of magnitude between log n and

√
n; see [16]). There is only really one type of

switching operation that has successfully been used to study random Latin squares, namely cycle

3In fact, they did not even see any evidence of convergence with respect to the so-called Wasserstein metric (Wasserstein
convergence is significantly weaker than total variation convergence).
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switchings (and minor variants thereof). We will define cycle switchings properly in Section 2.3,
but for now we just emphasise that they are very unwieldy; in general, if we want to make a
particular local change using a cycle switching, we may be forced to make far-reaching changes
to the rest of the Latin square. Nonetheless, since cycle switchings are one of very few available
tools, they have played a crucial role in many of the known results about random Latin squares
(see e.g. [2, 17,18,29,44]).

Permutation-invariance alone is certainly not enough to prove Cameron’s conjecture, since any permu-
tation of the rows, columns and symbols affects all the row parities in the same way (though, permutation-
invariance can be used to easily show that P[Nrow(L) is even] = 1/2 when n ≥ 3 is odd). At first sight,
enumeration-based approaches also seem to be fundamentally unsuitable to prove Cameron’s conjecture,
since we are concerned with events that occur with non-negligible probability, and a multiplicative error
of exp(n log2 n) would completely overwhelm the main term. So, cycle-switching techniques seem to be
the most promising avenue towards Cameron’s conjecture; indeed, such techniques underpin the results
of Häggkvist–Janssen, Cavenagh–Wanless and Cavenagh–Greenhill–Wanless mentioned in the introduc-
tion. However, the usual type of switching analysis is far too crude to have any hope of proving anything
like Theorem 1.2 (we discuss this further in Sections 2.3 and 2.4), and some fundamental new ideas are
required.

In this paper, we use a combination of cycle-switching and enumeration-based techniques. To very
briefly summarise our approach: we use enumeration-based techniques to prove a new approximation
theorem, comparing a random Latin square to a certain Erdős–Rényi-type random hypergraph (in a
stronger sense than previously available). This allows us to show that random Latin squares are ex-
tremely likely to have a very rich constellation of 2 × 2 subsquares with certain strong disjointness and
canonicity/stability properties. The special properties of these 2×2 subsquares allow us to independently
perform many cycle switchings, to “re-randomise” a random Latin square without biasing its distribution.
We are then able to prove the desired results using the randomness of our independent switchings, via
some linear algebra over the finite field F2.

In the following subsections, we describe the above ideas in more detail.

2.1. Enumeration and approximation. Let |Ln| be the number of n×n Latin squares. This number
is known to be

|Ln| =
( n

e2
+ o(n)

)n2

,

and there are two known ways to prove this.
(1) We can build up an n×n Latin square in a row-by-row fashion: at each step we choose an option

for the next row that does not conflict with previous rows. One can use celebrated permanent
estimates of of Egorychev–Falikman [21,22] and Bregman [6] to show that the number of choices
for each row does not depend too strongly on previous choices; multiplying these bounds over all
steps yields

exp(−O(n log n)) ≤ |Ln|
(n/e2)n2 ≤ exp(O(n log2 n))

(see [56, Theorem 17.3] for the details).
(2) We can instead build up an n×n Latin square in an entry-by-entry fashion: at each step we choose

a row/column/symbol triple that does not conflict with the partial Latin square constructed so
far, and add it. Unfortunately, the number of choices at each step can depend quite dramatically
on previous choices; in particular it is possible to “get stuck”, and find oneself in a position where
there are no legal choices for the next row/column/symbol triple.

However, it turns out that “on average” (i.e., if one makes random choices at each step), this
entry-by-entry process is quite well-behaved. Combining a number of very powerful tools, one
can use this process to prove

exp(−O(n2−ε)) ≤ |Ln|
(n/e2)n2 ≤ exp(O(n3/2)).

for some tiny4 constant ε > 0. The details appear in [41], but are really an adaptation of
a general enumeration approach systematised by Keevash [39]. Specifically, the upper bound
is proved using the so-called entropy method of Radhakrishnan [52], in a form pioneered by

4It is unclear what is the optimal ε with this approach, but certainly ε cannot be greater than 1/2 (this is a general
barrier for techniques based on the triangle removal process, which we intend to explore further in upcoming work).
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Linial and Luria [45]. For the lower bound, one combines an analysis of an instance of the so-
called triangle removal process (first studied by Spencer [55] and Rödl and Thoma [53]), with a
completion theorem of Keevash [37] (here one needs a “second generation” completion theorem,
building on Keevash’s earlier ideas in the setting of the existence of designs conjecture [36]; see
also [19,27,38]).

The approaches in (1) and (2) suggest two different ways to study random Latin squares, by comparing
them to two different auxiliary random models. First, a k × n Latin rectangle is a k × n array filled
with n different symbols, such that each symbol appears exactly once in each row and at most once in
each column. The ideas in (1) show that all k×n Latin rectangles can be completed to Latin squares in
“about the same number of ways” (up to a multiplicative factor5 of about exp(n log2 n)), so if we could
show that some property is overwhelmingly likely to hold in a random k × n Latin rectangle, then we
could deduce that that property is also very likely to hold in a random n× n Latin square.

Similarly, consider the random process in (2) (which can be interpreted as an instance of the so-called
triangle removal process), and suppose we run this process for just a few steps (until the partial Latin
square is half-full, say). The ideas in (2) allow us to show that most outcomes of this random process
can be completed to Latin squares in “about the same number of ways” (up to a multiplicative factor
of about exp(n2−ε)), so if we had some way to show that the first few steps of this random process are
overwhelmingly likely to satisfy some property, then we could deduce that that property is also very
likely to hold in a random n× n Latin square.

Both of these two methods have quite fundamental quantitative limitations (they can only be used
to study properties that hold with overwhelming probability), but they have seen many applications.
To compare the two methods: the first method has much better quantitative aspects, and it is “more
elementary” (not depending on Keevash’s sophisticated completion machinery). On the other hand, the
second method is generally much easier to apply: the entry-by-entry random process can be straight-
forwardly coupled with an Erdős–Rényi random hypergraph, which allows one to take advantage of the
huge body of techniques that have been developed to study random graphs6. The only known way to
directly study random Latin rectangles is via delicate switching arguments (taking advantage of the fact
that it is much easier to make local changes to a Latin rectangle than a Latin square).

2.2. A new approximation lemma. One of our key contributions in this paper is a new approximation
lemma (Lemma 4.7) that combines the advantages of both the above methods (and is proved by a delicate
combination of both methods). Roughly speaking, this lemma says that if one can show that the entry-
by-entry random process described in the last subsection (i.e., the triangle removal process) satisfies a
property with probability 1− ε, then that property holds in a random subset of a random Latin square
with probability at least 1 − ε exp(O(n log2 n)). The reader may also be interested in an easy-to-apply
corollary of our main approximation lemma (Corollary 5.5) comparing random Latin squares to Erdős–
Rényi random hypergraphs.

For example, these tools could have been used to remove the switching analysis (or remove the
dependence on general-purpose switching estimates) from [5,28,42,44,50], and remove the dependence on
Keevash’s completion machinery from theorems in [40,42]. For the present paper, our new approximation
lemma is rather crucial: quantitative aspects are very important (see Remark 2.1), and the properties we
need to consider are so complicated that it would have been a herculean task to study them via switching
on Latin rectangles. We hope that our approximation lemma will also be broadly useful in future work
on random Latin squares.

2.3. Cycle switchings. A cycle switching is specified by a pair of rows, a pair of columns or a pair of
symbols, together with an entry of the Latin square “belonging to that pair”. For example, consider two
rows r1, r2 and an entry (r1, c, s) (meaning that symbol s appears in row r1 of column c). The first step
of the cycle switching is to “move our entry into the other row”: we put the symbol s into cell (r2, c).
However, there was already another symbol s′ in that cell, which we need to move somewhere else; we
move it to the only available cell, which is (r1, c). But there is already an instance of s′ in row r1 (in
some column c′), so we move that instance of s′ to the cell (r2, c′). But there was already some symbol
s′′ in that cell, which we move to (r1, c

′). At this point, if we are very lucky, we will have s = s′′, in
which case no further moves are necessary, and we have successfully switched to a new Latin square. If

5Of course, this multiplicative factor depends on k, but it turns out that most of the contribution comes from the last
few rows, so one cannot gain much by taking k very close to n.

6The second method is also much more robust, and can be applied in much more general settings than random Latin
squares, though this is not relevant for the present paper.
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not, we can keep going, repeatedly moving entries between r1 and r2 as long as it takes to resolve all
conflicts and reach a Latin square. (In the worst case, we could end up exchanging the entirety of rows
r1 and r2).

The smallest possible cycle switching is called an intercalate switching. In the above example, it
corresponds to the case where s = s′′, so the entire switching affects just four entries of the Latin square.
Alternatively, an intercalate switching can be viewed as “flipping a 2 × 2 Latin subsquare”. In general,
the switchings described above (“row switchings”, where we are switching between two rows r1 and r2)
can be viewed as “flipping a 2× k Latin subrectangle”, for some k.

Cycle switchings have an easy-to-describe impact on the parities of rows, columns and symbols. For
example, a row switching changes the parity of every column and symbol involved in the switching, and
it may or may not change the parity of the two involved rows, depending on whether the length of the
cycle switching is even or odd. More subtly, cycle switchings also have an impact on the structure of
other cycle switchings (e.g., switching in a pair of rows can affect the switchings that are possible in some
pair of columns), so one can consider combinations of cycle switchings with more complicated effects. It
is even possible to combine multiple “partial” cycle switchings of different types (cf. the “cross-switch”
operations in [17,29]).

One can use these types of switchings to estimate the relative likelihoods of various events. Indeed,
given two sets of Latin squares A,B, we can design a switching operation to transform a Latin square
in A into a Latin square in B. Then, for L1 ∈ A we can try to estimate the number of Latin squares in
B that can be reached by such a switching, and for L2 ∈ B we can try to estimate the number of Latin
squares in A that can reach L2 by such a switching. Dividing these two estimates gives us an estimate
on |B|/|A|.

For example, for a sequence x⃗ ∈ {0, 1}k, let Lx⃗ be the set of n × n Latin squares for which the
parities of the first k rows are described by x⃗. Using the above types of ideas, Häggkvist and Janssen [29]
managed to show that if k is significantly smaller than n/2, we have |Lx⃗| ≤ 3|Ly⃗| whenever x⃗ and y⃗ differ
in a single coordinate, and they iterated this estimate to deduce (1.2). Obviously, this comes very far
short of proving Cameron’s conjecture; the condition on k and the extraneous factor of 3 are basically
due to the fact that one has very little control over the structure of cycle switchings in an arbitrary
Latin square. To make a desired change to the row parities it is necessary to make case distinctions with
different combinations of cycle switchings that interact in different ways, and it is necessary to reserve a
large subset of “junk rows” which may be affected by the cycle switchings in unpredictable ways.

2.4. Individual intercalate switchings. An important point is that we do not actually need to con-
sider cycle switchings in arbitrary Latin squares: we can use the enumeration/approximation methods
described in Sections 2.1 and 2.2 to prove that Latin squares are very likely to satisfy certain properties,
and then take advantage of these properties in cycle switching arguments. This sounds like a natural
approach, but to our knowledge it has never been employed before, because until recently the properties
that could be proved using enumeration/approximation were extremely limited.

In particular, a very relevant direction is the study of intercalates (2× 2 Latin subsquares) in random
Latin squares. If an intercalate involves two even (respectively, odd) rows, then switching that intercalate
reduces (respectively increases) the number of even rows by exactly two. So, if we had very tight control
of the number of intercalates among the even rows, and the number of intercalates among the odd rows,
we could hope to estimate the ratios

P[Nrow(L) = x]

P[Nrow(L) = x+ 2]
, (2.1)

for all x ∈ N, by considering all the ways to switch a single intercalate. Note that these ratios fully
determine the distribution of Nrow(L) (except for a possible bias mod 2, but this is handled by (1.1)).

Recently, resolving a conjecture of McKay and Wanless [50], Kwan, Sah and Sawhney [42] showed how
to use enumeration/approximation techniques (together with techniques from large deviations theory) to
prove that L has n2/4+o(n2) intercalates with probability 1−o(1). These techniques can be adapted to
show that L typically has k2/4+ o(n2) intercalates in any subset of k rows, which allows one to estimate
the ratio in (2.1) up to a multiplicative factor of 1 + o(n/(x(n − x))). This is already enough to make
new progress towards Cameron’s conjecture: since binomial tails decay very rapidly, it is straightforward
to deduce that Nrow(L) = n/2+ o(n) with probability 1− o(1); that is, Nrow(L) satisfies the same law of
large numbers as Bin(n, 1/2). This implies Theorem 1.3(1), and with a bit more work it is also possible
to prove the large deviation principle in Theorem 1.3(5) using this type of idea.
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That is to say, by studying the effect of switching an intercalate, one can estimate the ratios (2.1)
tightly enough to study the tails of Nrow(L) (and Ncol(L) and Nsym(L)). Unfortunately, it is not feasible
to study the bulk of the distribution of Nrow(L) this way: since the fluctuations of Bin(n, 1/2) have
order of magnitude

√
n, one would need to control the ratios (2.1) up to a factor of 1+o(1/

√
n); roughly

speaking, this is comparable to showing that the number of intercalates Y in L satisfies P[|Y−EY| > t] =
o(1) for some t = o(n3/2). While we believe this to be true, it is beyond the reach of enumeration-based
techniques: due to clustering phenomena in the upper tail of Y, the relevant deviation probabilities are
simply not small enough7 to tolerate the super-exponential error terms described in Section 2.1. (This
is an instance of Janson’s “infamous upper tail” [33], and is discussed further in [42].)

2.5. Multiple intercalate switchings. So, instead of studying the effect of a single intercalate switch-
ing, our approach is to make many disjoint intercalate switches at the same time.

A naïve approach for this is as follows. Using our new approximation theorem, together with tech-
niques from [40,42], one can show that a random n×n Latin square L typically has a collection of disjoint
intercalates I which “robustly span almost all the rows”, in the sense that for every set R0 of about8 log2 n
rows, there is an intercalate in I which involves a row in R0 and a row outside R0. Some simple linear
algebra over F2 then shows that if we were to randomly and independently switch all the intercalates
in I (thereby obtaining a new random Latin square L′), the resulting distribution of the n row parities
would be uniform on some affine-linear subspace of Fn

2 with codimension at most about log2 n, and it
is easy to deduce a central limit theorem for Nrow(L

′). (With a more sophisticated argument, one can
handle the joint distribution of (Nrow(L

′), Ncol(L
′), Nsym(L

′)) and upgrade the central limit theorem to
a local central limit theorem.)

Remark 2.1. We are really proving a central limit theorem for Nrow(L
′) conditioned on an outcome of

L. So, it is important that for different outcomes of L, the corresponding conditional distributions of
Nrow(L

′) are statistically indistinguishable. This would not be true if the codimension above were greater
than

√
n, since the fluctuations of Bin(n, 1/2) have order of magnitude

√
n. So, the quantitative aspects

of our new approximation theorem are very important here. (E.g., the approximation theorem in [40]
would not have sufficed.)

Unfortunately, this only characterises the distribution of Nrow(L
′), which could in principle be very

different to the distribution of Nrow(L). The problem is that switching some intercalates can destroy
other intercalates, or create new ones, so the probability of switching from L to L′ could be different
from the probability of switching from L′ to L (i.e., the switching could “push probability mass” towards
a subset of Latin squares, introducing bias to the distribution of L′). Trying to quantify this bias takes
us back to the issues described in Section 2.4.

The only way we were able to resolve this issue was to execute the entire argument above with
a stable/canonical collection of disjoint intercalates. Specifically, we associate a collection of disjoint
intercalates I(L) to each Latin square L, in such a way that if we switch any subset of these intercalates
to obtain a new Latin square L′, then I(L) and I(L′) are exactly the same (except that obviously some
of these intercalates are switched). So, the probability of switching from L to L′, and the probability of
switching from L′ to L, are both exactly 2−|I(L)| = 2−|I(L′)|, and L′ is a uniformly random Latin square.

In a typical Latin square, the intercalates heavily intersect each other (and therefore cannot be inde-
pendently switched). Given a pair of intersecting intercalates, how do we decide which is “the canonical
one” that we’re allowed to switch? Our approach is to randomly sparsify the situation, to reduce the
intersections between intercalates. Namely, we consider a random “template” T, which describes a sparse
subset of “switchable” row/column pairs. Then, given a Latin square L, we define a collection of inter-
calates IT(L) by starting with the collection of intercalates in L which use only row/column pairs in T,
then deleting the intercalates which are “non-canonical” (the precise definition is a little complicated, but
e.g. we delete all intercalates in intersecting pairs, and we delete all intercalates that could introduce a
new intercalate when switched). The idea is that this deletion step should not have a very severe effect,
since T is sparse. We need to show that a typical outcome of T yields collections of intercalates IT(L)
which “robustly span almost all the rows” for almost all L, with which we can implement the argument
described above.

7For this to work, one would need to be able to estimate the number of n×n Latin squares |Ln| up to a subexponential
exp(o(n)) multiplicative error.

8We cannot go smaller than about log2 n, due to the multiplicative error of about exp(n log2 n) in our enumeration
estimates.
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Actually proving the necessary properties of IT(L) is a very delicate matter (much more so than
any previous work on random Latin squares), largely due to the aforementioned “infamous upper tail”
issue. Specifically, because enumerative estimates have super-exponential error terms, most steps of the
proof need to hold with overwhelming probability, so we constantly need to worry about large deviation
behaviour. Whenever we need an upper bound on some quantity, we need to be extremely careful to
avoid situations where clustering phenomena cause upper tails to be too heavy.

2.6. Outline of the paper. The structure of the proof of Theorem 1.3, as distributed over the rest
of the paper, is as follows. First (after Section 3, in which we record some standard concentration
inequalities that will be used throughout the paper), in Section 4 we prove our new approximation
theorem (Lemma 4.7) relating random Latin squares to the triangle removal process. In Section 5 we
prove some simple lemmas relating the triangle removal process to Erdős–Rényi random hypergraphs,
which will be useful in combination with Lemma 4.7.

In Section 6, we reduce all parts of Theorem 1.3 to a technical “master theorem” (Theorem 6.4)
giving a precise description of the distribution of (Nrow(L), Ncol(L), Nsym(L)). Then, in Section 7, we
introduce the notion of a “stable intercalate”, which is an intercalate which can be safely switched without
affecting any other intercalates. In Section 8 we show how to use linear-algebraic arguments with stable
intercalate switchings to prove the master theorem described above, given a key lemma (Lemma 8.3)
on stable intercalates in random Latin squares. Roughly speaking, the key lemma says that there is a
“template” T (obtained via a sparse random set of row/column pairs), such that for a uniformly random
Latin square, it is very likely that for any large-enough sets of rows, columns and symbols, we can find
a stable intercalate (involving only entries in T ) “inside” those sets.

The rest of the paper is devoted to the proof of Lemma 8.3. In Section 9 we break down this proof into
two lemmas. First, Lemma 9.11 says that (inside any large-enough sets of rows, columns and symbols)
there are likely to be many disjoint intercalates (saying nothing about whether they are stable). Second,
Lemma 9.13 says that there are unlikely to be many entries which lie in certain “bad” arrangements of
intercalates which could lead to our intercalates being non-stable. (Here, due to “infamous upper tail”
issues, we cannot hope to consider the number of bad arrangements themselves, only the number of
entries in them!)

The first of these lemmas (Lemma 9.11) is proved in Section 10, via a careful 2-step application
of Freedman’s martingale concentration inequality (using a “maximum disjoint family” technique of
Bollobás [4]).

The second lemma (Lemma 9.13) is proved in Section 11, and is much more involved. Here, our
job is to understand “bad” arrangements of intercalates; there is an enormous range of possibilities for
the structure of such an arrangement, so the first step is a switching argument (unrelated to the main
switching argument in Section 8), which shows that every bad arrangement of intercalates can be switched
to obtain one of four “basic types”, and therefore it suffices to restrict our attention to these types. We
then carefully study how the four basic types of bad intercalate arrangements can emerge in the triangle
removal process.

3. Concentration inequalities

Throughout this paper we will frequently use a general-purpose concentration inequality for functions
of independent Bernoulli random variables. The following statement appears as [57, Corollary 6]9; it
follows from the martingale approach of Freedman [25].

Theorem 3.1. Let g⃗ = (g1, . . . ,gN ) be a sequence of independent Bernoulli random variables with
P[gi = 1] = pi. Let f : {0, 1}N → R satisfy |f(g⃗)− f(g⃗ ′)| ≤ Ki for all pairs g⃗, g⃗ ′ ∈ {0, 1}N differing only
in the i-th coordinate, and suppose Ki ≤ K for all i ∈ [N ]. Then for all t ≥ 0, we have

P
[∣∣f(g⃗)− E[f(g⃗)]

∣∣ > t
]
≤ 2 exp

(
− t2

2
∑N

i=1 piK
2
i + 2Kt/3

)
.

Note that, in order to obtain a strong bound from Theorem 3.1, we need to know that f(g⃗) is not very
sensitive to changes in any individual gi. In this respect Theorem 3.1 is similar to the much more well-
known bounded differences inequality of McDiarmid [49] (which is a consequence of the Azuma–Hoeffding
martingale concentration inequality). However, we need the stronger statement of Theorem 3.1 for its
essentially-optimal dependence on p1, . . . , pN .

9In [57], Theorem 3.1 is stated only for the upper tail of f(g⃗); applying it to −f(g⃗) yields the lower tail.
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We also record a corollary of Theorem 3.1 in the special case of weighted sums of Bernoulli random
variables (this is basically the standard Chernoff bound).

Corollary 3.2. Let g1, . . . ,gN be independent Bernoulli random variables, consider weights w1, . . . , wN ∈
[0,∆], and let X = w1g1 + · · ·+ wNgN . Then, for any δ > 0 we have

P
[
|X− EX| ≥ δEX

]
≤ 2 exp

(
− δ2EX

(2 + 2δ/3)∆

)
.

4. Approximating random Latin squares with the triangle removal process

In this section, we prove an approximation lemma that relates random Latin squares to the triangle
removal process (which is a tractable probability distribution on partial Latin squares). To state this
lemma, we need some preparations. First, it will be convenient for us to take an alternative perspective
on Latin squares.

Fact 4.1. An n × n Latin square can be interpreted as a tripartite 3-uniform hypergraph (specifically,
a subgraph of the complete tripartite 3-uniform hypergraph K

(3)
n,n,n), in which every pair of vertices in

different parts features in exactly one hyperedge.
To see the correspondence, think of the three parts as the set of rows, the set of columns and the set

of symbols; a hyperedge (r, c, s) means that symbol s appears in the c-th column of the r-th row.

From now on, we interchangeably take the hypergraph point of view and the n×n array point of view,
depending on whichever is most convenient at any given moment (generally speaking, the hypergraph
point of view is more expressive, and highlights the symmetry between rows, columns and symbols, but
it is easier to draw pictures with the n× n array point of view).

Definition 4.2. Let Ln be the set of all n× n Latin squares.
A partial Latin square is a tripartite 3-uniform hypergraph in which every pair of vertices in different

parts features in at most one hyperedge (alternatively, one can also interpret this as an n × n array in
which only some of the entries are filled with symbols). Let Pn,m be the set of all n × n partial Latin
squares with m hyperedges, and let Pn =

⋃
m≤n2 Pn,m ⊇ Ln be the set of all n×n partial Latin squares

(with any number of hyperedges).
An ordered partial Latin square is a partial Latin square together with an ordering on its hyper-

edges. Let P⃗n,m be the set of all n × n ordered partial Latin squares with m hyperedges, and let
P⃗n =

⋃
m≤n2 P⃗n,m.

Now, our approximation lemma will compare uniformly random Latin squares to a distribution on
(ordered) partial Latin squares; for this to make sense we need a notion of inheritance from a property
of Latin squares to a property of (ordered) partial Latin squares.

Definition 4.3. Let U⃗ ⊆ P⃗n be a property of ordered partial Latin squares and let T ⊆ Ln be a property
of Latin squares. For m ≤ n2, we say U⃗ is (ρ,m)-inherited from T if for any L ∈ T , taking P⃗m(L) to
be a uniformly random subset of m hyperedges of L, equipped with a uniformly random order, we have
P⃗m(L) ∈ U⃗ with probability at least ρ.

Remark 4.4. It will often be quite obvious how to specify the property U⃗ , for a desired event T (and
often, the ordering will play no role). For example, if T is the property of having fewer than (1− ε)n2/4

intercalates, it would make sense to take U⃗ to be the property of having fewer than (1−ε/2)(m/n2)4n2/4
intercalates. However, as we will see later in the paper, there is sometimes reason to make more exotic
choices for U⃗ .

Remark 4.5. Throughout the paper we will need to consider many different properties of (ordered)
(partial) Latin squares, and we have attempted to adopt some notational conventions to help the reader
keep track of the “type” of each property. Specifically, for properties of partial Latin squares, we will
usually use the letter U (think “unfinished”) and for properties of complete Latin squares we will usually
use the letter T (think “total”). An arrow on top of a property indicates that it is a property of ordered
(rather than unordered) partial Latin squares.

Now, the main lemma of this section concerns the triangle removal process, which we now define.
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Definition 4.6. Let TRP(n,m) be the distribution over P⃗n,m ∪ {⊥} obtained as follows. Start with
the complete tripartite graph Kn,n,n. At each step, choose a uniformly random triangle (among all the
triangles in the current graph), and remove it. After m steps of this process, the sequence of removed
triangles can be interpreted as an ordered partial Latin square R⃗ ∈ P⃗n,m (unless we ran out of triangles
at some point in the process, in which case we take R⃗ =⊥).

We are now ready to state the main result of this section, comparing a uniformly random Latin square
to the triangle removal process.

Lemma 4.7. Fix constants α ∈ (0, 1) and ρ ∈ (0, 1], and let m = αn2. Consider properties U⃗ ⊆ P⃗n,m

and T ⊆ Ln such that U⃗ is (ρ,m)-inherited from T . Let R⃗ ∼ TRP(n,m) be an ordered partial Latin
square obtained by m steps of the triangle removal process, and let L ∼ Unif(Ln) be a uniformly random
n× n Latin square. Then

P[L ∈ T ] ≤ exp

(
n log2 n

1− α− o(1)

)
P[R⃗ ∈ U⃗ ].

Lemma 4.7 is a quantitative improvement to [42, Theorem 2.4] (which is itself an adaptation of
[40, Theorem 2.4]). Our proof of Lemma 4.7 bears some similarities to the proofs in [40, 42], but
incorporates various additional ideas (related to our use of enumeration results that are stronger but
much less robust).

Remark 4.8. It may seem that Lemma 4.7 is not suitable for studying “local” properties (e.g., properties
concerning a particular vertex v). Such properties are important for the so-called absorption method,
which (is not relevant for the main results in this paper but) has played a central role in previous work
on random Latin squares. Indeed, it is not hard to see that with probability at least exp(−O(n)), the
random hypergraph R⃗ has no edges at all containing v, and this probability seems too large to have
any hope of applying Lemma 4.7 to any interesting local property about v. However, one can generally
overcome this issue with a judicious choice of U⃗ , cf. Remark 4.4. For example (very informally speaking),
if T is the property that v does not participate in a desired local structure, we can take U⃗ to be the
property that v has high degree but still does not participate in the desired local structure.

The rest of this section is devoted to the proof of Lemma 4.7. We start with some further definitions.

Definition 4.9. For an (ordered) partial n× n Latin square P , let G(P ) ⊆ Kn,n,n be the graph which
contains an edge uv (of Kn,n,n) if and only if there is no hyperedge of P containing u and v. That is to
say, G(P ) is the graph of pairs that would need to be covered to complete P to a full Latin square.

For a graph G ⊆ Kn,n,n, let dens(G) = e(G)/(3n2).

Definition 4.10. We say that a graph G ⊆ Kn,n,n, is ε-triangle-typical if its number of triangles is
(1 ± ε)n3 dens(G)3. Let P△:ε

n,m ⊆ Pn,m be the set of partial Latin squares P ∈ Pn,m such that G(P ) is
ε-triangle-typical. Let P⃗△:ε

n,m ⊆ P⃗n,m be the set of ordered partial Latin squares P⃗ ∈ P⃗n,m such that for
each i ≤ m, if we consider the partial Latin square Pi consisting of the first i hyperedges of P⃗ , then
Pi ∈ P△:ε

n,m.

Definition 4.11. We say that a graph G ⊆ Kn,n,n, is γ-quasirandom if for all pairs of vertices u, v in
different parts, the number of common neighbours of u and v is (1± γ)ndens(G)2. Let Pγ

n,m be the set
of partial Latin squares P ∈ Pn,m such that G(P ) is γ-quasirandom.

Remark 4.12. It is not hard to see that if a graph is γ-quasirandom, then it is necessarily O(γ)-triangle-
typical (this fact is used in the previous approximation lemmas in [40, 42]). However, in our proof of
Lemma 4.7 (with its strong quantitative aspects), we will need to consider quasirandomness and triangle-
typicality with quite different parameters.

In the next two lemmas, we show that for any Latin square L ∈ Ln, if we take a random ordering of
a random subset of L, then the resulting random object is likely to satisfy certain triangle-typicality and
quasirandomness properties. This will allow us to assume that various graphs we encounter later in the
proof are triangle-typical/quasirandom, which will be necessary for our enumeration techniques.

Lemma 4.13. Fix a constant α ∈ (0, 1). Consider any L ∈ Ln and let P⃗αn2(L) ∈ P⃗n,αn2 be a random
ordering of a random set of αn2 hyperedges of L. Then, with ε = n−1 log n, we have

P[P⃗αn2(L) /∈ P⃗△:ε
n,αn2 ] ≤ exp(−Ω(log2 n)).
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Proof. Fix some m ≤ αn2. We will show that G(P⃗m(L)) is ε-triangle-typical with probability at least
1− exp(−Ω(log2 n)). The statement of the lemma will then follow by a union bound over all m ≤ αn2.

Note that P⃗m(L) consists of a uniformly random set of m hyperedges of L. Let Bp(L) be a random
subset of the hyperedges of L where each hyperedge is taken independently at random with probability
p = m/n2. By “Pittel’s inequality” (see e.g. page 17 in [32]), for any property Q of unordered partial
Latin squares,

P[P⃗m(L) /∈ Q] ≤ 3
√
mP[Bp(L) /∈ Q].

Thus, letting X be the number of triangles in G(P⃗m(L)), it suffices to show that P[X /∈ (1±ε)n3(1−p)3] ≤
exp(−Ω(log2 n)).

For any v1 ∈ V1, v2 ∈ V2, v3 ∈ V3 such that v1v2v3 ∈ L, the probability that v1v2v3 is a triangle in
G(Bp(L)) is precisely 1 − p = 1 −m/n2. On the other hand, if v1v2v3 /∈ L, the probability v1v2v3 is a
triangle in G(Bp(L)) is (1− p)3, since each pair of vertices among v1, v2, v3 is in a distinct hyperedge of
L, and all these hyperedges need to be absent from Bp(L) in order for v1v2v3 to be in G(Bp(L)). Thus,

µ := E[X] = n2(1− p) + (n3 − n2)(1− p)3 = Θ(n3).

There are n2 hyperedges in L, and adding or removing a hyperedge from Bp(L) can affect X by at most
1 + 3(n− 1), since each pair of vertices in e can form a triangle with n− 1 other vertices in G(Bp(L)).
Thus, by Theorem 3.1, we have

P[X /∈ (1± ε)n3(1− p)3] ≤ P[|X− µ| ≥ εµ/2]

≤ 2 exp

(
− ε2µ2/4

2n2p
(
1 + 3(n− 1)

)2
+ 2
(
1 + 3(n− 1)

)
εµ/6

)
= exp

(
− Ω(log2 n)

)
,

where in the first inequality we used that µ− n3(1− p)3 = o
(
εn3(1− p)3

)
. □

Lemma 4.14. Fix a constant α ∈ (0, 1). Consider any L ∈ Ln and let Pαn2(L) ∈ Pn,αn2 be a random
subset of αn2 hyperedges of L. Let γ = ω(n−1/2 log1/2 n). Then

P[Pαn2(L) /∈ Pγ
n,αn2 ] ≤ exp(−Ω(γ2n)).

Proof. Let m := αn2. We will show that G(Pm(L)) is γ-quasirandom with probability at least 1 −
exp(−Ω(γ2n)).

As in the proof of Lemma 4.13, let Bp(L) be a random subset of the hyperedges of L where each
hyperedge is taken independently at random with probability p = m/n2 = α. Let Su,v be the set of
common neighbours of u and v, with respect to the graph G(Bp(L)). It suffices to show that for every
u, v that are in different parts of G(Bp(L)), it holds that P[|Su,v| /∈ (1± γ)n(1− α)2] ≤ exp(−Ω(γ2n)).
A union bound over all pairs of vertices u, v and Pittel’s inequality would then complete the proof.

Fix some u, v in different parts of G(Bp(L)). Let w be the unique vertex such that uvw is a hyperedge
of L. Then P[w ∈ Su,v] = 1 − p. On the other hand, for all w′ ̸= w that are in the same part as w, we
have P[w′ ∈ Su,v] = (1 − p)2 (since w′ participates in some hyperedge together with u and in another
hyperedge together with v, and both of these need to not be selected in Bp(L) to have w′ ∈ Su,v). Thus,
for X = |Su,v|,

µ := E[X] = (1− p) + (n− 1)(1− p)2 = Θ(n).

There are 2n− 1 hyperedges in L that affect X, and adding or removing such a hyperedge from Bp(L)
can affect X by at most 1. Thus, by Theorem 3.1, we have

P[X /∈ (1± γ)n(1− p)2] ≤ P[|X− µ| ≥ γµ/2] ≤ exp
(
− γ2µ2/4

2(2n− 1) + γµ/3

)
= exp(−Ω(γ2n)),

where in the first inequality we used that µ− n(1− p)2 = (1− p)p = o(γµ). □

We next prove an upper bound on the number of completions of a partial Latin square, under triangle-
typicality and quasirandomness assumptions.

Theorem 4.15. Fix a constant α ∈ (0, 1), let γ = o(1) and let ε = n−1 log n. For any partial Latin
square P ∈ Pγ

n,αn2 ∩ P△:ε
n,αn2 , the number |Ln(P )| of completions of P to an n× n Latin square satisfies

|Ln(P )| ≤

(
(1− α)2n

e2

)(1−α)n2

· exp
(

n log2 n

1− α− o(1)

)
.
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Proof. For a row x (respectively, column y), we write rx (respectively, cy) for the number of empty cells
in that row, in P . Then for an empty cell e = (x, y), we write Qx,y for the set of symbols that do
not appear in the row or column of e. Note that Qx,y is precisely the set of common neighbours of x
and y in G(P ). Then, let L(P ) be a uniformly random completion of P . We will estimate the entropy
H[L(P )] = log |Ln(P )| of L(P ).

Let E ⊆ [n]2 be the set of empty cells in P . For each e = (x, y) ∈ E, let ze be the symbol in cell e in
L(P ). So the sequence (ze)e∈E determines L(P ). For any total ordering ≺ on E, we have

H[L(P )] =
∑
e∈E

H
[
ze
∣∣ (ze′ : e′ ≺ e)

]
. (4.1)

Now, consider a pair of sequences µ = (µx)x, ν = (νy)y ∈ [0, 1]n (of real numbers in the range [0, 1], which
we assume to be all distinct from each other). Let λ = (λx,y)x,y be the array defined by λx,y = (µx, νy).
We can use λ to define a total order ≺λ on E, via reverse lexicographic order on the pairs λx,y. To be
precise, write (x′, y′) ≺λ (x, y) when µx′ > µx or when x′ = x and νy′ > νy. Let Re(λ) be an upper
bound on the conditional support size ∣∣∣ supp (ze ∣∣ (ze′ : e′ ≺λ e)

)∣∣∣
defined as follows. Re(λ) for e = (x, y) is 1 plus the number of symbols z ∈ Qe \ ze for which µxz

< µx

and νyz
< νy, where xz and yz are the row and column such that cells (xz, y) and (x, yz) contain symbol

z in L(P ).
Since Re(λ) is an upper bound on | supp(ze | (ze′ : e′ ≺λ e))|, we have

H
[
ze
∣∣ (ze′ : e′ ≺λ e)

]
≤ E[logRe(λ)]. (4.2)

It follows from (4.1) and (4.2) that

H[L(P )] ≤
∑
e∈E

E[logRe(λ)].

This is true for any fixed λ, so it is also true if λ is chosen randomly: let λ ∈
(
[0, 1]2

)n2

be obtained via
2n independent random variables µx,νy each uniformly distributed in [0, 1] (with probability 1 they are
all distinct). Then

H[L(P )] ≤
∑
e∈E

E[logRe(λ)].

Next, for any completion L of P , any e = (x, y) and any λe = (µx, νy) ∈ [0, 1]2, let

RL,λe
e = E[Re(λ) |L(P ) = L,λe = λe].

(Note that λe = λe occurs with probability zero, so formally we should condition on λe = λe ± dλe

and take limits in what follows, but there are no continuity issues so we will ignore this detail). By the
definition of Re(λ) and linearity of expectation, we have

RL,λe
e = 1 + (|Qe| − 1)µxνy.

By Jensen’s inequality,
E[logRe(λ) |L(P ) = L,λe = λe] ≤ logRL,λe

e ,

so

E[logRe(λ) |L(P ) = L] ≤ E
[
logRL,λe

e

]
=

∫
[0,1]2

log
(
1 + (|Qe| − 1)µxνy

)
dλe.

For C > 0 we compute∫ 1

0

∫ 1

0

log(1 + Cts) dtds = log(1 + C)− 2 +
log(1 + C)− Li2(−C)

C
,

where

Li2(C) = −
∫ C

0

log(1− t)

t
dt

is an evaluation of the polylogarithm function, so, as C → ∞,

−Li2(−C) =

∫ −C

0

log(1− t)

t
dt =

∫ C

0

log(1 + t)

t
dt

13



≤
∫ 1

0

log(1 + t)

t
dt+

C−1∑
t=1

log(2 + t)

t
≤ log2(C + 1) +O(1).

Therefore, substituting C = |Qe| − 1, we have

E[logRe(λ) |L(P ) = L] ≤ log |Qe| − 2+
log |Qe|+ log2 |Qe|+O(1)

|Qe|
= log |Qe| − 2+

(1 + o(1)) log2 |Qe|
|Qe|

.

Now recall that P ∈ Pγ
n,αn2 , and that |Qe| = |Qx,y| is precisely the number of common neighbours of x

and y in G(P ). Since G(P ) is γ-quasirandom, we have |Qe| = (1±γ)n(1−α)2 = n(1−α−o(1))2. Thus,
using |Qe| ≤ n, and noting that the expression above does not depend on the choice of L, we get

E[logRe(λ)] ≤ log |Qe| − 2 +
log2 n

(1− α− o(1))2n
,

Next, since P ∈ P△:ε
n,αn2 with ε := n−1 log n, we have that the number of triangles in G(P ) is∑

e∈E

|Qe| = (1± ε)n3(1− α)3.

Since the natural logarithm is a concave function, Jensen’s inequality yields∑
e∈E

log |Qe| ≤ |E| log

(∑
e∈E |Qe|
|E|

)
≤ |E| log

(
(1 + ε)n(1− α)2

)
.

We now get

log |Ln(P )| = H[L(P )] ≤
∑
e∈E

E[logRe(λ)] ≤
∑
e∈E

log |Qe|+ |E|

(
log2 n

(1− α− o(1))2n
− 2

)

≤ n2(1− α)

(
log
(
(1 + ε)(1− α)2n

)
− 2

)
+

n log2 n

1− α− o(1)
.

Thus,

|Ln(P )| ≤

(
(1 + ε)(1− α)2n

e2

)(1−α)n2

· exp
(

n log2 n

1− α− o(1)

)

≤

(
(1− α)2n

e2

)(1−α)n2

· exp
(
ε(1− α)n2 +

n log2 n

1− α− o(1)

)

=

(
(1− α)2n

e2

)(1−α)n2

· exp
(

n log2 n

1− α− o(1)

)
,

recalling that ε = n−1 log n and so exp(ε(1− α)n2) = exp(o(n log2 n)). □

The next ingredient we will need is a lower bound on the total number of n × n Latin squares.
The current state of the art is the following bound (obtained via a celebrated result of Egorychev–
Falikman [21,22] on permanents of doubly stochastic matrices).

Lemma 4.16 ([56, Theorem 17.2]). The number of n× n Latin squares is at least

|Ln| ≥
( n

e2

)n2

· exp(−O(n log n)).

Finally, we need the following lemma, which shows that each triangle-typical ordered partial Latin
square is roughly equally likely to be the outcome of the triangle removal process.

Lemma 4.17. Fix a constant α ∈ (0, 1). Consider P⃗ ∈ P⃗△:ε
n,αn2 for some ε > 0. Then for R⃗ ∼

TRP(n,m), we have

P[R⃗ = P⃗ ] = (1± 2ε)αn
2

exp
(
O(log n)

)( e
n

)3αn2

(1− α)3n
2(1−α).
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Proof. Let N = n2. Since P⃗ ∈ P⃗△:ε
n,αN ,

P[R⃗ = P⃗ ] =

αN−1∏
i=0

1

(1± ε)(1− i/N)3n3
= (1± 2ε)αNn−3αN exp

(
− 3

αN−1∑
i=0

log
(
1− i

N

))
.

Note that
αN−1∑
i=0

1

N
log
(
1− i+ 1

N

)
≤
∫ α

0

log(1− t)dt ≤
αN−1∑
i=0

1

N
log
(
1− i

N

)
.

We have
αN−1∑
i=0

(
log
(
1− i

N

)
− log

(
1− i+ 1

N

))
=

αN−1∑
i=0

log
(
1 +

1

N − (i+ 1)

)
≤

αN−1∑
i=0

1

N − (i+ 1)
= O(log n).

Thus, using the fact that
∫
log x = x(log x− 1), we get

3

αN−1∑
i=0

log
(
1− i

N

)
= 3N

∫ α

0

log(1− t) dt±O(log n)

= 3N

∫ 1

1−α

log s ds±O(log n)

= 3N
(
1(log 1− 1)− (1− α)

(
log(1− α)− 1

))
±O(log n)

= 3N
(
− α− (1− α) log(1− α)

)
±O(log n),

so

exp

(
− 3

αN−1∑
i=0

log
(
1− i

N

))
= e3Nα(1− α)3N(1−α) exp

(
O(log n)

)
.

Therefore,

P[R⃗ = P⃗ ] = (1± 2ε)αN exp
(
O(log n)

)( e
n

)3αN
(1− α)3N(1−α). □

We are now ready to prove Lemma 4.7.

Proof of Lemma 4.7. Let N := n2 and ε := n−1 log n and γ := n−1/4. By the fact that U⃗ is (ρ,m)-
inherited from T and by Lemmas 4.13 and 4.14, we have that for every Latin square L ∈ T , a random
ordering P⃗m(L) of a random set of m hyperedges of L satisfies

P[P⃗m(L) ∈ U⃗ ∩ P⃗△:ε
n,αN ∩ Pγ

n,αN ] ≥ ρ− o(1),

where we say that an ordered partial Latin square is in Pγ
n,αN if its underlying unordered partial Latin

square is in Pγ
n,αN . Thus, letting S := U⃗ ∩ P⃗△:ε

n,αN ∩ Pγ
n,αN ,

P[L ∈ T ] =
∑
L∈T

1

|Ln|
≤
∑
L∈T

1

|Ln|
· P[P⃗m(L) ∈ S]

ρ− o(1)
=

1

ρ− o(1)
· 1

|Ln|
∑
L∈T

∑
P⃗∈S

P[P⃗m(L) = P⃗ ].

Changing the order of the two sums, we get

P[L ∈ T ] ≤ 1

ρ− o(1)

∑
P⃗∈S

P[P⃗m(L) = P⃗ ],

where P⃗m(L) is a uniformly random ordering of a uniformly random subset of m hyperedges of L. Letting
|Ln(P⃗ )| denote the number of completions of the underlying unordered partial Latin square of P⃗ , we
have

P[P⃗m(L) = P⃗ ] = |Ln(P⃗ )| · 1

|Ln|
· (N −m)!

N !
,

since for each Latin square, there are N(N − 1) . . . (N −m+ 1) ways to select an (ordered) sequence of
m hyperedges. Therefore, by Theorem 4.15 and Lemma 4.16,

P[L ∈ T ] ≤
∑
P⃗∈S

(ρ−1 + o(1)) · |Ln(P⃗ )|
|Ln|

· (N −m)!

N !
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≤
∑
P⃗∈S

(ρ−1 + o(1)) ·
(n(1− α)2

e2

)N−|P⃗ |
exp

(
n log2 n

1− α− o(1)

)
· nO(n)

(e2
n

)n2

· (N −m)!

N !

≤
∑
P⃗∈S

exp

(
n log2 n

1− α− o(1)

)
·
(e2
n

)αN
· (1− α)2N(1−α) · (N −m)!

N !
.

By Stirling’s approximation, we deduce

P[L ∈ T ] ≤
∑
P⃗∈S

exp

(
n log2 n

1− α− o(1)

)
·
(e2
n

)αN
· (1− α)2N(1−α) · N

N(1−α)(1− α)N(1−α)

eN(1−α)
· eN

NN

=
∑
P⃗∈S

exp

(
n log2 n

1− α− o(1)

)( e
n

)3αN
(1− α)3N(1−α).

On the other hand, for each P⃗ ∈ U⃗ ∩ P⃗△:ε
n,αN ∩ Pγ

n,αN , by Lemma 4.17 we have

P[R⃗ = P⃗ ] ≥ (1− 2ε)αNe−Θ(logn)
( e
n

)3αN
(1− α)3N(1−α)

≥ exp
(
− (2 + o(1))αn log n

)( e
n

)3αN
(1− α)3N(1−α).

Therefore,

P[L ∈ T ] ≤
∑
P⃗∈S

exp

(
n log2 n

1− α− o(1)

)
P[R⃗ = P⃗ ] ≤ exp

(
n log2 n

1− α− o(1)

)
P[R⃗ ∈ U⃗ ]. □

5. Approximating the triangle removal process

In this section, we collect some simple lemmas that allow us to analyse the triangle removal process
via Erdős–Rényi (binomial) random hypergraphs. The latter are defined in terms of independent choices,
and are therefore much easier to analyse.

We then use these lemmas to deduce a user-friendly corollary (Corollary 5.5) of Lemma 4.7.

Definition 5.1. Let K
(3)
n,n,n be the complete 3-uniform 3-partite hypergraph on n+ n+ n vertices, and

let G(3)(n, p) be the probability distribution on subgraphs of K(3)
n,n,n obtained by including each possible

hyperedge with probability p independently.
Note that G ∼ G(3)(n, p) may not be a partial Latin square, as it may contain two hyperedges

intersecting in more than one vertex. Call this a conflict.

Now, our first lemma is similar to [24, Lemma 2.6]. It approximates the triangle removal process with
a binomial random hypergraph, for properties U that are monotone increasing in the sense that P ∈ U
and P ⊆ P ′ then P ′ ∈ U (i.e. “adding additional hyperedges doesn’t hurt”). For multiple-exposure
arguments, it will be important that this lemma can handle the triangle removal process started from a
proper subgraph of Kn,n,n.

Definition 5.2. For a partial Latin square P , let TRP(P,m) be the partial Latin square distribution ob-
tained with m steps of the triangle removal process starting from G(P ). Thus, an outcome of TRP(P,m)
always has m hyperedges, and none of these hyperedges conflict with P (unless we run out of triangles
and get the outcome “⊥”)

Lemma 5.3. Fix constants γ, α1, α2 such that γ > 0, and α1, α2 ∈ [0, 1] are sufficiently small with respect
to γ. Define m1 = α1n

2 and m2 = α2n
2 and p = (1 + γ)α2/n. Let P ∈ Pn,m1

be a partial Latin square,
and consider a monotone increasing property U of subhypergraphs of K(3)

n,n,n. Let R ∼ TRP(P,m2) and
G ∼ G(3)(n, p). Then

P[R ∈ U ] ≤ P[G ∈ U ] + exp(−Ω(n2)).

Proof. Let G∗ be obtained from G by deleting all hyperedges involved in conflicts. We say that the
hyperedges of G∗ are isolated in G. Note that we can couple (G∗,G) and R such that R ⊆ G as long
as G∗ has at least m2 = α2n

2 hyperedges (to see this, randomly order the hyperedges in G and run the
triangle removal process on that ordering).

Let X be the number of hyperedges in G∗ (i.e., the number of isolated hyperedges in G). Note that
each hyperedge in P conflicts with no more than 3n of the n3 potential hyperedges in G. Thus, there
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are at least (1− 3α1)n
3 potential hyperedges that do not conflict with P . Each of these is present and

isolated in G with probability at least p(1− p)3n ≥ (1 + γ)α2 exp(−6(1 + γ)α2)/n. Thus, we have

E[X] ≥ (1− 3α1)n
3 · (1 + γ)α2 exp(−6(1 + γ)α2)/n ≥ (1 + γ/2)α2n

2.

Adding a hyperedge to G can increase X by at most 1, and removing a hyperedge from G can increase
X by at most 3, by making three hyperedges isolated. Thus, by Theorem 3.1,

P[X < α2n
2] ≤ P[|X− E[X]| ≥ γα2n

2/2] ≤ exp(−Ω(n2)).

Therefore,
P[R ∈ U ] ≤ P[G ∈ U ] + P[X < α2n

2] = P[G ∈ U ] + exp(−Ω(n2)). □

The next lemma appears as [42, Lemma 5.2], and handles properties U that are monotone decreasing
in the sense that if P ∈ U and P ′ ⊆ P then P ′ ∈ U (i.e., “removing hyperedges doesn’t hurt”).

Lemma 5.4 ([42, Lemma 5.2]). Fix a constant α ∈ (0, 1). Let U ⊆ Pn be a monotone decreasing property
of partial Latin squares, let10 R ∼ TRP(n, αn2), let G ∼ G(3)(n, α/n), and let G∗ be obtained from G
by deleting all hyperedges involved in conflicts. Then

P[R ∈ U or R =⊥] = O(P[G∗ ∈ U ]).

For completeness, we reproduce the simple proof of Lemma 5.4 (from [42]).

Proof. We can couple R and G∗ such that, if e(G) ≤ αn2, then either G∗ ⊆ R or R =⊥ (to see this,
randomly order the hyperedges of G and run the triangle removal process on that ordering).

Since U is monotone decreasing, we have

P[R ∈ U or R =⊥] ≤ P[G∗ ∈ U | e(G) ≤ αn2].

Since e(G) is binomial with mean αn2, we have that P[e(G) ≤ αn2] = Ω(1). Thus,

P[R ∈ U or R =⊥] ≤ P[G∗ ∈ U ]/P[e(G) ≤ αn2] = O(P[G∗ ∈ U ]). □

To illustrate the tools from this section, we conclude this section by stating a corollary of Lemma 4.7,
which is an easy-to-apply tool for studying random Latin squares. We do not actually use this corollary
in the present paper (due to some technical issues related to multiple-exposure arguments, we need the
full power of Lemma 4.7), but we hope that it may be convenient in future work on random Latin squares.

Note that we have defined (ρ,m)-inheritedness (in Definition 4.3) only for properties of ordered partial
Latin squares, but in what follows we extend this definition to unordered partial Latin squares in the
natural way.

Corollary 5.5. Fix constants α ∈ (0, 1) and ρ ∈ (0, 1), and let m = αn2. Let T be a property of n× n

Latin squares and let U be a property of subhypergraphs of K(3)
n,n,n, such that U is (ρ,m)-inherited from

T . Let L be a uniformly random n× n Latin square.
(1) If U is a monotone decreasing property, we have

P[L ∈ T ] ≤ exp
(
O(n log2 n)

)
P[G∗ ∈ U ],

where G ∼ G(3)(n, α/n), and G∗ is obtained from G by deleting all hyperedges involved in
conflicts.

(2) If U is a monotone increasing property, then for any constant γ > 0, if α is sufficiently small
with respect to γ, we have

P[L ∈ T ] ≤ exp
(
O(n log2 n)

)
P[G ∈ U ] + exp(−Ω(n2)),

where G ∼ G(3)(n, (1 + γ)α/n).

Part (1) is obtained by combining Lemma 4.7 with Lemma 5.3 (with P = ∅ and α1 = 0 and α2 = α),
and Part (2) is obtained by combining Lemma 4.7 with Lemma 5.4.

10We previously defined TRP(n,m) as a distribution on ordered partial Latin squares, but here we are somewhat
abusively viewing it as a distribution on unordered partial Latin squares (we simply ignore the ordering).
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6. The master theorem for parity distributions

All parts of Theorem 1.3 will be deduced from a master theorem which describes the distribution of
(Nrow(L), Ncol(L), Nsym(L)) in somewhat technical terms. To state this theorem, we need some termi-
nology to describe certain types of distributions that arise naturally from random intercalate switches.

Definition 6.1. Consider a random vector (c1+B1, c2+B2, c3+B3), where B1,B2,B3 are independent
binomial random variables satisfying Bi ∼ Bin(ni, 1/2). We say that this random vector is (n, d)-near-
binomial if n− d ≤ ni ≤ n and ci ≤ d for each i.

The reader should think of d as a “defect parameter”: if d is small, then (n, d)-near-binomial random
vectors are approximately distributed like three independent copies of Bin(n, 1/2). We remark that if we
want this approximation to have o(1) total variation error, then we need d = o(

√
n). Indeed, for each i

we need E[Xi] − n/2 to be negligible compared to the fluctuations of Bin(n, 1/2) (which have order of
magnitude

√
n).

Definition 6.2. Say that a random vector (X1,X2,X3) ∈ N3 is (n, d)-2-near-binomial if it can be
obtained from an (n, d)-near-binomial random vector by conditioning on a particular parity (even or
odd) for each of X1,X2,X3.

Definition 6.3. Say that a random vector X⃗ is a 2-near-binomial mixture with parameters (n, d, ε) if
one can define an auxiliary random object Q (on the same probability space as X⃗), and an event A
depending only on Q, such that:

• P[A] ≥ 1− ε, and
• For any of the possible outcomes Q of Q satisfying A, the conditional distribution of X⃗ given
Q = Q is (n, d)-2-near-binomial.

If d is small, then the above definition says that X⃗ is closely approximated by a sequence of three
independent Bin(n, 1/2) random variables, except for possible biases mod 2. Note that the distribution
µ∗ featuring in Theorem 1.3 is a 2-near-binomial mixture with parameters (n, 0, 0).

Now, our main technical theorem is as follows.

Theorem 6.4. Let L be a uniformly random n× n Latin square. Then (Nrow(L), Ncol(L), Nsym(L)) is
a 2-near-binomial mixture with parameters(

n, O(log11 n), exp(−ω(n log2 n))
)
.

6.1. Corollaries of the master theorem. In this subsection we briefly explain how to deduce all parts
of Theorem 1.3 from our master theorem (Theorem 6.4). This is all quite routine. Note that Theorem 1.2
is an immediate consequence of Theorem 1.3(4).

We start with basic consequences of the de Moivre–Laplace local central limit theorem and a large
deviation principle for binomial distributions.

Lemma 6.5. Let X⃗ = (X1,X2,X3) be a (n, o(
√
n))-2-near-binomial random vector.

(i) Recall that (X1 mod 2, X2 mod 2, X3 mod 2) always takes a common value v⃗ ∈ {0, 1}3. For any
x⃗ ∈ Z3 satisfying x⃗ = v⃗ mod 2, we have

P[X⃗ = x⃗] = 8 · 1

(2π(n/4))3/2
exp

(
− (x1 − n/2)2 + (x2 − n/2)2 + (x3 − n/2)2

2(n/4)

)
+ o(n−3/2).

(ii) Let H2 : α 7→ −α log2 α − (1 − α) log2(1 − α) be the base-2 binary entropy function, and let
I(x1, x2, x3) = 3−H2(x1)−H2(x2)−H2(x3). We have

− inf
x⃗∈E◦

I(x⃗) ≤ lim inf n−1 log2 P[n−1X⃗ ∈ E] ≤ lim supn−1 log2 P[n−1X⃗ ∈ E] ≤ − inf
x⃗∈E

I(x⃗)

for all Borel E ⊆ R3.

Proof. Recall that X⃗ is obtained from a (n, d)-near-binomial random vector Y⃗ by conditioning on the
event that Y⃗ = v⃗ mod 2 (which occurs with probability exactly11 1/8). Now, the de Moivre–Laplace
local central limit theorem (see e.g. [23, Chapter VII, Section 3, Theorem 1]) tells us that

P[Y⃗ = x⃗] =

3∏
i=1

(
1√

2π(ni/4)
exp

(
− (x′

i − ni/2)
2

2(ni/4)

)
+ o(n−1/2)

)
11Here we are using that Bin(n, 1/2) is equally likely to be even and odd, which is easy to prove e.g. by induction.
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for some n1, n2, n3 = n − o(
√
n), and some x′

1, x
′
2, x

′
3 satisfying x′

i = xi − o(
√
n). It is easy to see that

the error terms in the ni and x′
i can be absorbed into the main error term (i.e., it makes no difference to

replace n1, n2, n3 with n, and replace each x′
i with xi). The desired result follows, noting that conditioning

on an event that occurs with probability 1/8 introduces a factor of 8.
We can similarly deduce (ii) from a large deviation principle for binomial distributions (e.g. Sanov’s

theorem, see [20, Theorem 2.1.10]12). Actually, this is even simpler than (i), because in this case the
conditioning mod 2 has a negligible impact. □

Now we are ready to deduce Theorem 1.3.

Proof of Theorem 1.3. We start with Theorem 1.3(3) (the local central limit theorem). Consider any
x⃗ ∈ Z3 satisfying x1 + x2 + x3 = f(n) (mod 2). By Theorem 6.4, together with Lemma 6.5(i) and the
definition of a 2-near-binomial mixture, P[X⃗ = x⃗] is of the form

P[X⃗ = x⃗ mod 2] ·
(
8 · 1

(2π(n/4))3/2
exp

(
(x1 − n/2)2 + (x2 − n/2)2 + (x3 − n/2)2

2(n/4)

)
+ o(n−3/2)

)
+ exp(−ω(n log2 n)).

By the Cavenagh–Wanless theorem [18] (mentioned in the introduction), we have P[X⃗ = x⃗ mod 2] =
1/4 + o(1), and Theorem 1.3(3) follows.

We can then deduce Theorem 1.3(4) (total variation convergence) by summing over all x⃗ (using e.g.
Chebyshev’s inequality to control the tails). Indeed, let Z⃗ ∼ µ∗. For any N , the variance of Bin(N, 1/2)
is N/4 = O(N), so (recalling the definition of a 2-near-binomial mixture and noting that the means of
all relevant binomials are within O((log n)11) = O(

√
n) of each other), the variance of each component

of X⃗ and Z⃗ is O(n). Then, for any K ≥ 1, taking Z⃗ ∼ µ∗ and writing (n/2)⃗1 = (n/2, n/2, n/2), we have

dTV(X⃗, µ∗) =
1

2

∑
x⃗∈Z3

∣∣P[X⃗ = x⃗]− P[Z⃗ = x⃗]
∣∣

≤ O((K
√
n)3) · o(n−3/2) + P

[
∥X⃗− (n/2)⃗1∥∞ ≥ K

√
n
]
+ P

[
∥Z⃗− (n/2)⃗1∥∞ ≥ K

√
n
]

≤ o(1) ·K3 +O(1/K2).

Taking K → ∞ sufficiently slowly, Theorem 1.3(4) follows.
It is then a near-trivial matter to deduce Theorem 1.3(1–2) (the central limit theorem and law of large

numbers), since total variation convergence is much stronger than convergence in distribution (see e.g.
[54, Proposition 1.2]).

Finally, Theorem 1.3(5) (the large deviation principle) follows from Theorem 6.4 and Lemma 6.5(ii).
Indeed, Theorem 6.4 says that X⃗ is a mixture of (n, o(

√
n))-2-near-binomial distributions except with

an exceptional probability exp(−ω(n log2 n)) (which is negligible). □

Remark 6.6. In the above proof, it was convenient to use the Cavenagh–Wanless theorem as a black
box. However, we remark that given the machinery we developed in Sections 4 and 5, it would be a very
simple matter to re-prove the Cavenagh–Wanless theorem. Indeed, using this machinery it is easy to
prove that L is very likely to have a 2× 3 Latin subrectangle (in the first half of the rows, columns and
symbols of L, say), and a 3× 2 Latin subrectangle (in the second half of the rows, columns and symbols
of L, say), and switching on these two Latin subrectangles mixes between all four different possibilities
for (Nrow(L), Ncol(L), Nsym(L)) mod 2.

7. Stable intercalates

An intercalate in a Latin square is a 2 × 2 Latin subsquare. To switch an intercalate with symbols
a and b means to replace both occurrences of a with b and vice versa. The result of this operation is
always another Latin square.

As discussed in Section 2, we will prove Theorem 6.4 via random intercalate switches. It is very
important that if we start with a uniformly random Latin square, and perform our random switches,
the resulting Latin square is still uniformly random. To ensure this, we need to restrict our attention to
intercalates with a certain stability property. We define this property in such a way that switching stable

12A simple approximation argument (approximating general open and closed sets with product sets) can be used to
combine large deviation principles for three independent random variables, see e.g. [48, Lemma 2.8].
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intercalates can never create a new intercalate or destroy an existing intercalate (and, in particular, if we
only ever switch stable intercalates, then the set of available stable intercalate switches never changes).

Specifically, we define an intercalate to be stable if it does not intersect other intercalates, and if
switching it and/or some other intercalates cannot make it intersect another intercalate, as follows.

Definition 7.1. Let P be a partial Latin square. For an intercalate A, we denote by Ā the outcome of
switching A.

• We say that an intercalate in P is isolated if it does not share an entry with any other intercalate.
• Consider a set of isolated intercalates {A1, . . . , At} in P . We say that this is a critical set of

intercalates if it is possible to switch a subset of A1, . . . , At (resulting in intercalates B1, . . . , Bt

where Bi = Ai or Bi = Āi for each i ∈ [t]) to create a new intercalate that shares an entry with
each of B1, . . . , Bt.

• We say that an isolated intercalate in P is stable if it is not contained in a critical set of inter-
calates.

Observe that a critical set {A1, . . . , At} may be a subset of another critical set {A1, . . . , At+1} (e.g.,
if switching a subset of A1, . . . , At creates a new intercalate that intersects At+1). Any critical set D has
size at most 4, since its members A1, . . . , At are pairwise entry-disjoint, and for each Ai, either Ai or Āi

shares an entry with the new intercalate that can be produced by switching a subset of D.
Now, in the following lemma we record the fact that switching stable intercalates leaves the set of

stable intercalates switches unchanged.

Definition 7.2. For an intercalate A with rows r1, r2, columns c1, c2, and symbols s1, s2, define the tuple
σ(A) = ({r1, r2}, {c1, c2}, {s1, s2}) (i.e., this records the rows, columns and symbols of the intercalate,
without recording which of the two possible “states” it is in). For a (partial) Latin square P , let S(P )
be the set of all tuples σ(A) for all stable intercalates A in P (i.e., this records the intercalate switches
we can perform, without recording which state each of those intercalates is in).

Lemma 7.3. Let P1 be a Latin square, and suppose that we can switch a single stable intercalate in P1

to obtain a second Latin square P2. Then S(P1) = S(P2).

Proof. Let A be the stable intercalate in P1 which is switched to obtain P2. Then σ(A) ∈ S(P1). We
start with a simple observation which will be used multiple times.

Claim 7.4. If an intercalate B ̸= Ā is isolated in P2, it is also present and isolated in P1.

Proof of claim. Since B shares no entry with Ā in P2, we see that B is also present in P1. Furthermore,
if there were any intercalate C in P1 that shares an entry with B, that intercalate C would not be present
in P2, so it would have to share an entry with A in P1. But that would imply A is not isolated in P1,
which would contradict our assumption that A is stable in P1. ■

Step 1: reversibility of the A switch. We will first show σ(A) ∈ S(P2), i.e., we could equally well have
switched Ā in P2 to obtain P1. This amounts to showing that Ā is isolated in P2, and not contained in
a critical set of intercalates.

First, note that if Ā were not isolated in P2, then there would be some intercalate B in P2 that shares
an entry with Ā. Since that entry would not be in P1, we would have that B is not in P1, implying that
{A} is a critical set in P1, contradicting the stableness of A in P1. Thus, Ā is isolated in P2.

Now, suppose for contradiction that Ā is contained in a critical set {Ā, A2, . . . , At} of isolated interca-
lates in P2. If t = 1, this would contradict the isolatedness of either A in P1 or Ā in P2; thus t ≥ 2. Since
the intercalates A2, . . . , At are isolated in P2, they are also present and isolated in P1, by Claim 7.4. But
then {A,A2, . . . , At} is a critical set in P1: if switching S ⊆ {Ā, A2, . . . , At} creates a new intercalate in
P2, then switching S̄ = S ∪ {A} (if Ā /∈ S) or S̄ = S \ {Ā} (if Ā ∈ S) creates a new intercalate in P1.
This contradicts the stableness of A in P1. We conclude that Ā is stable in P2, so σ(A) ∈ S(P2).

Step 2: the intercalates other than A. Since σ(A) ∈ S(P1) ∩ S(P2), by symmetry it is enough to show
that for every intercalate B that is stable in P1, we have σ(B) ∈ S(P2). Let B ̸= A be a stable intercalate
in P1. Then B must be present and isolated in P2, by Claim 7.4 and the symmetry between P1 and P2.

Suppose for the purpose of contradiction that B is not stable in P2. Then B is contained in a critical
set Z = {B,A2, . . . , At} of isolated intercalates in P2. Since the intercalates in {A2, . . . , At} \ {Ā} are
isolated in P2 and distinct from Ā, they are also present and isolated in P1. Now, either Z \{Ā}∪{A} or
Z \{Ā} is a critical set in P1. In particular, if the new intercalate that can be created in P2 by switching
a subset of Z shares an entry with either A or Ā, then Z \ {Ā} ∪ {A} is a critical set in P1. Otherwise,
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Z \ {Ā} is a critical set in P1. In either case, B is contained in a critical set in P1, contradicting that B
is stable in P1. Thus, B must be stable in P2, so σ(B) ∈ S(P2), concluding the proof. □

8. Deducing the master theorem from stable intercalate information

As discussed in Section 2, the main challenge in this paper is to show that random Latin squares
typically have very rich constellations of stable intercalates. These intercalates can then be randomly
switched to prove our master theorem on parity distributions (Theorem 6.4). In this section, we state
our key lemma about stable intercalates in random Latin squares (Lemma 8.3), and show how to use this
key lemma (together with some linear-algebraic arguments) to prove Theorem 6.4. After this section,
the rest of the paper will be devoted to the proof of Lemma 8.3.

8.1. The key lemma on stable intercalates. Roughly speaking, we need the property that for all
“reasonably large” sets of rows, columns and symbols, we can find stable intercalates compatible with
those choices. This will imply that the stable intercalates are so well-spread throughout the rows, columns
and symbols that randomly switching them will thoroughly mix up the row, column and symbol parities.

Definition 8.1. Let P be an n × n (partial) Latin square, and consider some 1 ≤ ℓ ≤ n. We say that
P is an (ℓ, β)-intercalate-expander if the following property holds. For any sets of rows R,R∗, any sets
of columns C ,C ∗, and any sets of symbols S ,S ∗, such that five out of these six sets have size βn and
the last one has size ℓ, there is a stable intercalate in P with one row in R, the other row in R∗, one
column in C , the other column in C ∗, one symbol in S , and the other symbol in S ∗.

Note that the sets of rows, columns, and symbols above are not necessarily disjoint. Thus, the stable
intercalate promised by Definition 8.1 may for instance have both its rows in R ∩ R∗.

Random Latin squares themselves are unlikely to be good intercalate-expanders, because they have
too many intercalates (that are too likely to intersect each other and form critical sets of intercalates). We
are able to overcome this with a sparsification technique: instead of considering all the stable intercalates
in a Latin square L, we consider only the stable intercalates in some sparsified partial Latin square (and
we make sure to use the same “sparsification template” T for all Latin squares). To formalise this, we
need another definition.

Definition 8.2. An n × n template is a subset T ⊆ [n]2, which we interpret as a set of row/column
pairs. For a Latin square L ∈ Ln, we write T ∩ L ∈ Pn for the partial Latin square containing just the
entries of L in positions specified by T .

Now, our key lemma is as follows.

Lemma 8.3. Let β > 0 be a constant. There exists a template T ⊆ [n]2 such that the following holds.
Let L ∼ Unif(Ln) be a uniformly random Latin square (interpreted as a subgraph of K

(3)
n,n,n) and let

ℓ = log11 n. Then

P[T ∩ L is an (ℓ, β)-intercalate-expander ] ≥ 1− exp(−ω(n log2 n)).

8.2. Deducing the master theorem on parity distributions. To deduce Theorem 6.4 from Lemma 8.3,
we will need some more notation and preliminaries.

Definition 8.4. Consider an n× n Latin square L. For a set of rows R and a set of intercalates I in L,
let MR,I ∈ {0, 1}|R|×|I| be the “incidence matrix” defined as follows:

MR,I(r, I) =

{
1 if row r participates in intercalate I

0 otherwise.

We can similarly define MC,I or MS,I for a set of columns C or a set of symbols S.

Lemma 8.5. Consider an n× n partial Latin square P that is an (ℓ, 1/10)-intercalate-expander, where
n is sufficiently large and 1 ≤ ℓ = o(

√
n). Then we can find sets R,C, S of rows, columns and symbols,

satisfying |R|, |C|, |S| ≥ n− ℓ, with the following property.
If we let I(R,C, S) be the set of all stable intercalates in P which are contained in the rows in R and

the columns in C, only using the symbols in S, then the matrixMR,I(R,C,S)

MC,I(R,C,S)

MS,I(R,C,S)

 ∈ {0, 1}(|R|+|C|+|S|)×|I(R,C,S)|
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has rank exactly |R| + |C| + |S| − 3 over F2. The left kernel vectors of this matrix are those vectors of
the form (x⃗R x⃗C x⃗S) ∈ F|R|+|C|+|S|

2 where x⃗Z ∈ F|Z|
2 is the all-zero vector (0, . . . , 0) or the all-one vector

(1, . . . , 1) for each Z ∈ {R,C, S}.

Proof. First, we translate the desired statement into more combinatorial language. Consider the auxiliary
6-uniform hypergraph Q(R,C, S) on the vertex set13 R⊔C ⊔S, where for every intercalate in I(R,C, S)
we put a hyperedge consisting of the two rows, two columns and two symbols of that intercalate. We
want to choose R,C, S to have the property that for any choices of vertex subsets R′ ⊆ R and C ′ ⊆ C
and S′ ⊆ S which are not all “trivial” (i.e., at least one of these three subsets is nonempty and proper),
there is some hyperedge of Q(R,C, S) which intersects R′ ⊔ C ′ ⊔ S′ in an odd number of vertices.

Now, we specify R,C, S as follows. Let R be the set of all rows r for which there exist at least 6ℓ
different stable intercalates in P which all involve r and which otherwise involve pairwise disjoint rows,
columns and symbols. Define C, S similarly.

Claim. Each of R,C, S has size greater than n− ℓ.

Proof of claim. Suppose for contradiction (and without loss of generality) that there is a set R0 of ℓ rows
which are not in R. Then we can use the intercalate-expansion property to greedily find n/10 stable
intercalates in P which all involve disjoint rows, columns and symbols (except for their rows in R0). So,
there must be some r ∈ R0 involved in (n/10)/|R0| ≥ 6ℓ stable intercalates which involve disjoint rows,
columns and symbols (except that they all involve r). This contradicts the choice of R0. ■

Recall that the defining properties of R,C, S were that they are included in many (at least 6ℓ)
“externally disjoint” stable intercalates in P . The above claim shows that almost all of those interca-
lates lie in I(R,C, S), and therefore correspond to hyperedges of Q(R,C, S). Specifically, each “bad”
row/column/symbol (which is not in R,C, S) kills at most one of our externally disjoint stable interca-
lates, so each vertex of Q(R,C, S) is contained in more than 6ℓ − 3ℓ ≥ 3ℓ externally disjoint 6-uniform
hyperedges.

Now, consider vertex subsets R′ ⊆ R and C ′ ⊆ C and S′ ⊆ S which are not all trivial (at least
one of these subsets is nonempty and proper). We need to prove there is some hyperedge intersecting
R′ ⊔ C ′ ⊔ S′ in an odd number of vertices.

Case 1: First, suppose that for each Z ∈ {R′, C ′, S′}, either Z or its complement has size less than ℓ.
This gives us three “small sets” of size less than ℓ. At least one of our small sets must be non-empty;
let v be a vertex in that set. Recall that v is contained in at least 3ℓ externally disjoint hyperedges
of Q(R,C, S), so at least one of these hyperedges (externally) avoids our three small sets. Any such
hyperedge has odd intersection with R ⊔ C ⊔ S.

Case 2: If Case 1 does not occur, we may assume without loss of generality that R′ and R \ R′ both
have size at least ℓ. Then we apply the intercalate-expansion property directly. We take the smaller of
R′ and R \ R′ as R∗ and the larger as R; we take the larger of C ′ and C \ C ′ as C = C ∗; and we take
the larger of S′ and S \ S′ as S = S ∗. This again gives us a stable intercalate in P (corresponding to
an edge of Q(R,C, S)) with the desired odd intersection. □

Now we can prove Theorem 6.4.

Proof of Theorem 6.4. Let T be as given by Lemma 8.3, and let ℓ = log11 n. For a Latin square L ∈ Ln,
we say an intercalate in L is T -stable if it is present and stable in T ∩L. Recall the notation S(P ) from
Definition 7.2 (recording the set of stable intercalates in a partial Latin square P , but without recording
which of the two possible “states” each intercalate is in).

We consider an auxiliary multigraph G, whose vertices are the Latin squares L ∈ Ln, and where there
is an edge between two Latin squares L1, L2 if it is possible to switch some of the T -stable intercalates in
L1 to transform it into L2. So, for every L ∈ Ln, the degree of L in G is precisely 2|S(T∩L)| (including one
loop edge from L to itself). In fact, by Lemma 7.3, the connected component of L is a clique (with loops)
of order 2|S(T∩L)|, where each vertex L′ ∈ Ln in this clique has S(T ∩L′) = S(T ∩L). In particular, each
component is regular, so the uniform distribution Unif(Ln) is a stationary distribution for the random
walk on G.

Therefore, if we first sample L ∼ Unif(Ln), and then we “re-randomise” L by randomly switching
each T -stable intercalate with probability 1/2 independently (this is the same as stepping to a random

13Here we use “⊔” to indicate a disjoint union.
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neighbour of L in G), then the resulting random Latin square L′ still has the same uniform distribution
as L.

Now, for the rest of the proof, our goal is to show that X⃗′ = (Nrow(L
′), Ncol(L

′), Nsym(L
′)) is a 2-

near-binomial mixture with parameters (n, ℓ, exp(−ω(n log2 n)). Recalling Definition 6.3, this means we
need to show how to reveal certain information about L and L′, in such a way that, conditional on a
typical outcome of this revealed information, X⃗′ is a (n, ℓ)-2-near-binomial random vector (where here
“typical” refers to an event which occurs with probability 1− exp(−ω(n log2 n))).

First, reveal an outcome of L such that T ∩L is an (ℓ, 1/10)-intercalate-expander. By Lemma 8.3, this
occurs with probability 1−exp(−ω(n log2 n)). From now on, we will view L as a non-random object (i.e.,
all probabilities will implicitly be with respect to the conditional probability space given our outcome of
L). Let R,C, S be the sets of rows, columns and symbols from Lemma 8.5, and let I = I(R,C, S) be
as in the statement of Lemma 8.5. Recall that L′ is obtained from L via random T -stable intercalate
switches; reveal any outcome of these random switches for T -stable intercalates which are not in I. We
will show that, in the resulting conditional probability space (which can be described in terms of |I|
random coin flips), X⃗′ has a 2-near-binomial distribution with parameters (n, ℓ).

To see this, let x⃗1 ∈ {0, 1}n, x⃗2 ∈ {0, 1}n, x⃗3 ∈ {0, 1}n be the sequences of parities of rows, columns
and symbols in L′. In our conditional probability space, the only parts of x⃗1, x⃗2, x⃗3 that remain random
are the subsequences x⃗R ∈ {0, 1}R, x⃗C ∈ {0, 1}C , x⃗S ∈ {0, 1}S corresponding to our identified sets of
rows, columns and symbols. We can describe their joint distribution as

(x⃗R x⃗C x⃗S) = (y⃗R y⃗C y⃗S) +

MR,I
MC,I
MS,I

r⃗,

where y⃗R, y⃗C , y⃗S describe the parities of our identified rows, columns and symbols in L (which we
are viewing as non-random), r⃗ ∈ {0, 1}|I| is a uniformly random zero-one sequence of length |I|, and
arithmetic is mod 2.

Now, recall the structure of the left kernel vectors from Lemma 8.5. We see that (x⃗R x⃗C x⃗S) is a
uniformly random element of {0, 1}R×{0, 1}C ×{0, 1}S , except that the values of 1⃗ · x⃗R, 1⃗ · x⃗C and 1⃗ · x⃗S

are constrained (i.e., the parities of the rows, columns and symbols in R,C, S are uniformly random,
except that the number of odd rows, number of odd columns, and number of odd symbols are constrained
mod 2). This implies the desired result. □

9. Setup for the proof of the intercalate-expander lemma

In this section, we set the stage for the proof of Lemma 8.3. We first rephrase it by slightly changing
the nature and role of the template. After that, we state two main lemmas, and show how to deduce
the (rephrased) intercalate-expander lemma from them (we will then spend the following sections of the
paper proving these two lemmas).

Recall the sparsifying role of the template T in Lemma 8.3. To prove Lemma 8.3, we will take a slightly
different view on T . Namely, for most of the proof it will be convenient to instead work with a template
hypergraph H (which specifies a set of row/column/symbol triples, instead of a set of row/column pairs).
Our template hypergraph will be obtained by sampling G(3)(n, ε) with an appropriate ε, as specified in
the following definition.

Definition 9.1. Throughout this and the following sections, we fix a constant β > 0 (cf. Lemma 8.3).
We also let ε = η log−1 n for some η = o(1) that slowly goes to 0 (concretely, take η = 1/ log log n) and
let ℓ = log11 n.

We now state a version of the intercalate-expander lemma with a random template hypergraph.

Lemma 9.2. Fix a constant β > 0. Consider a random hypergraph H ∼ G(3)(n, ε) and an independent
random Latin square L ∼ Unif(Ln) (both interpreted as subgraphs of K(3)

n,n,n). Then

P[H ∩ L is an (ℓ, β)-intercalate-expander ] ≥ 1− exp(−ω(n log2 n)).

Remark 9.3. Lemma 9.2 trivially implies that there is a hypergraph H ⊆ K
(3)
n,n,n such that

P[H ∩ L is an (ℓ, β)-intercalate-expander] ≥ 1− exp(−ω(n log2 n)).

However, this would not have sufficed to prove Theorem 6.4 (we would have no guarantee that if we
switch an intercalate which lies in H, the resulting switched intercalate still lies in H). The slightly
different notion of a template in Definition 8.2 was chosen to avoid this issue.
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We first show the (simple) deduction of Lemma 8.3 from Lemma 9.2. For this, we record the following
simple fact, which we repeatedly use throughout the rest of the paper.

Fact 9.4. Suppose H1 ∈ H1 and H2 ∈ H2 are independent random objects, let P(2) ⊆ H1×H2, and for
any H1 ∈ H1 and p ∈ [0, 1] let P(p) be the set of all H1 ∈ H1 such that P[(H1,H2) ∈ P(2)] > p. Then

(1) if P[(H1,H2) ∈ P(2)] ≤ p, then P[H1 ∈ P(
√
p)] ≤ √

p.
(2) If P[H1 ∈ P(p2)] ≤ p1, then P[(H1,H2) ∈ P(2)] ≤ p1 + p2.

Proof of Lemma 8.3. Say that L ∈ Ln is good if

P[H ∩ L is an (ℓ, β)-intercalate-expander] ≥ 1− exp(−ω(n log2 n)).

By Lemma 9.2 and Fact 9.4(1), L is good with probability 1− exp(−ω(n log2 n).
Now, let T ⊆ [n]2 be a random subset of row/column pairs, where each is included with probability

ε independently. Note that for each fixed outcome L of L, the two random partial Latin squares H ∩ L
and T ∩ L have exactly the same distribution. Therefore, for each good L,

P[T ∩ L is an (ℓ, β)-intercalate-expander] ≥ 1− exp(−ω(n log2 n)),

and Fact 9.4(2) yields

P[T ∩ L is an (ℓ, β)-intercalate-expander] ≥ 1− exp(−ω(n log2 n)).

Applying Fact 9.4(1) again, we see that almost all outcomes T of T are suitable for the conclusion of
Lemma 8.3 (namely, T satisfies the required property with probability 1− exp(−ω(n log2 n))). □

We now move on to reducing Lemma 9.2 to two main lemmas. Recall that the property of being an
intercalate-expander says that (with respect to any appropriate 6-tuple (R,R∗,C ,C ∗,S ,S ∗)) there
is at least one stable intercalate consistent with our 6-tuple. Our first lemma (Lemma 9.11) will say
that there are likely to be many intercalates consistent with every appropriate 6-tuple (and says nothing
about isolatedness or stability). Our second lemma (Lemma 9.13) will say that there is likely to be a
much smaller number of entries which participate in “bad sets” of intercalates which violate isolatedness
or stability (i.e., they participate in a critical set of intercalates or a pair of intersecting intercalates).

Remark 9.5. It is crucially important here that we consider the number of entries in bad sets of inter-
calates (as opposed to the number of bad sets of intercalates themselves). This is due to the “infamous
upper tail” problem which arises when trying to estimate the upper tail of subgraph counts in random
graphs and hypergraphs. Due to clustering phenomena, these upper tails are ‘fatter’ than their lower
counterparts (we need to pay very close attention to tail bounds due to the exponential error terms in
Lemma 4.7).

Before stating our two lemmas, we need some preparations.

Definition 9.6. For sets R and R∗ of rows, sets C and C ∗ of columns and sets S and S ∗ of symbols,
we say that an intercalate is (R,R∗,C ,C ∗,S ,S ∗)-split (or just split if the parameters are clear from
context) if it has one row in R, the other row in R∗, one column in C , the other column in C ∗, one
symbol in S , and the other symbol in S ∗.

By symmetry between the rows, columns, and symbols of a Latin square, in the context of Defini-
tion 8.1 it suffices to consider the case where |R∗| = ℓ and |R|, |C |, |C ∗|, |S |, |S ∗| ≥ βn.

Definition 9.7. We say a 6-tuple (R,R∗,C ,C ∗,S ,S ∗) is (ℓ, β)-permissible if we have |R∗| = ℓ and
|R|, |C |, |C ∗|, |S |, |S ∗| ≥ βn.

Our goal is then to show that, with very high probability, all (ℓ, β)-permissible 6-tuples have a split
stable intercalate.

Definition 9.8. Let P be a partial Latin square, let {A1, . . . , At} be a critical set of isolated intercalates
in P , and let A′ be an intercalate that can be created by switching a subset of {A1, . . . , At}. Then we
say the entries in A1 ∪ · · · ∪At ∪ (A′ ∩ P ) comprise a critical configuration with respect to P .

We say that a set of entries in a partial Latin square P is a bad configuration with respect to P either
if it is a critical configuration with respect to P , or if it comprises two intercalates that intersect in one
entry. (We will from now on omit “with respect to P ” if P is clear from the context.)

We say that a bad configuration is (R,R∗,C ,C ∗,S ,S ∗)-split if at least one intercalate in it (that
is, one of the at most four intercalates in the critical set of intercalates or one of the two intersecting
intercalates, depending on the type of bad configuration) is (R,R∗,C ,C ∗,S ,S ∗)-split.
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Remark 9.9. We will sometimes need to talk about sets of entries which make up some arrangement of
intercalates, and we will sometimes need to talk about sets of intercalates themselves. To try to assist
the reader to keep track of this distinction, we will reserve the word “configuration” for a set of entries
in a partial Latin square (i.e. a set of hyperedges, in the hypergraph perspective in Fact 4.1).

Note that pairs of intercalates in a partial Latin square can intersect in at most one entry, so if an
intercalate in a partial Latin square does not intersect any other intercalate in one entry, then it is
isolated. Thus, an intercalate in a (partial) Latin square is stable if and only if it is not a subset of any
bad configuration.

Instead of reasoning directly about the total number of split intercalates, it will be easier to show
lower bounds on the size of the maximum family of disjoint split intercalates (as this random variable
behaves better with respect to Theorem 3.1). The next lemma states that if we consider a random Latin
square intersected with a random sparse template hypergraph, then there is very likely to be a large
family of disjoint split intercalates.

Definition 9.10. For c > 0 and a tripartite hypergraph H ⊆ K
(3)
n,n,n, let T int(H, c) ⊆ Ln be the set

of Latin squares L such that for some (ℓ, β)-permissible 6-tuple (R,R∗,C ,C ∗,S ,S ∗), the maximum
family of disjoint (R,R∗,C ,C ∗,S ,S ∗)-split intercalates in H ∩ L has size smaller than cε4nℓ.

Lemma 9.11. Fix a constant c > 0 which is sufficiently small with respect to β. Then, consider a
random hypergraph H ∼ G(3)(n, ε) and an independent random Latin square L ∼ Unif(Ln). We have

P[L ∈ T int(H, c)] ≤ exp(−ω(n log2 n)).

Next, the following lemma gives an upper bound on the number of entries in split bad configurations.

Definition 9.12. We say that an entry in a row in R∗ is covered by some split bad configuration if
it belongs to a split intercalate in it. We say an intercalate or a bad configuration is R∗-split if it is
(R,R∗,C ,C ∗,S ,S ∗)-split for some (ℓ, β)-permissible 6-tuple (R,R∗,C ,C ∗,S ,S ∗) containing R∗.
For C > 0 and a hypergraph H ⊆ K

(3)
n,n,n, let T bad(H,C) ⊆ Ln be the set of Latin squares L such

that for some set of rows R∗ of size ℓ, the number of entries in rows in R∗ covered by R∗-split bad
configurations in H ∩ L is more than Cε5nℓ.

Lemma 9.13. There is an absolute constant C > 0 such that the following holds. Consider a random
hypergraph H ∼ G(3)(n, ε) and an independent random Latin square L ∼ Unif(Ln). We have

P[L ∈ T bad(H, C)] ≤ exp(−ω(n log2 n)).

We can now deduce Lemma 9.2 from Lemmas 9.11 and 9.13.

Proof of Lemma 9.2. By the union bound, Lemma 9.11, and Lemma 9.13, there are C, c > 0 such that
we have

P[L ∈ T int(H, c) ∪ T bad(H, C)] ≤ exp(−ω(n log2 n)).

Note that if L /∈ T int(H, c)∪T bad(H, C), then for every (ℓ, β)-permissible 6-tuple (R,R∗,C ,C ∗,S ,S ∗),
there are many (R,R∗,C ,C ∗,S ,S ∗)-split intercalates in H∩L, and only a small fraction of them can
have entries covered by (R,R∗,C ,C ∗,S ,S ∗)-split bad configurations. Therefore, at least one of them
must be stable. By symmetry between rows, columns, and symbols, and a union bound, we see that we
have

P[H ∩ L is an (ℓ, β)-intercalate-expander] ≥ 1− exp(−ω(n log2 n)).

That is to say, almost all outcomes H ∩ L of H ∩ L satisfy the conclusion of Definition 8.1. □

It remains to prove Lemmas 9.11 and 9.13, which we will do in Sections 10 and 11, respectively. Both
proofs will make crucial use of Lemma 4.7 (to deduce results about random Latin squares from very-
high-probability results about the triangle removal process). Given Lemma 4.7, the proof of Lemma 9.11
is a rather quick (though somewhat delicate) consequence of Theorem 3.1. The proof of Lemma 9.13 is
much longer, and requires several additional ideas.

10. Existence of many disjoint intercalates

As already mentioned, to prove Lemma 9.11, we employ Lemma 4.7 and work in the setting of the
triangle removal process. To do that, we define a property of ordered partial Latin squares that satisfies
suitable inheritance properties with respect to T int(H, c) (recall Definition 4.3).
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Definition 10.1. Recall the definitions of ℓ and ε from Definition 9.1. For c > 0 and H ⊆ K
(3)
n,n,n,

let U⃗ int(H, c) ⊆ P⃗n be the set of ordered partial Latin squares P⃗ such that for some (ℓ, β)-permissible
6-tuple (R,R∗,C ,C ∗,S ,S ∗), the maximum family of disjoint (R,R∗,C ,C ∗,S ,S ∗)-split intercalates
in H ∩ P⃗ has size less than cε4nℓ.

Now, the following lemma is a version of Lemma 9.11 for the triangle removal process.

Lemma 10.2. Fix constants α, c > 0, such that α is sufficiently small and c is sufficiently small in
terms of α and β. Consider independent random hypergraphs R⃗ ∼ TRP(n, αn2) and H ∼ G(3)(n, ε).
Then

P[R⃗ ∈ U⃗ int(H, c)] ≤ exp(−ω(n log2 n)).

We first deduce Lemma 9.11 from Lemma 10.2 using Lemma 4.7.

Proof of Lemma 9.11. Let α, c be small enough for Lemma 10.2 and let ρ = 1. By Lemma 10.2
and Fact 9.4(1), with probability 1 − exp(−ω(n log2 n) our random hypergraph H ∼ G(3)(n, ε) is
such that P[R⃗ ∈ U⃗ int(H, c) |H] ≤ exp(−ω(n log2 n)). Let H be an outcome of H for which this
holds. Note that U⃗ int(H, c) is (ρ, αn2)-inherited from T int(H, c): indeed, if L ∈ T int(H, c), then
there is some (ℓ, β)-permissible 6-tuple (R,R∗,C ,C ∗,S ,S ∗) such that the maximum family of dis-
joint (R,R∗,C ,C ∗,S ,S ∗)-split intercalates in H ∩ L has size smaller than cε4nℓ, so for any P ⊆ L,
the maximum family of disjoint (R,R∗,C ,C ∗,S ,S ∗)-split intercalates in H ∩ P also has size smaller
than cε4nℓ. Thus, by Lemma 4.7,

P[L ∈ T int(H, c)] ≤ exp(2n log2 n)P[R⃗ ∈ U⃗ int(H, c)] ≤ exp(−ω(n log2 n)).

Recalling our choice of H, Fact 9.4(2) then implies that

P[L ∈ T int(H, c)] ≤ exp(−ω(n log2 n)),

as desired. □

Proof of Lemma 10.2. We will prove the desired statement with c = 10−5β5α4.
Note that the property U⃗ int(H, c) is monotone decreasing. Let G ∼ G(3)(n, α/n), and let G∗ be

obtained from G by deleting all hyperedges involved in conflicts (recall that a conflict is a pair of
hyperedges that intersect in more than one vertex). By Lemma 5.4, for each H ⊆ K

(3)
n,n,n we have

P[R⃗ ∈ U⃗ int(H, c)] = O(P[G∗ ∈ U⃗ int(H, c)]),

so for our random hypergraph H we have

P[R⃗ ∈ U⃗ int(H, c)] = O(P[G∗ ∈ U⃗ int(H, c)]).

Thus, from now on we work in G∗. Fix an (ℓ, β)-permissible 6-tuple (R,R∗,C ,C ∗,S ,S ∗). We will
show that the probability that the maximum family of disjoint (R,R∗,C ,C ∗,S ,S ∗)-split intercalates
in H ∩G∗ has size smaller than cε4nℓ is at most exp(−ω(n log2 n)).

Our main tool will be Theorem 3.1, but to effectively apply this concentration inequality we need to
be quite careful with the way we interpret H ∩ G∗ as a function of independent choices. Specifically,
for each potential hyperedge e, let gh

e and ge be two independent Bernoulli random variables with
P[gh

e = 1] = αε/n and P[ge = 1] = α(1− ε)/(n−αε). We generate G and H∩G by sampling gh
e and ge

for each potential edge e, setting e ∈ H ∩G if gh
e = 1, and setting e ∈ G if gh

e = 1 or ge = 1 (or both).
To see that this correctly describes the joint distribution of G and H ∩G, note that

P[e ∈ G] = 1− (1− P[gh
e = 1])(1− P[ge = 1]) = 1−

(
1− αε

n

)(
1− α(1− ε)

n− αε

)
=

αε

n
+

α(1− ε)

n− αε
− α2ε(1− ε)

n(n− αε)
=

α

n
.

Now, the plan is to reveal G and H (via the random variables gh
e and ge) in two phases. First, we

reveal all entries in rows outside of R∗, and then we reveal entries in rows in R∗.
Recall that a conflict is a pair of hyperedges that intersect in more than one vertex. We say a pair of

entries {(r, c1, s1), (r, c2, s2)} in H∩G on the same row r /∈ R∗ has a second-order conflict if s1 appears
in column c2 or if s2 appears in column c1 on a row outside of R∗, with respect to G. For r ∈ R \ R∗,
c1 ∈ C , c2 ∈ C ∗, s1 ∈ S and s2 ∈ S ∗, we say a pair {(r, c1, s1), (r, c2, s2)} is a half-intercalate if both
its hyperedges are present in H ∩G and have no conflicts with entries of G outside of R∗, and the pair
has no second-order conflicts (which would make it impossible to complete it to an intercalate in G∗).
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The idea is that in the first phase, by revealing all the entries in the rows outside R∗, we reveal all the
half-intercalates. In the second phase, each half-intercalate {(r, c1, s1), (r, c2, s2)} can then be completed
to a split intercalate in H∩G∗ via any pair of entries (r′, c1, s1), (r′, c2, s2) (with r′ ∈ R∗) in G, as long
as the four entries involved in the intercalate do not conflict with other entries in G on rows in R∗.

Let X be the number of half-intercalates. We will apply Theorem 3.1 to show concentration of X.
First note that

E[X] ≥
(
βn

2

)2

(βn− ℓ)(εα/n)2(1− α/n)8n−8 ≥ 10−1ε2α2(βn− ℓ)β4n2e−16α ≥ 10−2ε2α2β5n3.

To see this, recall that |R \ R∗| ≥ βn− ℓ and each of R,C ,C ∗,S ,S ∗ have size at least βn; also, each
pair of entries is present in H ∩G with probability (εα/n)2, it has no conflicts with other entries in G
with probability at least (1 − α/n)6n−6, and it has no second-order conflicts with probability at least
(1− α/n)2n−2.

Recall that we work with the independent random variables gh
e and ge for each of the O(n3) many

potential hyperedges e outside the rows in R∗, and each of these random variables is 1 with probability
O(1/n). The appearance of a hyperedge in H ∩ G can increase X by at most n − 1, since each entry
can be in at most n − 1 half-intercalates. The appearance of a hyperedge in G can decrease X by at
most 4n, since it can destroy at most 3 hyperedges in G∗ due to conflicts (and each of them could be
in at most n − 1 pairs counted by X), and can introduce at most n second-order conflicts. Thus, the
effect of changing any individual random variable (of the form gh

e or ge) is O(n). By Theorem 3.1, with
probability 1− exp(−Ω(ε4n2)), we have X ≥ 10−3ε2α2β5n3. For the rest of the proof, we condition on
an outcome of the first phase such that this is the case (i.e., in the rest of the proof, all probabilistic
considerations are implicitly with respect to this conditional probability space).

Now, in the second phase we reveal G and H ∩ G in rows in R∗, and estimate the size Z of the
maximum family of disjoint (R,R∗,C ,C ∗,S ,S ∗)-split intercalates in H ∩ G∗. Note that each half-
intercalate counted by X forms an intercalate with two other entries on row r ∈ R∗ if and only if these
two other entries are present in H ∩G and no entry in G in a row in R∗ conflicts with any of the four
entries of the intercalate. We can compute a lower bound on E[Z] by subtracting the expected number
of pairs of intersecting split intercalates from the expected number of split intercalates. Indeed,

E[Z] ≥ Xℓ(εα/n)2(1− α/n)8n−8 −Xnℓ2(εα/n)4 −Xnℓ(εα/n)3 ≥ X
ℓα2ε2

2n2
≥ 10−4α4β5ε4nℓ,

where the term (1 − α/n)8n−8 accounts for the probability that some entry in a fixed potential split
intercalate conflicts with some entry in a row in R∗. The second term bounds the expected number
of pairs of split intercalates that intersect in an entry outside of R∗, since for a fixed half-intercalate,
there are at most n choices for the other column of the other intercalate and at most ℓ choices for the
other row of each intercalate, and for each such combination of choices, four entries need to be present
in rows in R∗. The third term bounds the expected number of pairs of split intercalates that intersect
in an entry in R∗, since for a fixed half-intercalate, there are at most ℓ choices for the common to both
intercalates row in R∗ and at most n choices for the other row of the other intercalate, which is outside of
R∗ (and this determines the entries of both intercalates completely). We again apply Theorem 3.1 with
the remaining unrevealed random variables gh

e and ge. Since we are interested in a family of disjoint
intercalates, the appearance of a hyperedge can increase Z by at most 1 and can decrease it by at most
3 (as it can have a conflict with at most 3 edges in G∗). Crucially, there are now only O(n2ℓ) many
unrevealed random variables. Thus, by Theorem 3.1, we have that Z ≥ 10−5α4β5ε4nℓ with probability
at least 1− exp(−Ωα,β(ε

8nℓ)).
We conclude the proof with a union bound over all (at most 26n) choices for an (ℓ, β)-permissible

6-tuple (R,R∗,C ,C ∗,S ,S ∗). □

11. Upper-bounding the number of entries in bad configurations

We now turn to the proof of Lemma 9.13. For any set of ℓ rows R∗, our goal is to upper bound the
probability that there are many entries in rows in R∗ covered by R∗-split bad configurations.

11.1. Setup. As in the proof of Lemma 10.2, the special role of the rows in R∗ requires us to consider
two “phases”. In the first phase we reveal a subset of the entries of our random Latin square, and study
configurations of entries which are “almost” bad configurations (they are just missing some entries from
R∗). In the second phase we reveal the rest of our random Latin square, and we study which of our
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“almost bad configurations” give rise to actual bad configurations. However, this breakdown into phases
is much more complicated than for Lemma 10.2 (for several different reasons), and requires some setup.

Definition 11.1. Given a R∗-split bad configuration F , we say that the special entries of F are its
two entries which belong to rows in R∗. (Technically, it is possible that there is more than one split
intercalate in a bad configuration, or that the bad configuration contains an intercalate with both its
rows in R∗. In these cases we imagine multiple “copies” of the bad configuration, each time making a
different choice for the two special entries). Also, we say that the intercalate in F which contains the
special entries is the special intercalate.

Definition 11.2. Given a partial Latin square P and a set of rows R∗, consider a pair {e1, e2} of
row/column/symbol triples, belonging to some row in R∗, which are not already present in P but which
can be added to P without causing conflicts (i.e., P ∪{e1, e2} is a partial Latin square). Say that {e1, e2}
is a threatened pair for P if there is some split bad configuration F in P ∪ {e1, e2} which has e1 and e2
as special entries. In this case, we say F ∩ P is a threat configuration in P .

Informally speaking, threat configurations are the sets of entries which are “in danger of being com-
pleted to a split bad configuration”, only requiring the addition of their two special entries. Each of the
possible ways to complete a threat configuration to a split bad configuration is described by a threat-
ened pair. A single threatened pair may complete multiple different threat configurations to split bad
configurations, and a single threat configuration may be completeable by multiple different threatened
pairs (to different split bad configurations).

Now, given the above terminology, we can be a bit more concrete about the high-level plan to prove
Lemma 9.13. In a first phase, we reveal part of our random Latin square and upper-bound the number
of threatened pairs in it (we do not upper bound the number of threat configurations themselves, cf.
Remark 9.5). Then, in a second phase, we reveal the rest of the Latin square and upper bound the
number of threatened pairs from the first phase that actually appear as entries in the second phase. By
an averaging argument (over all the ways to split into two phases) we are able to deduce the desired
bound on the number of entries in split bad configurations.

For the first phase, we consider the following property.

Definition 11.3. Recall the definitions of ℓ and ε from Definition 9.1. For H ⊆ K
(3)
n,n,n and C,α, ϕ > 0,

let T threat(H,C, α, ϕ) ⊆ Ln be the set of Latin squares L such that the following holds. If we take a
random subset Pαn2(L) ∈ Pn,αn2 of αn2 entries in L, then with probability at least ϕ, for some set of
rows R∗ of size |R∗| = ℓ, the number of threatened pairs for H ∩Pαn2(L) is more than Cε3n3ℓ.

Note that here we are defining a property of Latin squares in terms of how their random subsets
of entries behave. This may seem rather unwieldy, but it is very convenient for the ρ-inheritedness
assumption in Lemma 4.7 (when it comes time to apply Lemma 4.7, the ρ-inheritedness assumption will
hold basically by definition). The issue with more straightforward properties is that bad configurations
and threatened pairs do not behave well under subsampling entries, and therefore ρ-inheritedness would
be quite difficult to prove. (The issue is that a bad configuration is defined in terms of isolated intercalates,
and deleting entries can cause more intercalates to be isolated14).

Now, the following two lemmas correspond to the two “phases” informally discussed above.

Lemma 11.4. There is an absolute constant C ′ > 0 such that the following holds. Fix constants
α, ϕ > 0, and consider a random hypergraph H ∼ G(3)(n, ε) and an independent random Latin square
L ∼ Unif(Ln). We have

P[L ∈ T threat(H, C ′, α, ϕ)] ≤ exp(−ω(n log2 n)).

Lemma 11.5. Fix constants α,C ′, C, ϕ > 0, such that α is sufficiently small, C is sufficiently large
in terms of α and C ′, and ϕ is sufficiently small in terms of α. Consider a random hypergraph H ∼
G(3)(n, ε) and an independent random Latin square L ∼ Unif(Ln). We have

P[L ∈ T bad(H, C) \ T threat(H, C ′, α, ϕ)] ≤ exp(−ω(n log2 n)).

Lemmas 11.4 and 11.5 are both proved using Lemma 4.7, comparing random Latin squares to the
triangle removal process. In addition, the proof of Lemma 11.4 also involves a switching argument directly

14The reader may then wonder why we insist on isolatedness in the definition of a bad configuration. The reason is
that it is very convenient to restrict our attention to isolated intercalates in a switching argument which will appear later
in this section.
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on random Latin squares (to tame the complexity of all the different possibilities for the structure of a
threat configuration).

We conclude this subsection with the brief deduction of Lemma 9.13 from Lemmas 11.4 and 11.5.

Proof of Lemma 9.13. Let C ′ be as in Lemma 11.4, and then let α,C, ϕ be as in Lemma 11.5 (for the
same value of C ′). Then we have

P[L ∈ T bad(H, C)] ≤ P[L ∈ T bad(H, C) \ T threat(H, C ′, α, ϕ)] + P[L ∈ T threat(H, C ′, α, ϕ)]

≤ exp(−ω(n log2 n)) + exp(−ω(n log2 n))

by Lemmas 11.4 and 11.5. □

In the next three subsections, we will prove Lemmas 11.4 and 11.5 (in reverse order).

11.2. Few bad configurations or many threatened pairs. In this subsection we prove Lemma 11.5.
As previously mentioned, we will work with the triangle removal process, via Lemma 4.7. In contrast to
our previous application of Lemma 4.7 in Section 10, this time the order of the edges will be important.

Definition 11.6. Let P⃗ ∈ P⃗n be an ordered partial Latin square, and write e1, . . . , em for its entries (in
order). For ι, κ ∈ [0, 1], we write P⃗ [ι, κ] ∈ Pn,(κ−ι)m for the partial Latin square consisting of the edges
ei with ιm < i ≤ κm.

Recall the definitions of ℓ and ε from Definition 9.1.

Definition 11.7. Let α ∈ (0, 1), C > 0, and H ⊆ K
(3)
n,n,n. Let U⃗ threat(H,C) ⊆ P⃗n be the set of partial

ordered Latin squares P⃗ such that for some set of rows R∗ of size ℓ = |R∗|, the number of threatened
pairs for H ∩ P⃗ [0, 1/2] is more than Cε3n3ℓ.

Definition 11.8. We call a bad configuration consistent with P⃗ if its corresponding threat configuration
is in P⃗ [0, 1/2], one of its special entries is in P⃗ [1/2, 3/4], and its other special entry is in P⃗ [3/4, 1]. Let
U⃗bad(H,C) ⊆ P⃗n be the set of partial ordered Latin squares P⃗ such that for some set of rows R∗ of
size ℓ = |R∗|, there are more than Cε5nℓ entries in P⃗ [3/4, 1] that are in rows in R∗ and are covered by
R∗-split bad configurations in H ∩ P⃗ that are consistent with P⃗ .

The following lemma is a version of Lemma 11.5 for the triangle removal process.

Lemma 11.9. Fix constants α,C ′, such that α is sufficiently small. Consider independent random
hypergraphs R⃗ ∼ TRP(n, αn2) and H ∼ G(3)(n, ε). Then

P[R⃗ ∈ U⃗bad(H, C ′) \ U⃗ threat(H, C ′)] ≤ exp(−ω(n log2 n)).

Before proving Lemma 11.9, we show how it implies Lemma 11.5, using Lemma 4.7 and an averaging
argument.

Proof of Lemma 11.5. Let m = 2αn2 and ρ = α16/24. We assume that ϕ ≤ ρ and ρC ≥ C ′.
By Lemma 11.9 and Fact 9.4(1), with probability 1− exp(−ω(n log2 n)) over the randomness of H we

have
P[R⃗ ∈ U⃗bad(H, C ′) \ U⃗ threat(H, C ′) |H] ≤ exp(−ω(n log2 n)).

The desired result would therefore follow from Lemma 4.7 and Fact 9.4(2), if we knew that U⃗bad(H,C ′)\
U⃗ threat(H,C ′) is (ρ,m)-inherited from T bad(H,C)\T threat(H,C ′, α, ϕ) for all outcomes H of H. For the
rest of the proof, our goal is to prove that this is the case.

Suppose L ∈ T bad(H,C) \ T threat(H,C ′, α, ϕ), and let P⃗m(L) ∈ P⃗n,m be a random ordering of m

random entries of L. We need to prove that P⃗m(L) ∈ U⃗bad(H,C ′) \ U⃗ threat(H,C ′) with probability at
least ρ.

By the definition of T threat(H,C ′, α, ϕ) and the fact that P⃗m(L)[0, 1/2] is a uniformly random set of
αn2 entries of L, first note that P[P⃗m(L) ∈ U⃗ threat(H,C ′)] ≤ ϕ. So, it suffices to show that P⃗m(L) ∈
U⃗bad(H,C ′) with probability at least ρ+ ϕ.

Since L ∈ T bad(H,C), there is some R∗ such that there are X ≥ Cε5nℓ many entries in rows in
R∗ covered by R∗-split bad configurations in H ∩ L. Let Y ≤ X be the number of such entries in
P⃗m(L)[3/4, 1] which are covered by R∗-split bad configurations in H ∩ P⃗m(L) consistent with P⃗m(L).
For each covered entry (r, c, s) in H ∩ L counted by X, the probability that its associated split bad
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configuration with s ≤ 16 entries is present in P⃗m(L) is
(
n2−s
m−s

)
/
(
n2

m

)
= (1 + o(1))(2α)s. Given that it is

present in P⃗m(L), the probability that it is consistent with P⃗m(L) and that (r, c, s) ∈ P⃗m(L)[3/4, 1] is

m/4

m
· m/4

m− 1
·
(
m/2

s− 2

)
/

(
m− 2

s− 2

)
= (1 + o(1))(1/4)2(1/2)s−2.

Note that each isolated intercalate in H ∩L whose entries are in P⃗m(L) is also isolated in H ∩ P⃗m(L), so
each bad configuration in H ∩L that is present in H ∩ P⃗m(L) is also a bad configuration in H ∩ P⃗m(L).
Therefore

E[Y] ≥ (1 + o(1))X(2α)s(1/4)2(1/2)s−2 ≥ Xα16/4.

Recall our assumptions on ϕ,C from the start of the proof. Let δ = α16/8 ≥ ρ + ϕ and note that
δX ≥ C ′ε5nℓ. By Markov’s inequality, P[P⃗m(L) ∈ U⃗bad(H,C ′)] is at least

P[Y ≥ δX] = 1− P[X −Y > (1− δ)X] ≥ 1− E[X −Y]

(1− δ)X
≥ 1− 1− 2δ

1− δ
≥ ρ+ ϕ,

as desired. □

Now we prove Lemma 11.9.

Proof of Lemma 11.9. First, we reveal H ∩ R⃗[0, 1/2]. We assume that for each choice of R∗ of size ℓ,
the number of threatened pairs for H∩ R⃗[0, 1/2] is at most C ′ε3n3ℓ (otherwise U⃗ threat(H, C ′) holds, and
there is nothing to prove). From now on, when we talk about threatened pairs in this proof, we mean
threatened pairs for H ∩ R⃗[0, 1/2].

Given revealed information, our goal is to show that with probability 1− exp(−ω(n log2 n)), for every
R∗ with |R∗| = ℓ, there are at most C ′ε5nℓ entries of R⃗[3/4, 1] that are in rows in R∗ and are covered
by R∗-split bad configurations in H∩ R⃗ that are consistent with R⃗. Actually, it suffices to show this for
a fixed choice of R∗ (a union bound over choices of R∗ has a negligible impact). So, fix some R∗ with
|R∗| = ℓ.

The next step is to consider H∩ R⃗[1/2, 3/4]. We say a threatened pair survives if one of its entries is
in H ∩ R⃗[1/2, 3/4].

Claim. Given revealed information, the number of surviving threatened pairs is at most C ′ε4n2ℓ with
probability 1− exp(−ω(n log2 n)).

Proof of claim. Let U be the set of G ⊆ K
(3)
n,n,n which intersect more than C ′ε4n2ℓ threatened pairs.

Then, for each possible outcome H of H, the set {G ⊆ K
(3)
n,n,n : H ∩ G ∈ U} is a monotone increasing

property of subgraphs of K
(3)
n,n,n, so by Lemma 5.3, the probability that there are more than C ′ε4n2ℓ

surviving threatened pairs is

P[H ∩ R⃗[1/2, 3/4] ∈ U ] ≤ P[H ∩G′ ∈ U ] + exp(−Ω(n2)) = P[G ∈ U ] + exp(−Ω(n2)),

where G′ ∼ G(3)(n, (α/2)/n) and G ∼ G(3)(n, (εα/2)/n).
From here, we just need to apply a concentration inequality in G, to upper bound P[G ∈ U ]. For

each row/column/symbol triple e, let we be the number of threatened pairs that e is in, and let X be
the sum of we over all hyperedges e of G. Note that (for small α > 0) we have

E[X] ≤ 2 · C ′ε3n3ℓ · εα/2
n

≤ C ′ε4n2ℓ

2
.

Then, for any row/column/symbol triple e, consider each of the threatened pairs that e is in. Each of
these threatened pairs, if added to R⃗[1/2, 1], would complete a split bad configuration in which e would
be in a different intercalate. Since a single entry can be in at most n many intercalates (in any Latin
square), it follows that e is in at most n threatened pairs; that is, we ≤ n.

We can therefore apply Corollary 3.2 with ∆ = n and δ = 1, to obtain

P[G ∈ U ] ≤ P
[
X ≥ E[X] +

C ′ε4n2ℓ

2

]
≤ exp(−Ω(ε4nℓ)),

and the desired result follows (recalling the relationship between ℓ and ε in Definition 9.1). ■
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Now, reveal H∩R⃗[1/2, 3/4]; by the above claim we may assume that our revealed outcome is such that
there are at most C ′ε4n2ℓ surviving threatened pairs. Then, the final step is to consider H ∩ R⃗[3/4, 1].

Each surviving threatened pair’s presence in H ∩ R⃗ is determined by whether its second entry is in
H ∩ R⃗[3/4, 1]. Say a row/column/symbol triple e is a threatened entry if it is the second entry of some
surviving threatened pair.

Claim. Given revealed information, there are at most C ′ε5nℓ threatened entries present in H∩R⃗[3/4, 1],
with probability 1− exp(−ω(n log2 n)).

Proof of claim. We proceed very similarly to the last claim (in fact, the situation is even simpler). Let
G ∼ G(3)(n, (αε/2)/n), and let Y be the number of threatened entries present in G. Using Lemma 5.3
as before, the probability that there are more than C ′ε5nℓ threatened entries present in H∩ R⃗[3/4, 1] is
at most P[Y > C ′ε5nℓ] + exp(−Ω(n2)).

We have

E[Y] ≤ C ′ε4n2ℓ · αε/2
n

≤ C ′ε5nℓ

2
,

so by Corollary 3.2 (with ∆ = 1), we have P[Y > C ′ε5nℓ] ≤ exp(−Ω(ε5nℓ)); the desired result follows. ■

Now, if e is an entry of R⃗[3/4, 1] that is in a row in R∗ and is covered by a split bad configuration in
H ∩ R⃗ consistent with R⃗, then e was a threatened entry which happened to be present in H ∩ R⃗[3/4, 1]

(the converse may not hold, as bad configurations in subsets of H∩ R⃗ are not always bad configurations
in H ∩ R⃗ itself). So, the desired result follows from the above claim. □

11.3. Upper-bounding the number of threatened pairs: setup and switching. It remains to
prove Lemma 11.4, which amounts to a careful study of threat configurations in a random subset of a
random Latin square.

Recall that threat configurations are sets of entries that are “two entries away” from a bad configu-
ration, and there are a very large number of possibilities for the structure of a bad configuration (e.g.,
critical configurations can have different numbers of intercalates, they can require different subsets of
intercalates to be switched to create a new intercalate, and they can have different rows in R∗). To tame
this complexity, one crucial observation is that for every bad configuration in a partial Latin square,
there is some way to switch isolated intercalates to obtain a pair of intersecting intercalates. So, with a
switching argument (unrelated to the main switching argument in Section 8), we can reduce the number
of cases significantly: it suffices to consider bad configurations that correspond to pairs of intersecting
intercalates, and bad configurations that are “one switch away” from a pair of intersecting intercalates.

Definition 11.10. Given a partial Latin square P ∈ Pn and a set of rows R∗, we define a basic split
bad configuration to be a set F of seven entries in P , such that F contains an intercalate A with a row
in R∗, and either F or (F \A) ∪ Ā is a union of two intersecting intercalates.

Then, say that a pair {e1, e2}, belonging to some row in R∗, is a basic threatened pair for P if there
is some basic split bad configuration F in P ∪ {e1, e2} with e1, e2 ∈ F . In this case, we say F \ {e1, e2}
is a basic threat configuration in P .

There are four cases for the structure of a basic threatened pair/basic threat configuration; see Figure 1.
Note that we make no isolatedness assumptions in the above definition, so technically it is possible that
a basic split bad configuration is not actually a split bad configuration (or that a basic threatened pair is
not actually a threatened pair, or that a basic threat configuration is not actually a threat configuration).
However, we still borrow the same terminology (e.g., we may talk about the special entries of a basic
split bad configuration).

c1 c2 c3
r∗1 s1 s2
r2 s2 s1 s3
r3 s3 s2

c1 c2 c3
r∗1 s2 s1
r2 s1 s2 s3
r3 s3 s2

c1 c2 c3
r1 s1 s2
r∗2 s2 s1 s3
r3 s3 s2

c1 c2 c3
r1 s2 s1
r∗2 s1 s2 s3
r3 s3 s2

Figure 1. The four possibilities for the structure of a basic threat configuration, each
illustrated with a basic threatened pair in orange. In each case, rows in R∗ are marked
with a star. (Rows not marked with a star may or may not be in R∗.)
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Fact 11.11. Consider any partial Latin square R ∈ Pn and set of rows R∗, and let R′ be obtained
from R by switching each isolated intercalate with probability 1/2, independently. Let {e1, e2} be any
threatened pair for R. Then, {e1, e2} is a basic threatened pair for R′, with probability at least (1/2)5.

Proof. There is some threat configuration F0 in R corresponding to the threatened pair {e1, e2}. By the
definition of a split bad configuration, in R ∪ {e1, e2}, there is a way to switch isolated intercalates to
introduce a pair of intersecting intercalates containing {e1, e2}. If we do the same switches in R (except
possibly the switch of the special intercalate, which may not actually exist in R), we make {e1, e2} a
basic threatened pair. See Figure 2 for an example.

Now, F0 intersects at most five isolated intercalates in R (it is clear that F0 contains at most three iso-
lated intercalates, but the other entries in F0 could be contained in totally different isolated intercalates).
The desired result follows. □

We next record a lemma saying that there are typically not many entries covered by basic threatened
pairs. Recall the definitions of ℓ and ε from Definition 9.1.

Definition 11.12. For C > 0 and a hypergraph H ⊆ K
(3)
n,n,n, let T basic(H,C) ⊆ Ln be the set of Latin

squares L such that for some set of rows R∗ of size |R∗| = ℓ, the number of basic threatened pairs in
H ∩ L is more than Cε3n3ℓ.

Lemma 11.13. There is an absolute constant C > 0 such that the following holds. Consider a random
hypergraph H ∼ G(3)(n, ε) and an independent random Latin square L ∼ Unif(Ln). We have

P[L ∈ T basic(H, C)] ≤ exp(−Ω(ε3n2)).

We defer the proof of Lemma 11.13 to Section 11.4. First, we show how to use a switching argument
(with Fact 11.11) to deduce Lemma 11.4. Note that, as we will see, this deduction crucially requires that
the error probability in Lemma 11.13 is exp(−Ω(ε3n2)) rather than our usual exp(−ω(n log2 n)). We
also need an upper bound on the size of the largest family of pairwise disjoint intercalates, as follows.

Definition 11.14. Let T int
upper(H) ⊆ Ln be the set of Latin squares L for which there is a family of more

than 80ε4n2 disjoint intercalates in H ∩ L.

Lemma 11.15. Consider a random hypergraph H ∼ G(3)(n, ε) and an independent random Latin square
L ∼ Unif(Ln). We have

P[L ∈ T int
upper(H)] ≤ exp(−ω(n log2 n)).

We prove Lemma 11.15 with an averaging argument and Lemma 4.7 (this is a subset of the ideas we
have already seen in Sections 10 and 11.2). Indeed, the following lemma is a version of Lemma 11.15 for
the triangle removal process.

Definition 11.16. Let U⃗ int
upper(H,α) ⊆ P⃗n be the set of partial ordered Latin squares P⃗ for which there

is a family of more than 20α4ε4n2 disjoint intercalates in H ∩ P⃗ .

Lemma 11.17. Let α ∈ (0, 1) be a sufficiently small constant. Consider independent random hypergraphs
R⃗ ∼ TRP(n, αn2) and H ∼ G(3)(n, ε). Then we have

P[R⃗ ∈ U⃗ int
upper(H, α)] ≤ exp(−ω(n log2 n)).

c1 c2 c3 c4 c5 c6
r∗1 s2 s1
r2 s3 s4
r3 s1 s2 s4 s3
r4 s3 s5 s6 s2
r5 s5 s3
r6 s2 s6

→

c1 c2 c3 c4 c5 c6
r∗1 s2 s1
r2 s4 s3
r3 s1 s2 s3 s4
r4 s5 s3 s2 s6
r5 s3 s5
r6 s6 s2

Figure 2. On the left, an example of a threat configuration in a partial Latin square
(with an example threatened pair in orange). If we switch the three highlighted in-
tercalates, then we obtain the partial Latin square on the right, which contains a basic
threat configuration (highlighted). The threatened pair on the left has now become a
basic threatened pair on the right.

32



Proof of Lemma 11.15 given Lemma 11.17. Let α > 0 be small enough for Lemma 11.17, let m = αn2

and let ρ = α4/4.
By Lemma 11.17 and Fact 9.4(1), with probability 1 − exp(−ω(n log2 n)) our random hypergraph

H ∼ G(3)(n, ε) satisfies P[R⃗ ∈ U⃗ int
upper(H, α) |H] ≤ exp(−ω(n log2 n)). Let H be such an outcome of H.

To show U⃗ int
upper(H,α) is (ρ,m)-inherited from T int

upper(H), let L ∈ T int
upper(H), so there is a family of

X ≥ 80ε4n2 disjoint intercalates in H ∩ L. Let Y be the number of these intercalates which lie in a
random ordered m-subset P⃗m(L) of L. We have

E[Y] = X · (1 + o(1))α4 ≥ α4X/2.

By Markov’s inequality,

P[P⃗m(L) ∈ U⃗ int
upper(H,α)] ≥ P

[
Y ≥ α4

4
X

]
= 1− P

[
X −Y >

(
1− α4

4

)
X

]
≥ 1− 1− α4/2

1− α4/4
≥ ρ.

That is to say, U⃗ int
upper(H,α) is (ρ,m)-inherited from T int

upper(H). Thus, by Lemma 4.7,

P[L ∈ T int
upper(H)] ≤ exp(2n log2 n)P[R⃗ ∈ U⃗ int

upper(H,α)] = exp(−ω(n log2 n)).

Recalling our choice of H, Fact 9.4(2) concludes the proof. □

Proof of Lemma 11.17. For each H ⊆ K
(3)
n,n,n, note that U⃗ int

upper(H,α) is a monotone increasing property.
So, by Lemma 5.3 (applied to each possible outcome H of H), we have

P[H∩R⃗ ∈ U⃗ int
upper(H,α)] ≤ P[H∩G′ ∈ U⃗ int

upper(H,α)]+exp(−Ω(n2)) = P[G ∈ U⃗ int
upper(H,α)]+exp(−Ω(n2)),

where G′ ∼ G(3)(n, 2α/n) and G ∼ G(3)(n, 2εα/n). Let X be the size of the maximum family of disjoint
intercalates in G. We have

E[X] ≤ n6(2αε/n)4 = 16α4ε4n2,

and changing an edge of G changes X by at most 1 (since an entry can be part of at most one intercalate
in a maximum disjoint family). By Theorem 3.1, P[G ∈ U⃗ int

upper(H,α)] is at most

P[X > 20α4ε4n2] ≤ exp

(
− Ω

( ε8n4

n3 · ε/n+ ε4n2

))
= exp(−Ω(ε7n2)) = exp(−ω(n log2 n)),

and the desired result follows. □

We now deduce Lemma 11.4 from Lemmas 11.13 and 11.15 and Fact 11.11.

Proof of Lemma 11.4. Let C be as in Lemma 11.13, and let C ′ = 100C.
By Fact 9.4(1) and Lemmas 11.13 and 11.15, with probability 1−exp(−ω(n log2 n)) over the random-

ness of H, we have

P[L ∈ T basic(H, C) |H] ≤ exp(−Ω(ε3n2)), P[L ∈ T int
upper(H) |H] ≤ exp(−ω(n log2 n)).

Fix such an outcome H ∈ K
(3)
n,n,n of H, and let S = T threat(H,C ′, α, ϕ) \ T int

upper(H). By Fact 9.4(2), it
suffices to show that

P[L ∈ S] ≤ exp(−ω(n log2 n)).

Let P ∈ Pn,αn2 be a uniformly random subset of αn2 edges of L and let P′ be obtained from P by
switching each isolated intercalate in H ∩P with probability 1/2 independently. Let L′ = P′ ∪ (L \P).

Let X be the maximum over all choices of R∗ of the number of threatened pairs in H ∩ P, and let
Y ≤ X be the maximum over all choices of R∗ of the number of threatened pairs in H ∩ P which
become basic threatened pairs in H ∩P′. By Fact 11.11 with R = H ∩P (and the fact that an expected
maximum is at least the maximum expectation) we have E[Y |X] ≥ (1/32)X, so by Markov’s inequality

P
[
Y ≥ 1

100
X

∣∣∣∣X] = 1− P
[
X−Y >

99

100
X

∣∣∣∣X] ≥ 1− 31/32

99/100
≥ 1

100
.

Also, by the definition of T threat(H,C ′, α, ϕ) ⊇ S, we have

P[X ≥ C ′ε3n3ℓ |L ∈ S] ≥ ϕ.

Recalling that C ′ = 100C, and letting T = T basic(H,C), we deduce that P[L′ ∈ T |L ∈ S] ≥ ϕ/100 or
in other words

P[L ∈ S] ≤ 100

ϕ
P[L ∈ S and L′ ∈ T ].
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So, it suffices to prove that P[L ∈ S and L′ ∈ T ] ≤ exp(−ω(n log2 n)).
We introduce the notation L1 → L2 to mean that we can obtain L2 from L1 by switching some

disjoint intercalates in H ∩ L1. Recall that L′ is obtained from L by switching some intercalates which
are isolated in H ∩ P, and these intercalates are certainly disjoint, so for any of the possible outcomes
(L1, L2) of (L,L′) we have L1 → L2. We therefore have

P[L ∈ S and L′ ∈ T ] ≤
∑
L2∈T

∑
L1∈S,L1→L2

P[L = L1]P[L′ = L2 |L = L1]

≤
∑
L2∈T

P[L = L2]
∑

L1∈S,L1→L2

1

≤
∑
L2∈T

P[L = L2]

(
n4 + 80ε4n2

80ε4n2

)
≤ P[L ∈ T ] exp(O(80ε4n2 log n))

≤ exp(−Ω(ε3n2)) · exp(O(80ε4n2 log n))

≤ exp(−ω(n log2 n)),

as desired. Here, in the second inequality we used the fact that P[L = L1] = P[L = L2] (since L has
the same probability of being equal to any Latin square). In the third inequality we used the fact that
every Latin square has at most n4 intercalates, and the difference between L1 and L2 is described by at
most 80ε4n2 disjoint intercalate switches (note that L1 ∈ S implies that L1 /∈ T int

upper(H), i.e., H ∩L1 has
at most 80ε4n2 disjoint intercalates). Given a set of size N , the number of subsets of size at most k is
bounded by

(
N+k
k

)
. The fifth inequality is by our choice of H, and the final one uses that ε = o(1/ log n)

(recall Definition 9.1). It is vital here that the error probability in Lemma 11.13 is exp(−Ω(ε3n2)). □

11.4. Upper-bounding the number of basic threatened pairs. It remains to prove Lemma 11.13.
This does not really involve any new ideas. Specifically, the approach is to carefully consider how basic
threat configurations can emerge through the triangle removal process, using Lemma 4.7 to relate this
to a random Latin square. There are four different cases for the structure of a basic threat configuration
(cf. Figure 1), each of which needs to be treated in a slightly different way.

We start by giving each of the four cases in Figure 1 a name.

Definition 11.18. Consider the four cases for the structure of a basic threat configuration, as follows15.
c1 c2 c3

r∗1
r2 s2 s1 s3
r3 s3 s2

c1 c2 c3
r∗1
r2 s1 s2 s3
r3 s3 s2

c1 c2 c3
r∗1 s3
r2 s1 s2
r3 s3 s2

c1 c2 c3
r∗1 s3
r2 s2 s1
r3 s3 s2

These four cases describe four partial Latin squares Q1, Q2, Q3, Q4 ∈ P3 (from left to right). Each Qt

has three rows, three columns and three symbols (though in Q1 and Q2, one of the rows does not have
any entries in it).

For each type t, and any partial Latin square P ∈ Pn, an embedding from Qt into P is an injective
map from the 9 vertices of Qt into the vertices of P (where row-vertices are mapped to row-vertices,
column-vertices are mapped to column-vertices, and symbol-vertices are mapped to symbol-vertices),
such that the image of every hyperedge of Qt is a hyperedge of Pt.

Then, for a partial Latin square P ∈ Pn, note that a basic threatened pair (together with an associated
basic threat configuration) is specified by an embedding of some Qt into P , where we demand that r∗1 is
mapped into R∗. In this case we say that the basic threatened pair has type t.

Note that a basic threatened pair can have multiple types (if it has multiple associated basic threat
configurations).

Definition 11.19. For some t ∈ {1, 2, 3, 4}, let π = (e1, . . . , e5) be an ordering of the entries of Qt, and
let ϕ(Qt) be an embedding of Qt into an ordered partial Latin square P⃗ ∈ P⃗n. We say that ϕ(Qt) is
π-consistent with P⃗ if ϕ(ei) ∈ P⃗ [(i− 1)/5, i/5] for all i ∈ {1, . . . , 5}. We say that a basic threatened pair
of type t is π-consistent with P⃗ if it is associated with some π-consistent embedding ϕ(Qt).

Now, we state a version of Lemma 11.13 for the triangle removal process. Recall the definitions of ℓ
and ε from Definition 9.1.

15These are exactly as in Figure 1, but in the last two cases we have swapped the first and second rows.
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Definition 11.20. For a hypergraph H, a type t ∈ {1, 2, 3, 4} and an ordering π of the entries of Qt,
let U⃗basic(H, t, π) ⊆ P⃗n be the set of partial ordered Latin squares P⃗ such that for some set of rows R∗

of size |R∗| = ℓ, the number of type-t basic threatened pairs in H ∩ P⃗ which are π-consistent with P⃗ is
more than ε3n3ℓ.

Lemma 11.21. Fix a sufficiently small constant α > 0, and any t ∈ {1, 2, 3, 4}. There is an ordering π

of Qt such that for independent random hypergraphs R⃗ ∼ TRP(n, αn2) and H ∼ G(3)(n, ε), we have

P[R⃗ ∈ U⃗basic(H, t, π)] ≤ exp(−Ω(ε3n2)).

Before proving Lemma 11.21, we show how to deduce Lemma 11.13.

Proof of Lemma 11.13. Let α ∈ (0, 1) be small enough for Lemma 11.21, let m = αn2 and let ρ = α5/57,
and assume C ≥ 4(57/α5). For each t, let πt be the ordering in Lemma 11.21.

By Lemma 11.21 and Fact 9.4(1), with probability 1− exp(−Ω(ε3n2)) over the randomness of H, we
have that for each t ∈ {1, 2, 3, 4},

P[R⃗ ∈ U⃗basic(H, t, πt) |H] ≤ exp(−Ω(ε3n2)). (11.1)

Fix such an outcome H ⊆ K
(3)
n,n,n of H.

Let U⃗basic(H) =
⋃4

t=1 U⃗basic(H, t, πt). Given an ordered partial Latin square P⃗ and a set of rows R∗,
we say a type-t basic threatened pair is consistent if it is πt-consistent.

To show U⃗basic(H) is (ρ,m)-inherited from T basic(H,C), let L ∈ T basic(H,C), so there is R∗ of size
|R∗| = ℓ for which there are X > Cε3n3ℓ many basic threatened pairs in H ∩L. Let Y be the number of
basic threatened pairs in H ∩L which are present and consistent in an ordered random m-subset P⃗m(L)
of L. We have

E[Y] = X · (1 + o(1))α5(1/5)5 ≥ α5

56
X.

Now, if Y ≥ (α5/57)X > 4ε3n3ℓ then U⃗basic(H, t, πt) holds for some t. Using Markov’s inequality, it
follows that

P[P⃗m(L) ∈ U⃗basic(H)] ≥ P
[
Y ≥ α5

57
X

]
= 1− P

[
X −Y >

(
1− α5

57

)
X

]
≥ 1− 1− (α5/56)

1− (α5/57)
≥ ρ,

which means U⃗basic(H) is (ρ,m)-inherited from T basic(H,C).
Thus, we have

P[L ∈ T basic(H,C)] ≤ exp(2n log2 n)P[R⃗ ∈ U⃗basic(H)] ≤ exp(−Ω(ε3n2)),

where the first inequality follows by Lemma 4.7, and the second inequality follows by (11.1).
Recalling our choice of H, Fact 9.4(2) implies that

P[L ∈ T basic(H, C)] ≤ exp(−Ω(ε3n2)),

as desired. □

Now we prove Lemma 11.21, separately considering types 1 and 2, and types 3 and 4.

Proof of Lemma 11.21 for types t = 1 and t = 2. Recall that Q1 and Q2 have the following forms.

c1 c2 c3
r∗1
r2 s2 s1 s3
r3 s3 s2

c1 c2 c3
r∗1
r2 s1 s2 s3
r3 s3 s2

If t = 1, we take our ordering π to be

e1 = (r3, c3, s2), e2 = (r2, c3, s3), e3 = (r3, c2, s3), e4 = (r2, c2, s1), e5 = (r2, c1, s2).

If t = 2, we take our ordering π to be

e1 = (r3, c3, s2), e2 = (r2, c3, s3), e3 = (r3, c2, s3), e4 = (r2, c2, s2), e5 = (r2, c1, s1).

Fix t ∈ {1, 2} and let R∗ be a set of rows with |R∗| = ℓ. Among all the π-consistent embed-
dings ϕ(Qt) of Qt into H ∩ R⃗ which satisfy ϕ(r∗1) ∈ R∗, let N be the number of possibilities for
(ϕ(r∗1), ϕ(c1), ϕ(c2), ϕ(s1), ϕ(s2)). Then, N is an upper bound on the number of type-t basic threatened
pairs in H ∩ R⃗ which are π-consistent with R⃗.
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We first reveal R⃗[0, 1/5], which has αn2/5 entries. Each of them is present in H with probability ε
independently. Thus, by a Chernoff bound, with probability 1 − exp(−Ω(εn2)), there are at most εn2

many viable choices for ϕ(e1) (and therefore (ϕ(r3), ϕ(c3), ϕ(s2))). Assume this is the case.
Next, we reveal H ∩ R⃗[1/5, 3/5]. For each choice of (ϕ(r3), ϕ(c3), ϕ(s2)), there are at most n choices

for ϕ(e2) in column ϕ(c3) of R⃗[1/5, 2/5]. This determines ϕ(r2) and ϕ(s3), and then there is at most one
occurrence of ϕ(s3) in row ϕ(r3) of R⃗[2/5, 3/5], determining ϕ(c2). This makes a total of at most εn3

choices for (ϕ(r2), ϕ(r3), ϕ(c2), ϕ(c3), ϕ(s2), ϕ(s3)).
Let S be the set of all possible choices for (ϕ(r2), ϕ(c1), ϕ(c2), ϕ(s1), ϕ(s2)) at this stage, so we

have |S| ≤ εn5 (there are at most n2 choices for (ϕ(c1), ϕ(s1))). Let S4 ⊆ S be the set of all
(ϕ(r2), ϕ(c1), ϕ(c2), ϕ(s1), ϕ(s2)) ∈ S for which ϕ(e4) is an edge of H ∩ R⃗[3/5, 4/5], and let S5 ⊆ S4

be the set of all such tuples for which ϕ(e5) is an edge of H ∩ R⃗[4/5, 1]. Note that N ≤ ℓ|S5| (there are
at most ℓ choices for ϕ(r∗1) ∈ R∗).

We next consider H ∩ R⃗[3/5, 4/5]. We claim that |S4| ≤ ε2n4 with probability 1 − exp(−Ω(ε2n2)).
To see this, first note that, by Lemma 5.3, it suffices to prove an analogous bound with H ∩ G ∼
G(3)(n, (2εα/5)/n) in place of H ∩ R⃗[3/5, 4/5], where G ∼ G(3)(n, 2(α/5)/n). But this is a direct
consequence of Corollary 3.2, since each potential entry ϕ(e4) is present in H ∩ G with probability at
most 2εα/(5n), and appears in at most n2 tuples in S.

Reveal an outcome of H ∩ R⃗[3/5, 4/5] satisfying |S4| ≤ ε2n4. We next consider H ∩ R⃗[4/5, 1]: we
claim that |S5| ≤ ε3n3 with probability 1 − exp(−Ω(ε3n2)). The proof is basically as before: first note
that it suffices to prove an analogous bound with H∩G ∼ G(3)(n, (2εα/5)/n) in place of H∩ R⃗[4/5, 1],
and then the desired result follows from Corollary 3.2 (noting that each potential entry ϕ(e5) appears in
at most n tuples in S4, since such a tuple is determined by a choice of ϕ(e4) in the same row).

We have proved that the number of type-t basic threatened pairs in H ∩ R⃗ which are π-consistent
with R⃗ is at most N ≤ ℓ|S5| ≤ ε3n3ℓ, with probability at least 1− exp(−Ω(ε3n2)). A union bound over
all (at most 2n) choices of R∗ finishes the proof. □

Proof of Lemma 11.21 for types t = 3 and t = 4. Recall that Q3 and Q4 have the following forms.

c1 c2 c3
r∗1 s3
r2 s1 s2
r3 s3 s2

c1 c2 c3
r∗1 s3
r2 s2 s1
r3 s3 s2

If t = 3, we take our ordering π to be

e1 = (r3, c3, s2), e2 = (r∗1 , c3, s3), e3 = (r3, c2, s3), e4 = (r2, c2, s2), e5 = (r2, c1, s1).

If t = 4, we take our ordering π to be

e1 = (r3, c3, s2), e2 = (r∗1 , c3, s3), e3 = (r3, c2, s3), e4 = (r2, c2, s1), e5 = (r2, c1, s2).

Fix t ∈ {3, 4} and let R∗ be a set of rows with |R∗| = ℓ. Among all the π-consistent embed-
dings ϕ(Qt) of Qt into H ∩ R⃗ which satisfy ϕ(r∗1) ∈ R∗, let N be the number of possibilities for
(ϕ(r∗1), ϕ(c1), ϕ(c2), ϕ(s1), ϕ(s2)). Then, N is an upper bound on the number of type-t basic threatened
pairs in H ∩ R⃗ which are π-consistent with R⃗.

The first part is exactly the same as the previous proof: we first reveal R⃗[0, 1/5], which has αn2/5
entries. By a Chernoff bound over the randomness of H, with probability 1 − exp(−Ω(εn2)), there are
at most εn2 many viable choices for ϕ(e1) (and therefore (ϕ(r3), ϕ(c3), ϕ(s2))). Assume this is the case.

Next, we reveal H ∩ R⃗[1/5, 3/5]. The numbers are slightly different than in the last proof: for each
choice of (ϕ(r3), ϕ(c3), ϕ(s2)), there are at most ℓ choices for ϕ(e2) in column ϕ(c3) of R⃗[1/5, 2/5] (in a row
in R∗). This determines ϕ(r∗1) and ϕ(s3), and then there is at most one occurrence of ϕ(s3) in row ϕ(r3)

of R⃗[2/5, 3/5]. This makes a total of at most εn2ℓ choices for (ϕ(r∗1), ϕ(r3), ϕ(c2), ϕ(c3), ϕ(s2), ϕ(s3)).
Let S be the set of all possible choices for (ϕ(r∗1), ϕ(r2), ϕ(c1), ϕ(c2), ϕ(s1), ϕ(s2)) at this stage, so we

have |S| ≤ εn5ℓ (there are at most n3 choices for (ϕ(r2), ϕ(c1), ϕ(s1))). Let S4 ⊆ S be the set of all
(ϕ(r∗1), ϕ(r2), ϕ(c1), ϕ(c2), ϕ(s1), ϕ(s2)) ∈ S for which ϕ(e4) is an edge of H∩R⃗[3/5, 4/5], and let S5 ⊆ S4

be the set of all such tuples for which ϕ(e5) is an edge of H ∩ R⃗[4/5, 1]. Note that N ≤ |S5|.
The end of the proof is similar to before. We next consider H∩R⃗[3/5, 4/5]: we claim that |S4| ≤ ε2n4ℓ

with probability 1−exp(−Ω(ε2n2)). To see this, we first note that it suffices to prove an analogous bound
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with H ∩G ∼ G(3)(n, (2εα/5)/n) in place of H ∩ R⃗[3/5, 4/5], and then the desired result follows from
Corollary 3.2, noting that each potential entry ϕ(e4) appears in at most n2ℓ tuples in S.

Finally we consider H ∩ R⃗[4/5, 1]: we claim that |S5| ≤ ε3n3ℓ with probability 1 − exp(−Ω(ε3n2)).
Again, we first note that it suffices to prove an analogous bound with H ∩ G ∼ G(3)(n, (2εα/5)/n) in
place of H∩ R⃗[4/5, 1], and then the desired result follows from Corollary 3.2 (noting that each potential
entry ϕ(e5) appears in at most nℓ tuples in S4, since such a tuple is determined by a choice of ϕ(e4) in
the same row, and a choice of ϕ(r∗1)).

We then finish with a union bound over choices of R∗, as before. □

12. Concluding remarks

In this paper we have proved (a generalisation of) Cameron’s conjecture, describing the joint distri-
bution of the number of odd row/column/symbol permutations in a random n× n Latin square. There
are various directions for further research, as follows.

• Can quantitative aspects be improved? For example, in Theorem 1.3(4), we see that the total
variation error of our approximation is o(1). Actually, our proof gives an error of n−1/2+o(1), and
it seems this can be improved to n−1+o(1) with some additional calculations using the fact that
E[Nrow(L)] = E[Ncol(L)] = E[Nsym(L)] = n/2. However, it seems plausible that the true error
of the approximation might be super-exponentially small.

• What about constrained distributions on Latin squares (e.g. symmetric Latin squares)? We
expect that similar results should hold, but the available enumeration estimates are much weaker.
It might be possible to prove analogues of Theorem 1.3(1) and Theorem 1.3(5) (using the ideas
described in Section 2.4, which have relatively weak quantitative requirements), but new ideas
would be required for the other parts of Theorem 1.3.

• What about analogous questions for higher-dimensional analogues of Latin squares (sometimes
called high dimensional permutations, see e.g. [46])? Here it seems completely new ideas would
be required, because (we predict that) small switchings become rarer as the dimension increases.
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