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Abstract

Consider the sum X(ξ) =
∑n

i=1 aiξi, where a = (ai)
n
i=1 is a sequence of non-zero reals

and ξ = (ξi)
n
i=1 is a sequence of i.i.d. Rademacher random variables (that is, Pr[ξi = 1] =

Pr[ξi = −1] = 1/2). The classical Littlewood–Offord problem asks for the best possible upper
bound on the concentration probabilities Pr[X = x]. In this paper we study a resilience version
of the Littlewood–Offord problem: how many of the ξi is an adversary typically allowed to
change without being able to force concentration on a particular value? We solve this problem
asymptotically, and present a few interesting open problems.

1 Introduction

Let a = (ai)
n
i=1 be a fixed sequence of nonzero real numbers, and for a sequence of i.i.d. (inde-

pendent, identically distributed) Rademacher random variables ξ = (ξi)
n
i=1 (meaning Pr[ξi = 1] =

Pr[ξi = −1] = 1/2), define the random sum

X = Xa(ξ) =
n∑
i=1

aiξi.

Sums of this form are ubiquitous in probability theory. For example, X can be interpreted as

the outcome of an unbiased random walk with step sizes given by a. The central limit theorem

asserts that if the ai are all equal then X asymptotically has a normal distribution. More flexible

variants of the central limit theorem allow the ai to differ to an extent, and give quantitative control

over the distribution of X. An important example is the Berry–Esseen theorem [2, 9], which gives

an estimate for the probability that X lies in a given interval, comparing it to the corresponding

probability for an appropriately scaled normal distribution (we give a precise statement, adapted to

our context, later in the paper). The Berry–Esseen theorem is effective when the ai are of the same

order of magnitude, in which case it can be used to easily deduce the estimate

Pr[X = x] = O

(
1√
n

)
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for any x. Qualitatively, it guarantees that X is unlikely to be concentrated on any particular value

(X is anti-concentrated).

Over half a century ago, in connection with their study of random polynomials, Littlewood and

Offord [13] considered anti-concentration in the general setting where no assumption is made on

a, other than that its entries being nonzero. The classical result of Littlewood and Offord [13]

strengthened by Erdős [6] states that no matter the choice of a ∈ (R \ {0})n, for all x ∈ R we have

Pr[X = x] ≤
(

n

bn/2c

)/
2n = O

(
1√
n

)
,

which is sharp for the sequence a = (1, 1, . . . , 1). This result is particularly remarkable due to the

fact that if one does not assume anything about the ai, then the distribution of X may be far from

normal and Berry–Esseen type bounds may no longer be meaningful.

Erdős’ proof of the above inequality was combinatorial and extremely simple, as follows. First,

we can assume that each ai is positive, because changing the sign of some ai does not affect the

distribution of X. Then, observe that a sign vector ξ ∈ {−1, 1}n can be identified with the subset {i :

ξi = 1} of {1, . . . , n}, and under this identification each fiber X−1(x) = {ξ : X(ξ) = x} corresponds

to a Sperner family1. It then suffices to apply a classical bound for the maximal size of a Sperner

family.

Since the Littlewood–Offord problem was first introduced, many variants of it have been addressed;

one particularly interesting line of research involves the relationship between the structure of a

and the resulting concentration probability maxx Pr[X = x]. Erdős and Moser [7] and Sárközy

and Szemerédi [17] considered the case where the ai are all distinct, and showed that the stronger

bound Pr[X = x] = O
(
n−3/2

)
holds. Halász [11] gave even stronger bounds for sequences which

are “arithmetically unstructured” in an appropriate sense. More recently, Tao and Vu [20, 21] and

Nguyen and Vu [15] investigated the inverse problem of characterizing the arithmetic structure of a

given the concentration probability maxx Pr[X = x].

Many fruitful connections have been found between Littlewood–Offord-type problems and various

areas of mathematics. In particular, Littlewood–Offord-type theorems are essential tools in some

of the landmark results in random matrix theory (see for example [19, 20]). In particular, the

Littlewood–Offord theorem gives an upper bound on the probability that a particular row of a random

±1 matrix is orthogonal to a given vector, and can thus be used (see for example [4, Section 14.2])

to bound the probability that a Bernoulli random matrix is singular.

1.1 Our Results

In this paper we are interested in studying a “resilience” version of the Littlewood–Offord problem.

Given a sequence a ∈ (R\{0})n and a real number x ∈ R, we know that most sequences ξ ∈ {−1, 1}n
do not satisfy the event {X(ξ) = x}. We are interested in understanding whether most sequences ξ

are “far” from this event. In order to make this question precise we need a few definitions. Given

two sequences ξ, ξ′ ∈ {−1, 1}n we define d
(
ξ, ξ′

)
to be the Hamming distance between ξ and ξ′ (that

is, d
(
ξ, ξ′

)
denotes the number of coordinates in which ξ and ξ′ differ). If S ⊂ {−1, 1}n is a subset

of the hypercube we further define d(ξ, S) as the minimum Hamming distance from ξ to a point in

1A Sperner family is a collection of subsets of [n] in which no subset is included in any other. For more details on

Sperner families, the reader is referred to the book of Bollobás [3].
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S. Finally, for a fixed sequence a of non-zero reals and ξ ∈ {−1, 1}n, let us define

Rx(ξ) := Ra
x(ξ) = d

(
ξ, X−1(x)

)
,

which is the minimum number of signs one needs to change in ξ in order to satisfy X = x. (For

completeness, if X = x is impossible then we set Rx(ξ) =∞). We refer to Rx(ξ) as the resilience of

ξ with respect to the event {X 6= x}, and if Rx > k we say ξ is k-resilient.

Given a we define

qk(a) = max
x

Pr[Ra
x(ξ) ≤ k].

as the maximum probability that ξ fails to be k-resilient. We also define pk(n) as the “worst case”

for this probability over all sequences a ∈ (R \ {0})n:

pk(n) = max
a∈{R\{0}}n

qk(a)

Equivalently, pk(n) corresponds to the maximum volume of the k-neighbourhood of a suitable

“Boolean hyperplane” X−1(x) in the hypercube.

An immediate natural question is as follows:

Problem 1.1. Given a non-negative integer k, what is the asymptotic behavior of pk(n) as n→∞?

The Erdős–Littlewood–Offord bound trivially gives

p0(n) = Θ
(
1/
√
n
)
.

Understanding the case k = 1 already has non-trivial implications. In fact, Füredi, Kahn and

Kleitman [10] showed that there are Sperner families whose 1-neighbourhood comprises a constant

proportion of the hypercube, while we will see in Section 4.2 that p1(n) → 0. This demonstrates a

special structural property of “arithmetic” Sperner families of the form X−1(x).

More generally, we believe an especially interesting question is to understand the qualitative

behaviour of pk(n), as a function of k.

Problem 1.2. For which k = k(n) does pk(n)→ 0 as n→∞?

In other words, we are asking for which k we can expect a typical ξ ∈ {−1, 1}n to be k-resilient,

regardless of the choice of x and a. This question is especially compelling in view of the recent

popularity of resilience problems for random graphs (see for example the influential survey of Sudakov

and Vu [18]), and in view of questions asked by Vu [22, Conjectures 7.4-5] concerning the resilience of

the singularity of random matrices. Specifically, Vu asked how many entries of a random ±1 matrix

one has to change (“globally” or “locally”) to make it singular; due to the connection between the

Littlewood–Offord problem and singularity of random matrices, these conjectures were our initial

motivation to investigate the questions treated in this paper.

Before stating our results, we compute the typical resilience for a few simple illustrative specific

choices of a and x.

Example 1.3. Consider the case a = (1, . . . , 1), and for simplicity assume n is even. One can easily

derive that for all even x we have

Pr[X = x] =

(
n
n+x
2

)
2−n.

Standard binomial estimates show that with (say) 99% certainty we have |X| = Θ(
√
n). Noting that

R0 = |X|/2, we typically have R0 = Θ(
√
n).
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Example 1.4. Let us next consider the sequence a = (1, 2, . . . , n). Since all the ai are distinct, it

follows from the result of Sárközy and Szemerédi [17] that q0(a) = O
(
n−3/2

)
. Moreover, changing

k signs of ξ can increase or decrease X by no more than kn, so there are at most 2kn + 1 ways to

affect X by changing k signs. Therefore, as long as kn = o(n3/2) (that is, k = o(n1/2)), the union

bound shows that for any x, typically Rx ≥ k.

Example 1.5. Take a =
(
1, 2, 4, . . . , 2n−1

)
. Note that X can take 2n different values (the odd

integers between−2n and 2n). This of course leads to the minimum possible concentration probability

maxx Pr[X = x] = 2−n. Each x in the support of X can be obtained by exactly one ξ, so Rx has

the binomial distribution Bin(n, 1/2) and is tightly concentrated around n/2 by a large deviation

inequality for the binomial distribution (see for example [12, Theorem 2.1]).

We can see from the above three examples that the type of additive structure influencing the

concentration probability does contribute somewhat to the typical resilience. However, the following

example shows that the typical resilience can be much more strongly influenced by small subsequences

of a.

Example 1.6. Let k be the minimal integer such that k ≥ log2 n and n − k is odd. Define a by

a1 = · · · = an−k = 1 and an−k+i = 2i−1. For any ξ, modifying at most k coordinates we can make∑k
i=1 ξn−k+ian−k+i equal to any odd number between −n and n, so in particular we can make it

equal to −
∑n−k

i=1 ξiai, so that X = 0. This means R0 = O(log n) (with probability 1).

Somewhat surprisingly, there is a sequence which typically results in significantly lower resilience

than Example 1.6.

Theorem 1.7. There exists a sequence a ∈ (R \ {0})n such that for any fixed ε > 0, a.a.s.2 R0(ξ) ≤
(1 + ε) log3 log n. (That is to say, for k ≥ (1 + ε)) log3 log n, we have pk → 1).

The crux of Example 1.6 was the fact that one can form all non-negative integers less than 2k

with sums of subsets of
{

1, 2, 4, . . . , 2k−1
}

. In other words,
{

1, . . . , 2k−1
}

is an additive basis of{
0, 1, 2, . . . , 2k − 1

}
. The proof of Theorem 1.7, which we defer to Section 3, involves a more efficient

additive basis construction, using an idea from a 1937 paper of Rohrbach [16].

We are also able to prove that Theorem 1.7 is in fact optimal, essentially answering Problem 1.2.

Theorem 1.8. For any fixed ε > 0, any a ∈ (R \ {0})n and any x ∈ R, a.a.s. Rx(ξ) ≥ (1 −
ε) log3 log n. (That is to say, for k = (1− ε) log3 log n, we have pk → 0).

We prove Theorem 1.8 in Section 2.

As for Problem 1.1, for each fixed k we are able to find the asymptotics of pk(n) up to a polylog-

arithmic factor, as stated in the next theorem.

Theorem 1.9. We have

p1 = Θ
(
n−1/6

)
,

and for any fixed k ≥ 2,

pk(n) = n−1/(2×3
k) logO(1) n.

2By “asymptotically almost surely”, or “a.a.s.”, we mean that the probability of an event is 1− o(1). Here and for

the rest of the paper, asymptotics are on n→∞.
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1.2 Notation

For a set of indices I ⊆ [n] define

XI(ξ) =
∑
i∈I

aiξi

to be the “part” of X corresponding to I.

We use standard asymptotic notation throughout. For functions f = f(n) and g = g(n) we write

f = O(g) to mean there is a constant C such that |f | ≤ C|g|, we write f = Ω(g) to mean there

is a constant c > 0 such that f ≥ c|g|, we write f = Θ(g) to mean that f = O(g) and f = Ω(g),

and we write f = o(g) or g = ω(f) to mean that f/g → 0. All asymptotics are taken as n → ∞.

Also, for a real number x, the floor and ceiling functions are denoted bxc = max{i ∈ Z : i ≤ x} and

dxe = min{i ∈ Z : i ≥ x}. For a positive integer i, we write [i] for the set {1, 2, . . . , i}. Finally, all

logarithms are base 2, unless specified otherwise.

1.3 Structure of the paper

The structure of the paper is as follows. In Section 2 we give a lower bound on typical re-

silience (proving Theorem 1.8), in Section 3 we construct a sequence with low resilience (proving

Theorem 1.7), and in Section 4 we estimate the asymptotics of pk(n) (proving Theorem 1.9).

2 Lower bound for typical resilience

In this section we prove Theorem 1.8. The heart of the proof is the following recurrence relation

for pk(n).

Lemma 2.1. Let k ∈ N and let f := f(n) → ∞ be any function satisfying (k + 1)f2 log n < n.

Then, for some constant C,

pk(n) ≤
k∑
`=1

(
4(k + 1)f2 log n

)`
max
n′

pk−`
(
n′
)

+ C(k/f + 1/n),

where the maximum is over all n′ satisfying 0 ≤ n− n′ ≤ 4(k + 1)f2 log n.

We remark that Lemma 2.1 is also used in the proof of Theorem 1.9.

2.1 Proof of Lemma 2.1

Before giving the details of the proof of Lemma 2.1, we give a brief outline of the ideas. Intuitively,

we expect X to typically have order of magnitude about its standard deviation (which is
√∑

i a
2
i ).

If this is much larger than any individual ai then we expect the resilience R0 to be large, as flipping

a sign in ξ has a relatively small impact on X. Therefore (as already suggested by Example 1.6), it

is important to distinguish those ai that are “abnormally large”, and consider them separately.

So, the proof of Lemma 2.1 starts by isolating “large” ai such that a2i is almost as large as the

sum of the squares of all aj ≤ ai (here “almost as large” is parameterized by the function f). If

there are many such ai, then for similar reasons as in Example 1.5 the resilience is very likely to be

high. We can therefore assume that there are a small quantity of such ai; we need to give an upper

bound on the probability of being able to make X = x with up to k sign changes.
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First consider the case where ` ≥ 1 of the k changes are made on the “large” numbers. Because

there are few such numbers, it is not too wasteful to take the union bound over each possible way to

make these changes. Then, we can recursively bound the probability that we can make X = x with

at most k − ` further changes to the “small” numbers.

Otherwise, if none of the sign changes are made on “large” numbers, then as we have already

explained, the typical size of X is larger than one can “cancel out” without making a large number

of sign flips, so the resilience is high. We will rigorously establish this fact using the Berry–Esseen

theorem, as follows (this version of the Berry–Esseen theorem immediately follows from the statement

in [9]).

Theorem 2.2. For X =
∑n

i=1 aiξi as in the introduction, let σ2 =
∑n

i=1 a
2
i be the variance of X, and

let ρ =
∑n

i=1|ai|
3. Let Φ be the cumulative distribution function of the standard normal distribution.

Then, ∣∣∣∣Pr

[
X

σ
≤ x

]
− Φ(x)

∣∣∣∣ = O
( ρ
σ3

)
.

Now we give the details of the proof of Lemma 2.1.

Proof of Lemma 2.1. Fix k > 0 and a. Note that we may assume that all the ai are non-negative, as

changing signs of any subset of the ai does not change the distribution of X. Moreover, by relabeling

if necessary, we can assume that

0 ≤ a1 ≤ · · · ≤ an.

We denote partial sums of squares as follows:

σ2i =
i∑

j=1

a2j .

Now, let i1 := n > i2 > . . . > it be a longest subsequence of indices for which the following properties

hold for all j < t:

1. aij ≥ 2aij+1 , and

2. for all i > ij+1 we have aij < 2ai.

Note that Property 1 forces all possible signed sums of the aij to be distinct (that is, X{i1,...,it}
takes 2t different values). Maximality and Property 2 imply that ai > ait/2 for all i ∈ [n].

If t is large, then the atom probabilities are small, and therefore the resilience is high. We

summarize this in the following claim.

Claim 2.3. If t > (k + 1) log n then qk(a) < 1/n.

Proof. Let I = {ij : j ≤ t} and condition on the outcomes of the ξj , j /∈ I. The random variable X

can then take 2t different values, each occurring with probability 2−t. This means that, uncondition-

ally, the probability that X is equal to any particular value is at most 2−t. Now, there are at most

nk ways to change up to k of the ξi, and given a particular choice of indices at which to perform

changes, the resulting sequence ξ′ has the same distribution as ξ. Therefore, the probability that

X(ξ′) is equal to any particular value after this change is still at most 2−t, so by the union bound

qk(a) ≤ nk2−t < 1/n as desired.
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From now on we assume that t ≤ (k + 1) log n. Let τ be the first j for which aij ≤ σij/f . (If

there is no such j, we set τ = ∞). This condition defining τ is chosen so that we will later be able

to control X[iτ ] via the Berry–Esseen theorem. In the following claim we show that τ < ∞ and

moreover that [iτ ] comprises most of [n].

Claim 2.4. We have τ ≤ t and n− iτ ≤ 4(k + 1)f2 log n.

Proof. Note that for any j with aij > σij/f we have∣∣∣{i :
aij
2
< ai ≤ aij

}∣∣∣ ≤ 4f2.

Indeed, otherwise we would have the contradiction

σ2ij > 4f2
(aij

2

)2
= (f aij )

2 > σ2ij .

If we were to have τ = ∞ this would mean aij > σij/f for all j ≤ t. Therefore, this would lead

to the contradiction

n =
∣∣∣{i : ai >

ait
2

}∣∣∣ =
t∑

j=1

∣∣∣{i :
aij
2
< ai ≤ aij

}∣∣∣ ≤ 4f2t ≤ 4f2(k + 1) log n < n.

Similarly, we have

n− iτ =
∣∣∣{i : ai >

aiτ−1

2

}∣∣∣ =
τ−1∑
t=1

∣∣∣{i :
ait
2
< ai ≤ ait

}∣∣∣ ≤ 4f2t ≤ 4(k + 1)f2 log n.

Now, let n′ = iτ , let J = [n′] and let I = [n]\J . For each 0 ≤ ` ≤ k we will consider the case

where we change exactly ` elements of ξ|I , and we will then take a union bound over all `.

For ` > 0, there are at most
(
4(k + 1)f2 log n

)`
ways to modify ` elements of ξ|I . For each such

possibility, we can condition on the modified value of ξ|I (therefore on XI(ξ)), and for any x the

probability that we will be able to make XJ = x−XI with our remaining k − ` modifications is at

most pk−`(n
′) by induction. Therefore, the probability we can make X = x while modifying at least

one element of ξ|I is at most
k∑
`=1

(
4f2(k + 1) log n

)`
pk−`

(
n′
)
.

It remains to consider the possibility that we do not modify ξ|I at all. Again, condition on ξ|I
(therefore on XI). Note that

∑
i∈[iτ ] a

3
i ≤ σ2iτaiτ , so by the Berry–Esseen theorem (Theorem 2.2),

with Z having the standard normal distribution,

Pr[|XJ +XI − x| ≤ kσiτ /f ] = Pr[|Z + (XI − x)/σiτ | ≤ k/f ] +O(aiτ /σiτ )

≤ Pr[|Z| ≤ k/f ] +O(aiτ /σiτ )

= O(k/f).

Note that by changing k elements in ξ|J we can change the value of X by at most kaiτ , which is

not greater than kσiτ /f by the choice of τ . So, the probability that we can make X = x without

modifying ξ|I at all is O(k/f). By combining all the above bounds, we obtain the desired result.

7



2.2 Proof of Theorem 1.8

Finally, we show how to deduce Theorem 1.8 from Lemma 2.1.

Proof of Theorem 1.8. Let δ > 0 be a small constant and let c = 3 + δ. We prove that pk ≤ n−c
−k−1

for k ≤ log3+2δ log n and sufficiently large n, from which the theorem statement will follow. (In this

section all asymptotics are uniform over k ≤ log3+2δ log n). We prove our desired bound on pk by

induction on k. For k = 0, as mentioned in the introduction, the Erdős–Littlewood–Offord theorem

gives

p0 = Θ(n−1/2) ≤ n−c−1
.

Next, consider some 0 < k ≤ log3+2δ log n and suppose pk′ ≤ n−c
−k′−1

for all k′ < k. Observe that

ck ≤ (3 + δ)log3+δ logn/ log3+δ(3+2δ) = (log n)1−a,

for some constant 0 < a < 1 depending on δ, and let f = nc
−k/3 ≥ exp((log n)a/3). For some

n′ ≥ n− 4(k + 1)f2 log n = n− o(n), Lemma 2.1 says that

pk ≤
k∑
`=1

(
4(k + 1)f2 log n

)`
pk−`

(
n′
)

+O(k/f + 1/n).

Observe that k/f + 1/n = o
(
n−c

−k−1
)

and log(n− o(n)) = log n+ o(1), so it follows that

pk ≤
k∑
`=1

(
n2c
−k/3 log2 n

)`
exp
(
−c−k+`−1(log n+ o(1))

)
+ o
(
n−c

−k−1
)
.

Now, recalling that ck ≤ (log n)1−a, for 1 ≤ ` ≤ k we have(
n2c
−k/3 log2 n

)`
exp
(
−c−k+`−1(log n+ o(1))

)
= exp

(
c−k−1 log n

(
2c

3
`+

2ck+1 log logn

log n
`− c`(1 + o(1/ log n))

))
= exp

(
−c−k−1 log n

(
c` − 2c

3
`+ o(1)

))
= exp

(
−c−k−1 log n

( c
3

+ o(1)
))
.

(We have used the fact that c` − (2c/3)` ≥ c− (2c/3) = c/3 for ` ≥ 1 and c ≥ 2). Consequently,

pk ≤ k exp
(
−
( c

3
+ o(1)

)
c−k−1 log n

)
+ o
(
n−c

−k−1
)

= o
(
n−c

−k−1
)
.

This concludes the proof of the desired bound on pk, and it follows that if k = log3+2δ log n then

pk ≤ n−c
−k−1

= exp
(
−c−1c−k log n

)
= o(1).

In particular, since δ is arbitrary it follows that for any ε > 0, a ∈ (R \ {0})n and x ∈ R, a.a.s.

Rx > (1− ε) log3 log n.
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3 A sequence with low typical resilience

In this section we prove Theorem 1.7 by constructing a sequence a such that a.a.s. R0 =

(1 + o(1)) log3 log n.

Let X =
∑n

i=1 aiξi as in the introduction. To construct a sequence a that results in low typical

resilience, we are looking to improve on the idea of Example 1.6. We start with the “nicely behaved”

sequence a = (1, 1, . . . , 1), and we look to “plant” a small subset B in a which allows us to “cancel

out” the typical outcomes of X. This leads us to consider the following notion.

3.1 Additive bases

An order-h additive basis of [n] is a subset B ⊆ [n] such that for each x ∈ [n], there are distinct

b1, . . . , bt ∈ B, t ≤ h, with x = b1 + · · · + bt. As an easy example, the reader may note that the

key part of the sequence in Example 1.6 was the additive basis {1, 2, 22 . . . , 2dlogne−1} of [n], which

is of order dlog ne. In order to improve on Example 1.6 and prove Theorem 1.7, we wish to include

a lower-order additive basis in our sequence a.

The critical issue with this idea is that our additive basis must be part of the sequence a itself,

and therefore it contributes to the behaviour of the typical sum. For example, if we define a by

taking a sequence of n′ “1”s and combining it with a low-order additive basis of [n′], then due to

the extra “weight” of the additive basis, X can take values (much) larger than n′, which are not

“covered” by the additive basis. This issue was circumvented in Example 1.6 because the size of the

basis was equal to its order: we were able to control each element in the basis with our k = Θ(log n)

changes.

In order to minimize the impact of including an additive basis in a, we need an additive basis

with small sum of squares. (Recall that the variance of X is
∑n

i=1 a
2
i , and this controls the typical

size of |X|). Let vh(n) be the minimum sum of squares of an order-h additive basis of [n]. That is,

vh(n) = min

{∑
b∈B

b2 | B is an order-h additive basis of [n]

}
.

In the following lemma we provide an upper bound on vh(n).

Lemma 3.1. For h ≥ 1 we have

vh(n) ≤ 10hn2+2/(3h−1).

Our proof of Lemma 3.1 uses an inductive construction closely resembling a construction of

Rohrbach [16].

Proof. The proof is by induction on h. For the base case, h = 1, one can take B = {1, . . . , n}. Note

that indeed we have
n∑
i=1

i2 ≤ n3 ≤ 101n2+2/(31−1).

Next, consider h > 1 and assume that for all n we have

vh−1(n) ≤ 10h−1n2+2/(3h−1−1).

For what follows it will be convenient to use the identity

2 + 2/(3h − 1) = 2× 3h/(3h − 1). (3.1)

9



Set

m =
⌈
n2×3

h−1/(3h−1)
⌉

and consider an order-(h− 1) additive basis B′ of [bn/mc] with sum of squares vh−1(bn/mc).
Now, let us define m ·B′ = {mb : b ∈ B′}, and note that B = [m]∪ (m ·B′) is an order-h additive

basis of [n]. Indeed, for any x = mq + r (with q ≤ bn/mc and 1 ≤ r ≤ m), there are b1, . . . , bt ∈ B′
with t ≤ h − 1 and b1 + · · · + bt = q. Then, note that each mbi ∈ B, and r ∈ B, so we can write

x = mb1 + · · ·+mbt + r, which is a sum of at most h elements. So, we have

vh(n) ≤ m3 +m2vh−1(bn/mc).

Now, observe that n ≤ m(3h−1)/(2×3h−1). Using (3.1),(
3h − 1

2× 3h−1
− 1

)(
2 +

2

3h−1 − 1

)
=

(
3h − 1

2× 3h−1
− 1

)(
2× 3h−1

3h−1 − 1

)
=

3h − 1− 2× 3h−1

3h−1 − 1
= 1

so the induction hypothesis gives vh−1(bn/mc) ≤ 10h−1m. Therefore, vh(n) ≤ (10h−1+1)m3. Noting

that dxe ≤ 2x for x ≥ 1, and again using (3.1),

vh(n) ≤ 8(10h−1 + 1)n2×3
h/(3h−1) ≤ 10hn2+2/(3h−1).

This completes the proof.

3.2 Proof of Theorem 1.7

Recall that the key idea for our construction is to “plant” an additive basis of an appropriate order,

with low sum-of-squares, in the all-1 sequence. Note that for k = log3 log n we can use Lemma 3.1 to

find an order-k additive basis of [n] with sum-of-squares O(10kn2) = n2 logO(1) n. A variance bound

of σ2 = n2 logO(1) n is enough to prove that a.a.s. |X| ≤ n logO(1) n, but is not quite enough to prove

that a.a.s. |X| ≤ 2n, which we need for the additive basis of [n] to be effective. We can address

this issue by additionally including a very small number of large powers of 2 in our sequence; by

modifying the corresponding signs we will be able to make |X| ≤ 2n. A second consideration is the

fact that changing a sign increases X if the sign was negative and decreases X if the sign was positive.

In order to guarantee that we can a.a.s. use our additive basis to adjust X in either direction, we

can include many repetitions of the elements of our basis (so that a.a.s. there will be a copy of each

element with a positive sign and with a negative sign). These basic ideas are enough for a sequence

with typical resilience O(log log n), but to optimize our construction for the asymptotically lowest

possible resilience requires some additional technical details. In particular we include in our sequence

two different additive bases of different orders, each with different amounts of repetition.

Proof of Theorem 1.7. Consider small ε > 0 and let

h =
⌈
log3−ε log n

⌉
, h′ =

⌈
log3−ε log logn

⌉
, r =

⌈
log log2 log n

⌉
.

We will construct a sequence a such that a.a.s. R0 ≤ h+ h′ + r.

10



Fix an order-h additive basis B of
[⌈
n/ log2 n

⌉]
with sum of squares

∑
b∈B

b2 = O

(
10h
(
n/ log2 n

)2+2/(3h−1)
)

= o
(
n2/ log n

)
(note that 10h = o(log3 n) for small ε), and similarly fix an order-h′ additive basisB′ of

[⌈
log2 n/ log2 log n

⌉]
with sum of squares

o
(
log4 n/ log logn

)
.

Note that |B| = o(n/ log n) and |B′| = o(log2(n)/ log logn).

Now, define a by combining:

• dlog ne copies of each b ∈ B (let I be the corresponding set of indices of a);

•
⌈
log log2 n

⌉
copies of

⌈
n/ log2 n

⌉
b for each b ∈ B′ (let J be the corresponding set of indices);

• the numbers m, 2m, . . . , 2r−1m for m =
⌈
n/ log2 n

⌉⌈
log2 n/ log2 log n

⌉
(let K be the correspond-

ing set of indices);

• n − r − |B|dlog ne − |B′|
⌈
log log2 n

⌉
copies of the number “1” (let L be the corresponding set

of indices).

Also, if necessary change one of the “1”s in the final bullet point to a “2” to ensure that
∑n

i=1 ai is

even. (This guarantees that X is always even).

Now, consider some b ∈ B and let Ib be the set of indices corresponding to the copies of b in a.

Note that

Pr[ξ|Ib = (1, . . . , 1)] = Pr[ξ|Ib = (−1, . . . ,−1)] ≤ 2− logn =
1

n
= o

(
1

|B|

)
.

So, by the union bound, a.a.s. for each b ∈ B there is at least one copy of b associated with a

negative sign and one associated with a positive sign. Similarly, a.a.s. for each b ∈ B′ there is a

negative and positive copy of
⌈
n/ log2 n

⌉
b. In what follows we assume both these properties hold.

Next, note that

σ2I = O(log n)o
(
n2/ log n

)
= o
(
n2
)
,

σ2J = O(log log n)O
((
n/ log2 n

)2)
o
(
log4 n/ log log n

)
= o
(
n2
)
,

σ2L ≤ n,

so σ2I∪J∪L = o(n2) and by Chebyshev’s inequality, a.a.s. |XI∪J∪L| ≤ 2n. Assuming this, by

modifying ξ|K we can make |X| ≤ 2m. Then, there are b1, . . . , bt ∈ B′ with t ≤ h′ and
∑t

i=1 ξibi =⌈
|X/2|/

⌈
n/ log2 n

⌉⌉
, and we can therefore make |X| ≤ 2

⌈
n/ log2 n

⌉
by changing a further t ≤ h′ signs

in ξ|J . Finally, there are b1, . . . , bs ∈ B with s ≤ h and
∑h

i=1 ξibi = |X/2|, so we can make X = 0 by

changing s ≤ h signs in ξ|I . This completes the proof.

4 Asymptotics of pk(n)

In this section we prove Theorem 1.9. We stress that throughout this section, k is fixed.

11



4.1 Upper bounds

The upper bound pk(n) ≤ n−1/(2×3
k) logO(1) n follows immediately from Theorem 2.1, using a

similar (but much simpler) induction argument to the one used to prove Theorem 1.8, as follows.

Proof. For k = 0, as mentioned in the introduction, the Erdős–Littlewood–Offord theorem gives

p0 = Θ(n−1/2) = Θ(n−1/(2×3
0)).

For k > 0, suppose pk′ ≤ n
−1/

(
2×3k′

)
logO(1) n for k′ < k. Let f = n1/(2×3

k). Then, using Lemma 2.1,

pk ≤
k∑
`=1

(
4f2(k + 1) log n

)`
pk−`(n− o(n)) +O(k/f + 1/n)

≤
k∑
`=1

n`/3
k
n−1/(2×3

k−`) logO(1) n+O(n−1/(2×3
k))

≤
k∑
`=1

n−(3
`−2`)/(2×3k) logO(1) n+O(n−1/(2×3

k))

≤ n−1/(2×3k) logO(1) n.

This completes the proof.

For the tight upper bound p1(n) = O(n−1/6) we will use Sárközy and Szemerédi’s theorem (men-

tioned in the introduction) which asserts that if a has distinct elements, then

Pr[X = x] = O
(
n−3/2

)
.

Proof of the upper bound on p1(n). Fix any a, x. Suppose there are g distinct values in a, so there

are at most 2g different ways to affect X by flipping a sign. Just as in the proof of Claim 2.3, for

any particular choice of index at which to perform a flip, the resulting sequence ξ′ has the same

distribution as ξ, so the probability that X(ξ′) = x after the change is O(n−1/2) by the Erdős–

Littlewood–Offord theorem. The union bound over all possible ways to make one flip (or no flips)

then gives

Pr[Rx ≤ 1] = O
(
gn−1/2

)
. (4.1)

Alternatively, let ai1 , . . . , aig give a representative for each distinct value and let I = {i1, . . . , ig}.
Conditioning on ξ|[n]\I and similarly using Sárközy and Szemerédi’s theorem and the union bound,

Pr[Rx ≤ 1] = O
(
g × g−3/2

)
= O

(
g−1/2

)
. (4.2)

No matter the value of g, one of (4.1) or (4.2) gives Pr[Rx ≤ 1] = O
(
n−1/6

)
(if g ≤ n1/3 then use

(4.1), otherwise use (4.2)). This completes the proof.
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4.2 Lower bounds

First we prove the general lower bound pk(n) ≥ n−1/(2×3k) logO(1) n.

Proof. Let

σI =

√∑
i∈I

a2i , ρI =
∑
i∈I

a3i ,

and define σ = σ[n] and ρ = ρ[n], for use with the Berry–Esseen theorem (Theorem 2.2). The

proof proceeds in a similar way to Theorem 1.7, as follows. Let g = (εn/ log n)1/(2+2/(3k−1)) =

n1/2−1/(2×3
k) logO(1) n, for some small ε > 0 to be determined (where useful for clarity, asymptotic

notation will be uniform over ε). Using Lemma 3.1 fix an order-k additive basis B of [g] with sum

of squares ∑
b∈B

b2 = Θ
(
g2+2/(3k−1)

)
.

Define a by combining d2 log ne copies of each b ∈ B (let I be the corresponding set of indices in a),

and padding the remaining n − |B|d2 log ne entries with “1”s. As in Section 3, if necessary we can

change a “1” to a “2” to ensure that
∑n

i=1 ai is even, and we can show that a.a.s. for each b ∈ B
there is at least one copy of b associated with a negative sign and one associated with a positive sign.

Assume this holds.

Now, we have σ2I = Θ
(
g2+2/(3k−1) log n

)
and σ2 = n − g + σ2I , and since each ai ≤ g, we also

have ρ = n− g+ ρI ≤ n− g+ gσ2I . By the definition of g, this means σ2I = Θ(εn), so σ2 = Θ(n) and

ρ = O(εgn). By the Berry–Esseen theorem (Theorem 2.2), for small enough ε we have

Pr[|X/2| ≤ g] = Θ
( g
σ

)
+O

( ρ
σ3

)
= Θ

(
g√
n

)
−O

(
εg√
n

)
= n−1/(2×3

k) logO(1) n.

Now, if |X/2| ≤ g then there are b1, . . . bt ∈ B, t ≤ k, with
∑t

i=1 bi = |X/2|, and we can therefore

make X = 0 by changing t signs in ξ|I . This completes the proof.

Finally, we prove the sharp bound p1(n) = Ω
(
n−1/6

)
.

Proof. The construction is similar to the one given above (with k = 1), but we include only one copy

of each element in B. Recalling the base case for the induction in the proof of Lemma 3.1, define a

by

a1 = · · · = an−g = 1, an−g+i = i,

where g = (εn)1/3 for some ε > 0 to be determined. (We will be able to choose an appropriate ε

such that
∑n

i=1 ai is even, without having to change a “1” to a “2”). Let J = [n− g] and I = [n] \J .

By the same arguments as above, we have σ2I = Θ(g3) = Θ(εn), σ2 = Θ(n), and ρI , ρ = O(εgn), so

using the Berry–Esseen theorem in the same way as in the last proof gives

Pr[|X/2| ≤ g] = Θ

(
g√
n

)
−O

(
εg√
n

)
= Θ

(
n−1/6

)
.

Similarly, we can use the estimates σ2I , σ
2
J = Θ(n), ρI = O(n4/3) and ρJ = O(n), and the Berry–

Esseen theorem applied to XI and XJ , to show that for large C and any x ∈ R,

Pr
[
|XI | > C

√
n
]
≤ 1/C,
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Pr[|XJ + x| ≤ 2g] = O
(
n−1/6

)
.

So,

Pr
[
|X/2| ≤ g and |XI | > C

√
n
]

=
∑

x:|x|>C
√
n

Pr[|XJ + x| ≤ 2g] Pr[XI = x]

= O
(
n−1/6

) ∑
x:|x|>C

√
n

Pr[XI = x]

= O

(
n−1/6

C

)
.

For large enough C, we therefore have

Pr
[
|X/2| ≤ g and |XI | ≤ C

√
n
]

= Θ
(
n−1/6

)
−O

(
n−1/6

C

)
= Θ

(
n−1/6

)
.

Now, with N = n− g, for any x with N + x even and |x| ≤ 2C
√
n we have

Pr[XJ = x] =

(
N

(N + x)/2

)
/2N

=
Θ(1)

√
N(1 + x/N)(N+x)/2(1− x/N)(N−x)/2

=
Θ(1)

√
N(1− x2/N2)N/2(1 +O(x/N))x/2

=
Θ(1)

√
N(1−O(1/n))O(n)(1 +O(1/x))x/2

= Θ

(
1√
n

)
.

That is to say, the probabilities Pr[XJ = x] differ from each other by at most a constant factor.

Let s(a) = sign(ξn−g+a). Conditioning on any choice of ξ|I such that |XI(ξ)| ≤ C
√
n, we have

Pr
[
|X/2| ≤ g and sign(X) = sign

(
ξn−g+|X/2|

)]
=

∑
a:0≤a≤g

Pr[XJ = 2s(a)a−XI ]

= Θ

 ∑
a:0≤a≤g

Pr[XJ = −2s(a)a−XI ]


= Θ

(
Pr
[
|X/2| ≤ g and sign(X) 6= sign

(
ξn−g+|X/2|

)])
.

So,

Pr
[
|X/2| ≤ g and sign(X) = sign

(
ξn−g+|X/2|

)
and |XI(ξ)| ≤ C

√
n
]

= Θ
(
Pr
[
|X/2| ≤ g and |XI(ξ)| ≤ C

√
n
])

= Ω
(
n−1/6

)
.

But if |X/2| ≤ g and sign(X) = sign
(
ξn−g+|X/2|

)
then we can modify ξn−g+|X/2| to make X = 0.

This completes the proof.
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5 Concluding remarks and open problems

In this paper we have investigated the resilience of the anti-concentration in the Littlewood–Offord

problem. We hope the results and ideas in this paper can be applied to other problems, in particular

to the resilience questions for random matrices raised by Vu [22]. We would like to draw attention

to several interesting open questions.

• It would be interesting if the polylogarithmic error term could be removed from Theorem 1.9.

This problem is analogous to the situation in the Erdős–Moser problem, where Sárközy and

Szemerédi [17] removed a polylogarithmic factor in Erdős and Moser’s original bound. Indeed,

it is due to Sárközy and Szemerédi’s theorem that we could get the right order of magnitude

for p1(n).

• We showed that for some ε → 0, for k ≤ (1− ε) log3 log n, a.a.s. Rx > k for any a, x, and for

k ≥ (1 + ε) log3 log n there is a such that a.a.s. R0 ≤ k. It remains open what the behaviour

is when k is very close to log3 log n. Is there a “sharp threshold” k = k(n) in the sense that

pk → 0 but pk+1 → 1 (or pk+a → 1 for some fixed a)? This would be analogous to the two-point

concentration phenomenon for the chromatic number of random graphs [1]. As pointed out to

us by Joel Spencer, there is also the possibility that there is some f = o(log log n) such that,

if k = log3 log n + λf(n), then pk depends nontrivially on λ. This would be analogous to the

behaviour of the connectivity threshold for random graphs; see [8].

• The constructions used to prove Theorem 1.7 had a very special “layered” structure, and

the proof of the lower bound in Theorem 1.8 seems to indicate that this type of structure is

necessary for the typical resilience to be small. It would be interesting to formalize this idea

in an inverse theorem of some kind, and we suspect such a theorem would be very useful for

the random matrix questions of Vu mentioned in the introduction. An inverse theorem for

Theorem 1.9 would also be interesting: fixing k, what can be said about the structure of a

given maxx Pr[Rx ≤ k]?

• We have considered the setting where X is a linear combination of independent Rademacher

random variables. As suggested to us by Van Vu, one can consider more generally the setting

whereX is a low-degree polynomial. The anti-concentration problem in this setting was initated

by Costello, Tao and Vu [5] in order to study symmetric random matrices, and was further

developed by many authors, most recently by Meka, Nguyen and Vu [14]. Resilience problems

in this setting appear to be more difficult than for the ordinary Littlewood–Offord problem,

and are likely to require new ideas.

We would also like to highlight an alternative construction of a sequence a which results in

Pr[R0 ≤ k] ≥ 99% for k = (1 + o(1)) log log n, due to Svante Janson and Joel Spencer. Let a consist

of all “1”s, except 1000 log(i+ 1) copies of each
√
n/i for 1 ≤ i ≤ n0.2, and 10 log n copies of each j

for 2 ≤ j ≤ n0.3. (If the sum of all these numbers is odd, change a single “1” to a “2”). We give a

sketch proof that this sequence has the claimed property. First observe that

Var(X) = O

n+ n0.9 log n+
n0.2∑
i=1

n

i2
log(i+ 1)

 = O(n),
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so by Chebyshev’s inequality, |X| ≤ L
√
n for some L, with probability at least 99.9%. Also, observe

that with probability at least 99.9% there is a positive and negative sign associated with each distinct

value in a. Indeed, the probability that this fails is at most

2

n0.3n−10 +

n0.2∑
i=1

(i+ 1)−1000

 < 0.1%.

Now, consider an outcome of X satisfying both of these properties. By the divergence of the harmonic

series, there is B such that
∑B

i=1

√
n/B ≥ L

√
n; first make at most B flips among the elements

√
n/i,

for i ≤ B, to obtain |X| <
√
n/B. Then, the key reason we have resilience (1 + o(1)) log log n is

that if 2
√
n/(i + 1) ≤ |X| < 2

√
n/i then flipping a sign to add or subtract 2

√
n/(i + 1) results in

|X| ≤ 2
√
n/(i(i+ 1)). That is to say, if |X| ≈

√
n/i then with one flip we can make |X| ≈

√
n/i2, so

it takes approximately log log n flips to go from |X| ≈
√
n/B to |X| ≈ n0.3, after which we can make

X = 0 with a single flip. We suspect that with some optimization this type of construction could

lead to an alternative proof of Theorem 1.7.

Acknowledgements. We warmly thank Svante Janson and Joel Spencer for giving us permission
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discussions.
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[8] P. Erdős and A. Rényi, On the evolution of random graphs, Publ. Math. Inst. Hungar. Acad.

Sci 5 (1960), 17–61.

[9] C.-G. Esseen, On the Liapounoff limit of error in the theory of probability, Arkiv för Matematik,

Astronomi och Fysik A28 (1942), no. 9, 1–19.

16
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