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Abstract
Consider a quadratic polynomial Q(ξ1, . . . , ξn) of independent Rademacher random variables ξ1, . . . , ξn.
To what extent can Q(ξ1, . . . , ξn) concentrate on a single value? This quadratic version of the classical
Littlewood–Offord problem was popularised by Costello, Tao and Vu in their study of symmetric random
matrices. In this paper, we obtain an essentially optimal bound for this problem, as conjectured by
Nguyen and Vu.

Specifically, if Q(ξ1, . . . , ξn) “robustly depends on at least m of the ξi” in the sense that there is no
way to pin down the value of Q(ξ1, . . . , ξn) by fixing values for fewer than m of the variables ξi, then we
have Pr[Q(ξ1, . . . , ξn) = 0] ≤ O(1/

√
m). This also implies a similar result in the case where ξ1, . . . , ξn

have arbitrary distributions.
Our proof combines a number of ideas that may be of independent interest, including an inductive

decoupling scheme that reduces quadratic anticoncentration problems to high-dimensional linear anticon-
centration problems. Also, one application of our main result is the resolution of a conjecture of Alon,
Hefetz, Krivelevich and Tyomkyn related to graph inducibility.

1 Introduction

Some of the most fundamental theorems in probability theory (and its applications) are concentration in-
equalities, which show that certain types of random variables are likely to lie in a small interval around their
mean. In the other direction, anticoncentration inequalities give upper bounds on the probability that a
random variable falls into a small interval or is equal to a particular value. In this area, one of the most
important directions is the (polynomial) Littlewood–Offord problem. Roughly speaking, the problem is as fol-
lows1. Consider an n-variable polynomial P ∈ R[x1, . . . , xn], and consider independent Rademacher random
variables ξ1, . . . , ξn ∈ {−1, 1} (meaning that Pr[ξi = −1] = Pr[ξi = 1] = 1/2 for each i). What upper bounds
can we prove on the point probabilities of the form Pr[P (ξ1, . . . , ξn) = z]? More specifically, how large can the
maximum point probability supz∈R Pr[P (ξ1, . . . , ξn) = z] be, without making any strong assumptions about
the polynomial P?

Historically, the starting point for this problem was the linear case, where P is a degree-1 polynomial.
Indeed, consider a random variable X = a1ξ1 + · · · + anξn, where a1, . . . , an ∈ R are nonzero real numbers
and ξ1, . . . , ξn ∈ {−1, 1} are independent Rademacher random variables. As part of their study of random
polynomials, in 1943 Littlewood and Offord [35] proved that

sup
z∈R

Pr[X = z] ≤ O

(
log n√

n

)
.
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1This is the “discrete” form of the polynomial Littlewood–Offord problem; one can also consider the “continuous” form, where
we are interested in the maximum probability that P (ξ1, . . . , ξn) lies in an interval of given length. In the following historical
discussion, we specialise all results to this discrete setting.
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Littlewood and Offord’s result was famously sharpened in 1945 by Erdős [13], who found a purely combina-
torial proof of what is now usually called the Erdős–Littlewood–Offord theorem: under the same assumptions,

sup
z∈R

Pr[X = z] ≤
(

n

⌊n/2⌋

)
· 2−n = O

(
1√
n

)
. (1.1)

This result is best-possible, as can be seen by considering the case where the coefficients ai are all equal.
Remark 1.1. It is worth noting that the general topic of anticoncentration of sums of independent random
variables was first considered in 1936 by Doeblin and Lévy [12], and this led to a parallel line of research
with many similar results (the two lines of research seem to have not been aware of each others’ existence
until quite recently). In particular, in the above setting, the bound supz∈R Pr[X = z] ≤ O(1/

√
n) follows

from a general result claimed in a 1939 paper of Doeblin [11], preceding Littlewood and Offord by several
years. However, this general result is also the subject of a 1958 paper of Kolmogorov [30], which claims that
Doeblin’s paper did not provide a full proof.

By now, the linear Littlewood–Offord problem is very well understood, and many variations and strength-
enings are available. For example, there are very powerful inverse theorems that relate the maximum con-
centration probability to the arithmetic structure of the coefficients a1, . . . , an, and these theorems have had
a huge impact in random matrix theory (see for example the survey [40]). Also, there are versions of the
Erdős–Littlewood–Offord theorem for general distributions (i.e., allowing the variables ξ1, . . . , ξn to take non-
Rademacher distributions), assuming that the distributions of the variables ξi do not themselves concentrate
too strongly. (Approximate results along these lines follow directly from the Lévy–Doeblin–Kolmogorov the-
orem mentioned in Remark 1.1, or can be deduced from the Erdős–Littlewood–Offord theorem; in some sense
the Rademacher case is the “hardest case”. For exact results see [25, 26, 34].)

After the linear case, the next case to consider is the quadratic case: what bounds can we give on the
point concentration of a quadratic polynomial Q(ξ1, . . . , ξn) of independent Rademacher random variables
ξ1, . . . , ξn? This question came to the forefront in a 2005 paper by Costello, Tao and Vu [6], when they used
such a bound in their proof of Weiss’ conjecture on singularity of random symmetric matrices. Specifically,
they proved that if a quadratic polynomial Q ∈ R[x1, . . . , xn] has at least cn2 nonzero coefficients2 (for some
constant c > 0), then X = Q(ξ1, . . . , ξn) (for independent Rademacher random variables ξ1, . . . , ξn) satisfies

sup
z∈R

Pr[X = z] ≤ O

(
1

n1/8

)
. (1.2)

Remark 1.2. Parallelling the situation described in Remark 1.1, we remark that Costello, Tao and Vu were
actually not the first to prove this inequality: in 1996, Rosiński and Samorodnitsky [44] had proved essentially
the same result (in fact, a generalisation of it to higher degree polynomials), in their study of zero-one laws
for Lévy chaos (chaoses are polynomials of independent random variables; they are classical and very well-
studied objects in probability theory, statistics and applied mathematics). Seemingly unaware of Rosiński
and Samorodnitsky’s work, in 2013 Razborov and Viola [43] considered a similar higher-degree generalisation
(for applications in the theory of Boolean functions).

The authors of [6, 44] already recognised that (1.2) was likely not optimal. Indeed, just as for the linear
Littlewood–Offord problem, one expects a bound of the form supz∈R Pr[X = z] ≤ O(1/

√
n) (this bound is

attained in the case Q(x1, . . . , xn) = (x1 + · · · + xn)
2, for example). A conjecture to this effect has been

attributed to Nguyen and Vu (see [37, 43]).

The first improvement on (1.2) was by Costello and Vu [8], who showed how to adapt the arguments in [6] to
prove a bound of the form O(n−1/4). Introducing several new ideas, Costello [5] then managed to obtain the
nearly optimal bound O(n−1/2+ε) (for any constant ε > 0). Via a completely different approach, this bound
was further refined to exp(O((log log n)2))/

√
n by Meka, Nguyen and Vu3 (see arXiv version v4 of [37]),

before it was observed that the bound (log n)O(1)/
√
n follows from a powerful general result of Kane [28] (see

the journal version of [37] for more discussion).
2This is not exactly the assumption that appeared in [6], but it is a simple assumption which is sufficient for essentially all

results in this area; see Remark 1.3 for more discussion.
3The results in [37] are more general, holding for polynomials of any bounded degree.
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In this paper we finally resolve the quadratic Littlewood–Offord problem (up to constant factors), obtaining
an optimal bound of O(1/

√
n). We are also able to make a weaker assumption on Q than in previous work.

Theorem 1.1. Let Q ∈ R[x1, . . . , xn] be a polynomial of degree at most 2, and let ξ1, . . . , ξn ∈ {−1, 1} be
independent Rademacher random variables. For some positive integer m, suppose that Q(ξ1, . . . , ξn) “robustly
depends on at least m of the variables ξi” in the sense that the value of Q(ξ1, . . . , ξn) cannot be determined
by specifying any outcomes of any m− 1 of the variables ξ1, . . . , ξn ∈ {−1, 1}. Then,

sup
z∈R

Pr[Q(ξ1, . . . , ξn) = z] ≤ C√
m
,

for some absolute constant C.

Remark 1.3. Recall that the Erdős–Littlewood–Offord theorem has an assumption that each linear coefficient
ai is nonzero. Of course, zero coefficients can be ignored, so without such an assumption one immediately
obtains a bound of the form supz∈R Pr[a1ξ1 + · · ·+ anξn = z] ≤ O(1/

√
m) where m is the number of nonzero

ai. Unfortunately, the situation is not so simple in the quadratic case. One could make the very strong
assumption that every degree-2 coefficient is nonzero, but this is too strong of an assumption for most
applications4. Alternatively, one might wish to consider the very weak assumption that every variable xi

features in at least one nonzero term of Q(xi), but unfortunately this is too weak to get a sensible bound:
indeed, consider for example the case where Q(x1, . . . , xn) = (1 + ξ1)(ξ1 + · · ·+ ξn), which is zero whenever
ξ1 = −1, and therefore Pr[Q(ξ1, . . . , ξn) = 0] ≥ 1/2. More generally, if it is possible to determine the value of
Q(ξ1, . . . , ξn) by fixing the outcomes of a small number of variables to certain values, then this automatically
leads to a large point probability for Q(ξ1, . . . , ξn). So it is necessary to make an assumption guaranteeing
that Q “robustly depends on many of the ξi”.

We believe that our assumption in Theorem 1.1 captures this “robust dependence on many of the ξi” in a
natural way. To compare to previous work: our assumption is slightly weaker than the assumption in [37]
(which says that Q(x1, . . . , xn) has many quadratic terms featuring disjoint variables), and is much weaker
than the assumptions in [5, 6] (which say, in slightly different ways, that Q(x1, . . . , xn) has a huge number
of nonzero coefficients).

Remark 1.4. Of course, we could ask for the optimal constant factor C in Theorem 1.1. It is not necessarily
clear what to expect: one may guess that the polynomial Q(x1, . . . , xm) = (x1 + · · ·+xm)(x1 + · · ·+xm +2)
or Q(x1, . . . , xm) = (x1 + · · ·+ xm + 1)(x1 + · · ·+ xm − 1) (depending on whether m is odd or even) is the
worst case, but recent developments on the so-called Gotsman–Linial conjecture (see Section 12) suggest that
this might be too naïve. It is also quite possible that the optimal value for the constant factor in the bound
on supz∈R Pr[Q(ξ1, . . . , ξn) = z] is sensitive to the precise assumption one makes on the quadratic polynomial
Q (to ensure that it “robustly depends on many of the variables ξi”; see Remark 1.3).

In Section 2 we give a brief summary of the methods that had previously been applied to the (quadratic)
Littlewood–Offord problem, their limitations, and the new ideas in our proof of Theorem 1.1. In particular,
our key contribution is a new inductive decoupling scheme: we take the well-known technique of decoupling,
usually viewed as a tool to inefficiently “reduce from a quadratic problem to a linear problem”, and reinterpret
it as a tool to efficiently “reduce the relative dimension of the quadratic part of a problem”. We also develop a
new way to study anticoncentration of random vectors, via a technique we call witness-counting. We believe
both these aspects of our proof may have broader applications.

We also remark that, while the details of the proof of Theorem 1.1 are rather involved, there is a certain
special case of Theorem 1.1 (the case where the quadratic part of Q has “bounded rank”) which permits a
much simpler proof. This case is already interesting, and we present its proof in Section 4 to serve as an
accessible illustration of our inductive decoupling scheme (and the results of Section 4 will also be used later
in the paper).

Finally, we remark that just as for the linear Littlewood–Offord problem, one can deduce a version of The-
orem 1.1 in which the variables ξi are allowed to take essentially any discrete distribution (not just the
Rademacher distribution), as follows.

4We also remark that this strong assumption doesn’t seem to make the problem much easier.
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Theorem 1.2. Fix 0 < δ < 1. Let Q ∈ R[x1, . . . , xn] be a polynomial of degree at most 2, and let ζ1, . . . , ζn ∈
R be independent discrete random variables.

For nonempty subsets R1, . . . , Rn of the supports of ζ1, . . . , ζn, respectively, say that the product R1×· · ·×Rn

is a fixing box for Q if the polynomial Q is constant on R1 × · · · ×Rn. For some positive integer m, suppose
that for any fixing box R1 × · · · ×Rn there are at least m indices i ∈ {1, . . . , n} such that Pr[ζi ∈ Ri] ≤ 1− δ.
Then, we have

sup
z∈R

Pr[Q(ζ1, . . . , ζn) = z] ≤ Cδ√
m
,

for some constant Cδ only depending on δ.

Note that if ζ1, . . . , ζn are independent uniformly random integers in {−B,−(B − 1), . . . , B − 1, B}, then
Pr[Q(ζ1, . . . , ζn) = z] · (2B + 1)n is the number of integer solutions to Q(x1, . . . , xn) = z among integers
x1, . . . , xn with absolute value (“height”) at most B. We remark that quantities of this form have been
extensively studied in analytic number theory, in the regime where n is constant and B is large (in contrast,
our estimates are effective in the regime where B is constant and n is large); see for example [22, 42] and [3,
Theorem 1.11].

1.1 An application to edge-statistics

Apart from the intrinsic value of Theorem 1.1, of course it also enables us to improve bounds in any place where
quadratic Littlewood–Offord inequalities had previously been applied (see for example [1, 6, 7, 8, 15, 19, 33]).
Here we highlight one particular application: we can resolve a conjecture of Alon, Hefetz, Krivelevich and
Tyomkyn [2] related to the so-called graph inducibility problem. Specifically, let Gn be the set of n-vertex
graphs, and for a graph G let NG(k, ℓ) be the number of sets of k vertices of G inducing exactly ℓ edges.
Then, define the edge-inducibility (with parameters k and ℓ) by

ind(k, ℓ) = lim
n→∞

max
G∈Gn

NG(k, ℓ)(
n
k

) .

This parameter measures, for large graphs, the maximum possible fraction of k-vertex subsets which induce
ℓ edges. By considering complete or empty graphs we have

ind(k, 0) = ind
(
k,
(
k
2

))
= 1,

but for 0 < ℓ <
(
k
2

)
we have ind(k, ℓ) < 1 (this follows easily from Ramsey’s theorem, which says that large

graphs must have large complete or empty subgraphs). In fact, for 0 < ℓ <
(
k
2

)
, and large k, we now know

that ind(k, ℓ) cannot be much larger than 1/e; this was the content of the Edge-Statistics conjecture, proved
in a combination of papers by Kwan, Sudakov and Tran [33], Fox and Sauermann [18], and Martinsson,
Mousset, Noever and Trujić [36]. One can use Theorem 1.1 to prove the following much stronger bound when
ℓ is far from zero and far from

(
k
2

)
, which was conjectured by Alon, Hefetz, Krivelevich and Tyomkyn (see

[2, Conjecture 6.2]):

Theorem 1.3. For 0 < ℓ <
(
k
2

)
we have

ind(k, ℓ) = O

 1√
min

(
ℓ,
(
k
2

)
− ℓ
)
/k

.

The deduction of Theorem 1.3 from Theorem 1.1 is exactly as in the proof of [33, Theorem 1.1] (which uses
the weaker quadratic Littlewood–Offord inequality from [37]), so we do not include it here. The idea is that
for any large graph G, the number of edges in a random set of k vertices of G can be interpreted as a quadratic
polynomial of independent Rademacher random variables (via a certain coupling).
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Notation. As, usual, for a nonnegative integer n, we write [n] := {1, . . . , n} (note that for n = 0, this means
[n] = ∅). For an n × n matrix A and subsets I, J ⊆ [n], we write A[I × J ] for the |I| × |J | submatrix of A
consisting of the rows with indices in I and the columns with indices in J . Similarly for a vector v⃗ ∈ Rn

and a subset I ⊆ [n] we write v⃗[I] ∈ RI for the vector obtained from v⃗ by only taking the coordinates with
indices in I. Finally, for a vector v⃗ ∈ Rn and i ∈ [n], we write v⃗[i] ∈ R for the i-th entry of v⃗.

In this paper, we say that Q ∈ R[x1, . . . , xn] is a quadratic polynomial if its degree is at most 2. For t > 0,
we write log(t) for the base-2 logarithm of t.

2 Key ideas, in comparison with previous work

By now there are several different proofs of the O(1/
√
n) bound in the (linear) Erdős–Littlewood–Offord

theorem. As far as we know, they all take advantage of at least one of two very special properties of random
variables of the form X = a1ξ1 + · · · + anξn. First, Erdős’ original proof [13] used the monotonicity of X
(for every index i, changing ξi from −1 to 1 will always make the value of X increase, or always make the
value of X decrease). Second, one can take advantage of the fact that X is a sum of independent random
variables (each with a very simple distribution), so its Fourier transform is very well-behaved. (The first
Fourier-analytic proof seems to have been by Halász [21]; see also the very simple proof of a O(1/

√
n) bound

due to Croot [9]).

Unfortunately, in the quadratic setting (where X = Q(ξ1, . . . , ξn) for some quadratic polynomial Q), both of
the above properties of X may fail in a very strong way. There are two general approaches that have been
most successful so far: Gaussian approximation, and a technique called decoupling. We briefly discuss both
these approaches and their limitations, before describing our new ideas.

2.1 Gaussian approximation and combinatorial partitioning

Whether one is interested in the linear or the quadratic cases of the Littlewood–Offord problem, perhaps
the most natural starting point is to try to leverage some of the vast literature in probability theory on
distributional approximation: if one can approximate the entire distribution of a random variable X, then
anticoncentration should be an easy corollary.

This angle of attack is especially compelling in the linear case, since X = a1ξ1 + · · · + anξn is a sum of
independent random variables; it is tempting to try to apply a central limit theorem. One cannot be too
naïve here, as the limiting distribution of X could actually be very far from Gaussian (consider for example
the case where ai = 2i for each i). However, in their foundational paper, Littlewood and Offord [35] were in
fact able to prove their O(log n/

√
n) bound via Gaussian approximation. The key idea was to partition the

coefficients ai into O(log n) “buckets” according to their orders of magnitude, in such a way that Gaussian
approximation is effective within each bucket.

It is far from obvious how to extend this type of strategy to the higher-degree case (when X = Q(ξ1, . . . , ξn)
for a bounded-degree polynomial Q), but this is more or less what was accomplished by Meka, Nguyen
and Vu [37] and by Kane [28] in their bounds of the form exp(O((log log n)2))/

√
n and (log n)O(1)/

√
n,

respectively. Instead of a central limit theorem, one needs a Gaussian invariance principle (which provides
sufficient conditions under which one can approximate a polynomial of independent Rademacher random
variables by a polynomial of independent Gaussian random variables), and instead of a simple “bucketing”
argument one needs a regularity lemma to describe Q(ξ1, . . . , ξn) in terms of a “low-complexity decision tree”.

These types of methods are very powerful and very flexible, but unfortunately it seems that one inevitably
needs to “pay logarithmic factors” in order to deconstruct an arbitrary5 quadratic polynomial into “well-
behaved pieces” for which Gaussian approximation is effective. Even in the linear case, we are not aware of
a way to prove an optimal O(1/

√
n) bound via Gaussian approximation. Perhaps this is not surprising: in

5If one makes strong assumptions about the quadratic polynomial, it is sometimes possible to prove exact bounds via Gaussian
approximation; see for example [31].
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some sense the entire philosophy of the Littlewood–Offord problem is that anticoncentration is an extremely
robust phenomenon that holds under much weaker assumptions than central limit theorems, and we should
not expect to be able to use central limit theorems to prove optimal anticoncentration.

2.2 Decoupling

A completely different technique was employed in the papers of Costello, Tao and Vu [6] and Rosiński and
Samorodnitsky [44] which first studied the quadratic Littlewood–Offord problem. This technique is now
usually called decoupling, following [6]. Roughly speaking, decoupling is a general technique to “reduce a
quadratic anticoncentration problem to a linear one”6. Below we sketch the basic idea, incorporating an
improvement due to Costello and Vu [8]7.

Let Q ∈ R[x1, . . . , xn] be a quadratic polynomial and let ξ⃗ = (ξ1, . . . , ξn) be a sequence of independent
Rademacher random variables. Given a partition of the index set {1, . . . , n} into two subsets I and J , we can
break the random vector ξ⃗ into two parts ξ⃗[I] ∈ {−1, 1}I and ξ⃗[J ] ∈ {−1, 1}J . Then, a simple application of
the Cauchy–Schwarz inequality (see Lemma 3.6) shows that if ξ⃗ ′[I] is an independent copy of ξ⃗[I], we have

Pr
[
Q(ξ⃗) = z

]
= Pr

[
Q(ξ⃗[I], ξ⃗[J ]) = z

]
≤ Pr

[
Q(ξ⃗[I], ξ⃗[J ]) = z and Q(ξ⃗ ′[I], ξ⃗[J ]) = z

]1/2
(2.1)

≤ Pr
[
Q(ξ⃗[I], ξ⃗[J ])−Q(ξ⃗ ′[I], ξ⃗[J ]) = 0

]1/2
. (2.2)

Now, Q(ξ⃗[I], ξ⃗[J ]) − Q(ξ⃗ ′[I], ξ⃗[J ]) can be interpreted as a linear function of ξ⃗[J ], with coefficients that
depend on (ξ⃗[I], ξ⃗ ′[I]) (since the terms that are quadratic in ξ⃗[J ] cancel out). Furthermore, this linear
function typically has many nonzero coefficients (since it is unlikely that most of the “cross terms” between
ξ⃗[I] and ξ⃗ ′[I] cancel out). So, after conditioning on a typical outcome of (ξ⃗[I], ξ⃗ ′[I]), one can apply the
Erdős–Littlewood–Offord theorem, to obtain a bound of the form Pr[Q(ξ⃗) = z] ≤ (O(1/

√
n))1/2 = O(n−1/4).

The great advantage of decoupling is that the resulting linear anticoncentration problem is much easier:
one has access to the much wider range of tools available to study sums of independent random variables.
However, the inequality between (2.1) and (2.2) is rather lossy, and one tends to end up with bounds that
are at least “a square root away” from best-possible8.

Costello’s paper [5], proving the first bound of the form n−1/2+o(1) for the quadratic Littlewood–Offord
problem, combined decoupling with a structural dichotomy. Namely, Costello discovered that if the quadratic
polynomial Q is in a certain sense “robustly irreducible”, then number-theoretic arguments give the stronger
bound Pr[Q(ξ⃗[I], ξ⃗[J ])−Q(ξ⃗ ′[I], ξ⃗[J ]) = 0] ≤ n−1+o(1), and so even after the “square-root loss” of decoupling
one has Pr[Q(ξ⃗[I], ξ⃗[J ]) = z] ≤ n−1/2+o(1). He then gave a separate argument to handle the case where Q
does not satisfy the robust irreducibility condition (i.e., when Q essentially splits into linear factors), based
on the Szemerédi–Trotter theorem from discrete geometry.

We cannot conclusively rule out the possibility that one could prove an optimal O(1/
√
n) bound with a similar

kind of case analysis, but this seems to be extremely difficult. In particular, we are not aware of any suitable
candidate for a condition on Q which ensures that Pr[Q(ξ⃗[I], ξ⃗[J ])−Q(ξ⃗ ′[I], ξ⃗[J ]) = 0] ≤ O(1/n) (Costello’s
notion of robust irreducibility, and similar notions of “robust rank” or “robust sum-of-squares complexity”, are
only suitable for an n−1+o(1) bound on such probabilities). Also, Costello’s Szemerédi–Trotter-based proof
for the nearly-reducible case does not seem to easily generalise to other simple-looking families of quadratic
polynomials (for example, polynomials which can be written as the sum of four squares; see the discussion
in [17, Section 10]).

6The term “decoupling” refers more generally to a class of techniques used to reduce from dependent situations to independent
situations, see for example the book-length treatment in [10].

7[6, 44] featured a “more symmetric” decoupling argument, which gives worse bounds.
8But we remark that there are some circumstances where one can “do decoupling in Fourier space” in such a way that the

resulting square-root loss in Fourier space corresponds to a much smaller loss in physical space, see [18, 31].
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2.3 A geometric point of view, and an inductive decoupling scheme

In this paper, we consider a different perspective on decoupling: instead of using decoupling to immediately
reduce from a quadratic problem to a linear one, we reinterpret decoupling as a tool to obtain a problem with
a linear and a quadratic part, and to inductively “reduce the proportion of our problem that is quadratic”.
To explain this, it is helpful to take a geometric perspective.

Specifically, for a quadratic polynomial Q ∈ R[x1, . . . , xn] and a random vector ξ⃗ ∈ {1,−1}n, note that
Pr[Q(ξ⃗) = z] can be interpreted as the probability that ξ⃗ lies in the quadric (quadratic variety) Z given
by Z = {x⃗ ∈ Rn : Q(x⃗) = z} ⊆ Rn. Similarly, the expression Pr

[
Q(ξ⃗[I], ξ⃗[J ]) = z and Q(ξ⃗ ′[I], ξ⃗[J ]) = z

]
appearing in (2.1) can be interpreted as the probability that ξ⃗[J ] lies in the variety

Z(1) =
{
x⃗ ∈ RJ : Q(ξ⃗[I], x⃗) = z and Q(ξ⃗ ′[I], x⃗) = z

}
= Zξ⃗[I] ∩ Zξ⃗ ′[I] ⊆ RJ ,

where, for u⃗ ∈ RI , we write Zu⃗ for the set of all x⃗ ∈ RJ with (u⃗, x⃗) ∈ Z (typically, this is a quadric in RJ).
Using this language, (2.1) can be restated as

Pr
[
Q(ξ⃗) = z

]
= Pr

[
ξ⃗ ∈ Z

]
≤ Pr

[
ξ⃗[J ] ∈ Z(1)

]1/2
. (2.3)

The next step leading to the traditional decoupling inequality (2.2) can geometrically be phrased as observing
that Z(1) lies inside the affine-linear subspace

W(1) =
{
x⃗ ∈ RJ : Q(ξ⃗[I], x⃗)−Q(ξ⃗ ′[I], x⃗) = 0

}
.

Indeed, this yields the probability bound

Pr
[
Q(ξ⃗) = z

]
≤ Pr

[
ξ⃗[J ] ∈ Z(1)

]1/2
≤ Pr

[
ξ⃗[J ] ∈ W(1)

]1/2
stated in (2.2). One can then forget about Z(1) and restrict one’s attention to the affine-linear subspace
W(1), where the relevant probabilities are easier to analyse (under suitable assumptions on Q, one can show
that Pr[ξ⃗[J ] ∈ W(1)] ≤ O(1/

√
n), leading to the bound Pr[Q(ξ⃗) = z] ≤ O(n−1/4) described in Section 2.2).

However, it turns out that this “forgetting” of Z(1) is precisely the cause of the square-root loss usually
associated with decoupling. Indeed, W(1) is a variety with codimension 1 (being defined by a single equation),
while Z(1) is typically9 a variety with codimension (at least) 2 (being defined by two equations), so intuitively
we should be much less likely to have ξ⃗[J ] ∈ Z(1) than ξ⃗[J ] ∈ W(1). More specifically, in order to have
ξ⃗[J ] ∈ Z(1), we need ξ⃗[J ] to satisfy two different equations simultaneously, and we might expect each of these
to be satisfied with probability O(1/

√
n). So for typical outcomes of ξ⃗[I], ξ⃗ ′[I] (which determine Z(1)) we

might expect Pr
[
ξ⃗[J ] ∈ Z(1)

∣∣ ξ⃗[I], ξ⃗ ′[I]
]
≤ (O(1/

√
n))

2. If we could prove this, we would be able to deduce
Theorem 1.1 (recalling (2.3)).

So, we choose not to “forget” Z(1), and our task is to show that Pr[ξ⃗[J ] ∈ Z(1)] ≤ (O(1/
√
n))

2. While this
new task may seem harder than the previous one (as Z(1) seems like a more complicated object than Z),
the key observation is that we have “reduced the relative proportion of the quadratic part of our problem”.
Indeed, at the start we were interested in a quadric Z described by a single quadratic equation, but now we
are interested in Z(1), which can be interpreted as a quadric inside the affine-linear subspace W(1) ⊆ RJ .
That is to say, Z(1) is described by one linear and one quadratic equation, so now “only half of our problem
is quadratic”.

Crucially, it is possible to iterate this entire procedure: we next fix a partition I(2) ∪ J (2) of J , and consider
the variety

Z(2) = Z(1)

ξ⃗[I(2)]
∩ Z(1)

ξ⃗ ′[I(2)]
⊆ RJ(2)

9There are certain degenerate situations where Z(1) does not have codimension at least 2. We will ignore degeneracies of
this type throughout this outline, but they do cause challenges in the actual proof.
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(where, for u⃗ ∈ RI(2)

, we write Z(1)
u⃗ for the set of all x⃗ ∈ RJ(2)

with (u⃗, x⃗) ∈ Z(1)). Now, decoupling,
analogously to the inequality in (2.3), yields

Pr
[
ξ⃗[J ] ∈ Z(1)

∣∣∣ ξ⃗[I], ξ⃗ ′[I]
]
≤ Pr

[
ξ⃗[J (2)] ∈ Z(2)

∣∣∣ ξ⃗[I], ξ⃗ ′[I]
]1/2

. (2.4)

So, it suffices to show that Pr
[
ξ⃗[J (2)] ∈ Z(2)

∣∣ ξ⃗[I], ξ⃗ ′[I]
]
≤ (O(1/

√
n))

4 for typical outcomes of ξ⃗[I] and ξ⃗ ′[I].
Now, for Z(2) to be nonempty, it must be the case that W(1)

ξ⃗[I(2)]
∩W(1)

ξ⃗ ′[I(2)]
is nonempty, or equivalently that

W(1)

ξ⃗[I(2)]
= W(1)

ξ⃗ ′[I(2)]
(it is not hard to see that W(1)

ξ⃗[I(2)]
and W(1)

ξ⃗ ′[I(2)]
are parallel translates of each other). That

is to say, ξ⃗[I(2)]− ξ⃗ ′[I(2)] must lie in a certain affine-linear subspace which typically has codimension 1; this
happens with probability O(1/

√
n) by the (linear) Erdős–Littlewood–Offord theorem.

If we also condition on outcomes of ξ⃗[I(2)] and ξ⃗ ′[I(2)] such that W(1)

ξ⃗[I(2)]
= W(1)

ξ⃗ ′[I(2)]
, it is not hard to see

that Z(2) is typically a quadric inside the affine-linear subspace W(2) of W(1)

ξ⃗[I(2)]
= W(1)

ξ⃗ ′[I(2)]
⊆ RJ(2)

given by

the linear equation Q(ξ⃗[I], ξ⃗[I(2)], x⃗) − Q(ξ⃗[I], ξ⃗ ′[I(2)], x⃗) = 0 (in much the same way that Z(1) is a quadric
inside the affine-linear subspace W(1)). That is to say, Z(2) is typically a variety of codimension (at least) 3,
described by two linear equations and one quadratic equation. So we might expect that (for typical outcomes
of ξ⃗[I], ξ⃗ ′[I], ξ⃗[I(2)], ξ⃗ ′[I(2)] for which W(1)

ξ⃗[I(2)]
= W(1)

ξ⃗ ′[I(2)]
)

Pr
[
ξ⃗[J (2)] ∈ Z(2)

∣∣∣ ξ⃗[I], ξ⃗ ′[I], ξ⃗[I(2)], ξ⃗ ′[I(2)]
]
≤
(
O(1/

√
n)
)3
. (2.5)

If we were able to prove (2.5), we would obtain a bound of the form

Pr
[
ξ⃗[J (2)] ∈ Z(2)

]
≤ O(1/

√
n) ·

(
O(1/

√
n)
)3

=
(
O(1/

√
n)
)4
,

which would imply Theorem 1.1, tracing back through our decoupling inequalities (2.3) and (2.4). We have
made progress by “reducing the proportion of our problem that is quadratic”: If, instead of (2.5), we were
only able to prove that

Pr
[
ξ⃗[J (2)] ∈ Z(2)

∣∣∣ ξ⃗[I], ξ⃗ ′[I], ξ⃗[I(2)], ξ⃗ ′[I(2)]
]
≤ Pr

[
ξ⃗[J (2)] ∈ W(2)

∣∣∣ ξ⃗[I], ξ⃗ ′[I], ξ⃗[I(2)], ξ⃗ ′[I(2)]
]
≤
(
O(1/

√
n)
)2

(“forgetting” the quadratic part of the problem and only bounding the probability that ξ⃗[J (2)] lies in the affine-
linear subspace W(2) of codimension 2), we would end up with a final bound of the form Pr[ξ⃗ ∈ Z] ≤ O(n−3/8),
which is much better than the O(n−1/4) bound we obtained with a single decoupling step.

In general, after k steps of this scheme, we will have considered k “nested” partitions of the form J (i−1) =
I(i) ∪ J (i), and defined k varieties Z(1), . . . ,Z(k). We will have applied the decoupling inequality k times,
and considered various conditional probabilities that the vectors ξ⃗[I(i)] − ξ⃗ ′[I(i)] lie in certain affine-linear
subspaces (to ensure that certain intersections W(i−1)

ξ⃗[I(i)]
∩ W(i−1)

ξ⃗ ′[I(i)]
are nonempty). After all this, we find

ourselves in a position where if we “forget the quadratic part of the problem” we obtain a bound of the form
Pr[Q(ξ⃗) = z] ≤ O(n−1/2+1/2k+1

). That is to say, if k is at least log log n, the quadratic part of the problem
is so insignificant that “forgetting” it only costs us a constant factor in the final bound.

At an extremely high level, this explains our strategy to prove Theorem 1.1. However, we omitted a number of
important details in this outline. In particular, our strategy heavily depends on being able to obtain suitable
upper bounds on probabilities that certain random vectors fall into certain affine-linear subspaces, and there
are crucial “robust rank” nondegeneracy conditions that must be satisfied in order for such bounds to hold.
This is not just a technicality; we require significant new ideas to maintain these robust rank properties
during our iterative decoupling scheme, which we discuss next.
Remark 2.1. Theorem 1.1 concerns quadratic polynomials, but one may be interested in a generalisa-
tion to cubic polynomials, or to polynomials of any fixed degree. Decoupling still makes sense for gen-
eral polynomials: for example, if Z is a cubic (variety), then decoupling yields an inequality of the form
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Pr[ξ⃗ ∈ Z] ≤ Pr[ξ⃗[J ] ∈ Z(2)]1/2, where Z(2) is the intersection of a quadric and a cubic. As observed by
Rosiński and Samorodnitsky [44] and Razborov and Viola [43], the basic type of decoupling argument de-
scribed in Section 2.2 generalises quite straightforwardly to higher degrees (but the bounds get worse as
the degree increases). However, it is less clear how to generalise the inductive decoupling scheme described
in this subsection. Roughly speaking, in the degree-d case, instead of affine-linear subspaces (obtained as
intersections of affine-linear hyperplanes), one must work with intersections of degree-(d− 1) varieties, which
are much more complicated objects. We hope that the relevant complexities can be handled with some kind
of multiple-level induction, but so far we were not able to accomplish this.

2.4 High-dimensional anticoncentration inequalities, and witness-counting

Our proof, as outlined in the previous subsection, relies on bounds on probabilities that random vectors
lie in certain affine-linear subspaces. More specifically, for a suitably nondegenerate affine-linear subspace
W ⊆ Rn of codimension k, and a uniformly random vector ξ⃗ ∈ {1,−1}n, we need a probability bound of the
form Pr[ξ⃗ ∈ W] ≤ O(n−k/2). Intuitively, this is because ξ⃗ needs to simultaneously satisfy k different linear
equations, each of which is satisfied with probability roughly n−1/2. More formally, such a bound follows
from a high-dimensional version of the Erdős–Littlewood–Offord theorem.

The first such high-dimensional version was due to Halász [21]. In linear-algebraic language, it can be phrased
as follows: for any fixed k, if M ∈ Rk×n is a matrix that “robustly has rank k” in the sense that (for some
fixed δ > 0) one cannot delete δn columns of M to obtain a matrix with rank less than k, then for a uniformly
random vector ξ⃗ ∈ {−1, 1}n we have

sup
w⃗∈Rk

Pr[Mξ⃗ = w⃗] ≤ O(n−k/2).

Note that some kind of “robust rank k” condition is necessary here: for example, if n is even and M ∈ R2×n

has rows (1, . . . , 1) ∈ Rn and (1, . . . , 1, 0, 0) ∈ Rn, then it is easy to check that Pr[Mξ⃗ = 0⃗] has order of
magnitude 1/

√
n.

Several extensions and variants of Halasz’ inequality have since been proved (see for example [14, 16, 23, 47]);
in particular, Ferber, Jain and Zhao [14] proved a version of Halasz’ theorem with a much better dependence
on k (allowing k to vary with n, instead of viewing it as a constant). We state (a corollary of) this theorem
as Theorem 3.3.

Of course, whenever we want to apply any Halász-type theorem, we need a “robust rank” condition to hold.
So, in order to execute the strategy described in the last subsection, at each step of the decoupling scheme we
need a “robust rank inheritance” lemma, proving that a robust rank condition is likely to hold for the next
step, given that it holds for the current step. The key ingredient for our robust rank inheritance lemma is a
new high-dimensional anticoncentration inequality for the probability that a random vector falls in a small
ball in the Hamming norm. We believe this inequality (and the techniques in its proof) to be of independent
interest; an important special case is as follows.

Lemma 2.1. For any fixed positive integer r, there are constants Cr > 0 and cr > 0 only depending on
r such that the following holds. Consider a matrix A ∈ Rm×n which has rank at least r after deletion of
any t rows and t columns (for some positive integer t). Then for a sequence ξ⃗ = (ξ1, . . . , ξn) ∈ {−1, 1}n of
independent Rademacher random variables, we have

sup
v⃗∈Rm

Pr[Aξ⃗ differs from v⃗ in fewer than crt coordinates] ≤ Cr · t−r/2.

The assumption in Lemma 2.1 says that A robustly has rank at least r, but in a stronger sense than typical
Halász-type theorems: the rank needs to remain at least r after row deletion as well as column deletion. As
a result, we are able to obtain a stronger conclusion, namely that for any vector v⃗, it is unlikely that Aξ⃗
agrees with v⃗ in almost all its coordinates. (It is not hard to see that for this stronger conclusion, such a
row-deletion assumption is indeed necessary).
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We prove Lemma 2.1 (and our more general robust rank inheritance lemma) in Section 7 using a witness-
counting technique, which we outline here. First, note that the most naïve strategy to prove Lemma 2.1
would be to simply take a union bound over all sets I of m − crt coordinates in which Aξ⃗ and v⃗ could
agree. For some specific I, the probability that Aξ⃗ and v⃗ agree on the coordinates indexed by I can be easily
understood using existing tools (i.e., Halász’ inequality and its variants) and is at most on the order of t−r/2.
However, it is far too wasteful to simply take a union bound summing over all possibilities for I (the number
of possibilities is exponential in t).

Instead, for each I we consider small “witness” subsets I ′ ⊆ I, such that the submatrix of A consisting of the
rows with indices in I ′ still has (robustly) high rank. Note that for each I ′ ⊆ I, whenever Aξ⃗ and v⃗ agree
on the coordinates indexed by I, they also in particular agree on the coordinates indexed by I ′. Given the
high-rank property, for each “witness” subset I ′ we can still easily bound the probability that Aξ⃗ and v⃗ agree
on the coordinates indexed by I ′ (using Halász’ inequality and its variants).

There are still too many possible “witness” subsets I ′ to be able to simply take a union bound over all
possibilities for I ′, but (roughly speaking) we can show that whenever Aξ⃗ and v⃗ agree on a large set of
coordinates I, then they must agree on the coordinates of many “witness” subsets I ′ ⊆ I. We can show this
is unlikely by computing the expected number of “witness” coordinate-subsets on which Aξ⃗ and v⃗ agree, and
applying Markov’s inequality.

Remark 2.2. One might be interested in adapting Theorem 1.1 to study small-ball probabilities of the form
supz∈R Pr[|Q(ξ1, . . . , ξn) − z| ≤ 1] instead of point probabilities supz∈R Pr[Q(ξ1, . . . , ξn) = z]. The robust
rank inheritance lemma seems to be the main point of difficulty for such an adaptation; it is not clear how to
extend the witness-counting arguments to the small-ball setting (e.g., in the setting of Lemma 2.1, we would
be interested in the event that there are fewer than crt coordinates i for which |(Aξ⃗ − v⃗)[i]| ≤ 1).

Before ending this overview section, we remark that there is a way to sidestep the robust rank inheritance
issue in the special case where Q has “bounded rank”, meaning that the quadratic part of Q can be written
as x⃗⊺Ax⃗ for some symmetric matrix A of rank O(1). Indeed, in this case we can reduce our entire problem to
a certain bounded-dimensional geometric anticoncentration problem (involving a quadric), where the robust
rank conditions for Halasz’ inequality are always automatically satisfied when following the strategy in the
previous subsection. In Section 4, we give a simple self-contained proof of an essentially optimal anticoncen-
tration bound in this setting. We believe this to be a good illustration of the basic principles of our inductive
decoupling scheme, with minimal technicalities (the results of Section 4 will actually also be used later in the
paper).

3 Preliminaries

First, as outlined in Section 2, we need a “high-dimensional” version of the Erdős–Littlewood–Offord theorem.
This will require a robust rank condition, defined as follows.

Definition 3.1. For integers 0 ≤ k ≤ n and a real number s ≥ 0, let Hk×n(s) be the set of matrices
M ∈ Rk×n such that rankM [[k]× J ] = k for all subsets J ⊆ [n] of size |J | ≥ n− s, i.e., the set of matrices
having rank k after any deletion of up to s columns.

We clearly have Hk×n(s) ⊆ Hk×n(s′) if s ≥ s′. Furthermore, for a partition [n] = S ∪ I with |S| ≤ s, for
every matrix M ∈ Hk×n(s) we also have M [[k] × I] ∈ Hk×I(s − |S|). Also note that in the case k = 0, the
(unique) empty matrix M ∈ R0×n is contained in H0×n(s) for all s ≥ 0.

For integers 0 ≤ k ≤ n and t ≥ 0, we say that a matrix M ∈ Rk×n contains t disjoint nonsingular k × k
submatrices if there exist disjoint subsets J1, . . . , Jt ⊆ [n] of size |J1| = · · · = |Jt| = k such that rankM [[k]×
Ji] = k for i = 1, . . . , t. This is the case if and only if among the column vectors a⃗1, . . . , a⃗n of M we can form
t disjoint bases of Rk (here, the vectors a⃗1, . . . , a⃗n are considered with multiplicities, i.e., a vector in Rk can
occur in two different bases if it occurs twice among a⃗1, . . . , a⃗n).

Lemma 3.2. For integers 0 ≤ k ≤ n and a real number s ≥ 0, the following statements hold:
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(i) If M ∈ Rk×n contains t disjoint nonsingular k×k submatrices for an integer t > s, then M ∈ Hk×n(s).
(ii) If M ∈ Hk×n(s) and k ≥ 1, then M contains ⌈s/k⌉ disjoint nonsingular k × k submatrices.

Proof. For (i), let J1, . . . , Jt ⊆ [n] be disjoint subsets of size |J1| = · · · = |Jt| = k such that rankM [[k]×Ji] = k
for i = 1, . . . , t. Then for any subsets J ⊆ [n] of size |J | ≥ n−s > n−t, we have Ji ⊆ J for some i ∈ {1, . . . , t}
and hence k ≥ rankM [[k]× J ] ≥ rankM [[k]× Ji] = k, meaning that rankM [[k]× J ] = k.

For (ii), we can greedily find disjoint subsets J1, . . . , J⌈s/k⌉ ⊆ [n] of size |J1| = · · · = |J⌈s/k⌉| = k such that
rankM [[k] × Ji] = k for i = 1, . . . , ⌈s/k⌉. Indeed, after having chosen J1, . . . , Ji−1 for some i ≤ ⌈s/k⌉, we
have |J1 ∪ · · · ∪ Ji−1| = (i− 1)k < s and hence M still has rank k after deleting the columns with indices in
J1∪· · ·∪Ji−1. So we can find a subset Ji ⊆ [n]\(J1∪· · ·∪Ji−1) of size |Ji| = k with rankM [[k]×Ji] = k.

Halász [21] proved that for fixed constants δ > 0 and k ∈ N, if M ∈ Hk×n(δn) then Pr[Mξ⃗ = w⃗] ≤ O(n−k/2).
We will use the following quantitative version of Halász’ theorem, which is a special case10 of a result of
Ferber, Jain and Zhao [14, Theorem 1.11] (see also [23] for a previous result with a weaker dependence on k).

Theorem 3.3. Let 0 ≤ k ≤ n and t ≥ 1 be integers. Consider a matrix M ∈ Rk×n containing t disjoint
nonsingular k × k submatrices, and a vector w⃗ ∈ Rk. Letting ξ⃗ = (ξ1, . . . , ξn) ∈ {−1, 1}n be a sequence of
independent Rademacher random variables, we then have

P[Mξ⃗ = w⃗] ≤ t−k/2.

Corollary 3.4. Let 0 ≤ d ≤ k ≤ n and t ≥ 1 be integers. Consider vectors a⃗1, . . . , a⃗n ∈ Rk such that one
can form t disjoint bases of Rk from the vectors a⃗1, . . . , a⃗n, and let W ⊆ Rk be a d-dimensional affine-linear
subspace. Letting ξ⃗ = (ξ1, . . . , ξn) ∈ {−1, 1}n be a sequence of independent Rademacher random variables,
we then have

Pr[ξ1a⃗1 + · · ·+ ξna⃗n ∈ W] ≤ t−(k−d)/2.

Proof. Write W̃ for the d-dimensional linear subspace parallel to the affine-linear subspace W (i.e., W = W̃+v⃗
for some v⃗ ∈ Rk), and consider a linear map ϕ : Rk → Rk−d with kernel W̃ (so ϕ(W) consists of a single
point p⃗ ∈ Rk−d). Writing M ∈ R(k−d)×n for the matrix whose columns are the vectors ϕ(⃗a1), . . . , ϕ(⃗an), we
have

Pr[ξ1a⃗1 + · · ·+ ξna⃗n ∈ W] = Pr[ξ1ϕ(⃗a1) + · · ·+ ξnϕ(⃗an) = p⃗] = Pr[Mξ⃗ = p⃗] ≤ t−(k−d)/2.

by Theorem 3.3 (note that for each of the t disjoint bases formed among the vectors a⃗1, . . . , a⃗n, the image
under ϕ is a spanning set of Rk−d and hence contains a basis of Rk−d, so we can find t disjoint bases among
the columns of M and consequently M contains t disjoint nonsingular (k − d)× (k − d) submatrices).

Corollary 3.5. Let 1 ≤ k ≤ n be integers and s > 0 be a real number. Consider a matrix M ∈ Hk×n(s)

and a vector w⃗ ∈ Rk. Letting ξ⃗ = (ξ1, . . . , ξn) ∈ {−1, 1}n be a sequence of independent Rademacher random
variables, we then have

P[Mξ⃗ = w⃗] ≤ (s/k)−k/2.

Proof. By Lemma 3.2(ii) M contains ⌈s/k⌉ disjoint nonsingular k × k submatrices, so we can apply Theo-
rem 3.3.

Next, we recall some basic facts about linear forms. A linear form g ∈ R[x1, . . . , xn] is a linear polynomial
with constant term zero. That is, we can write g(x⃗) = v⃗ · x⃗ = v⃗⊺x⃗ = x⃗⊺v⃗, where v⃗ ∈ Rn is the coefficient
vector of g. Note that for two linear forms g1, g2 ∈ R[x1, . . . , xn] with coefficient vectors v⃗1, v⃗2 ∈ Rn we have

g1(x⃗) · g2(x⃗) =
1

2
g1(x⃗) · g2(x⃗) +

1

2
g2(x⃗) · g1(x⃗) =

1

2
x⃗
⊺
v⃗1v⃗

⊺
2 x⃗+

1

2
x⃗
⊺
v⃗2v⃗

⊺
1 x⃗ = x⃗

⊺
Ax⃗, (3.1)

10Specifically, to deduce Theorem 3.3 from [14, Theorem 1.11], we take the even number ℓ in [14, Theorem 1.11] to be ℓ = t

if t is even, and ℓ = t − 1 if t is odd. In both cases, we can verify the inequality 2−ℓ
( ℓ
ℓ/2

)
≤ t−1/2, and we obtain the desired

bound by taking A1, . . . ,Aℓ in [14, Theorem 1.11] to be a partition of the columns of M into ℓ disjoint subsets each containing
a basis of Rk (then r1 = · · · = rℓ = k).
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where A ∈ Rn×n is the symmetric matrix given by A = 1
2 (v⃗1v⃗

⊺
2 + v⃗2v⃗

⊺
1 ). More generally, every quadratic form

(i.e., every quadratic polynomial with no linear and no constant term), can be written in the form x⃗⊺Ax⃗ for
a unique symmetric matrix A ∈ Rn×n.

Another important ingredient for our proof is the following decoupling lemma.

Lemma 3.6. If an event E(X,Y ) depends on independent random objects X,Y , and X ′ is an independent
copy of X, then Pr[E(X,Y )] ≤ Pr[E(X,Y ) and E(X ′, Y )]1/2.

Lemma 3.6 is a slight variant of a lemma of Costello, Tao and Vu [6, Lemma 4.7], who popularised decoupling
as a tool for polynomial anticoncentration. The particular statement of Lemma 3.6 appears (for example)
as [5, Lemma 14]. For the reader’s convenience, we include the proof (which is a simple application of the
Cauchy–Schwarz inequality).

Proof of Lemma 3.6. By the Cauchy–Schwarz inequality, we have

Pr[E(X,Y ) and E(X ′, Y )] = EY

[
Pr[E(X,Y ) and E(X ′, Y ) |Y ]

]
= EY

[
Pr[E(X,Y ) |Y ]2

]
≥ EY

[
Pr[E(X,Y ) |Y ]

]2
= Pr[E(X,Y )]2.

Taking square roots on both sides gives the desired inequality.

We will also need a simple lemma usually attributed to Odlyzko [41].

Lemma 3.7. Consider a matrix M ∈ Rk×n with rankM = k and a vector w⃗ ∈ Rk. For a sequence of
independent Rademacher random variables ξ⃗ = (ξ1, . . . , ξn) ∈ {−1, 1}n, we then have P[Mξ⃗ = w⃗] ≤ 2−k.

Proof. We can interpret Mξ⃗ = w⃗ as a system of linear equations (in the variables ξ1, . . . , ξn). Bringing this
system into row echelon form, it has n − k free variables (which determine the values of the k remaining
variables). After exposing the n − k entries of ξ⃗ corresponding to the free variables, there is at most one
possibility for each of the remaining k entries of ξ⃗ satisfying this system of equations. Thus, the probability
of having Mξ⃗ = w⃗ is at most 2−k.

Finally, we will need a simple numerical inequality.

Lemma 3.8. For real numbers a, b, c ≥ 0 with a2 ≤ ab+ c, we have a ≤ b+
√
c.

Proof. Note that for all x, y ≥ 0 we have the inequality
√
x+ y ≤

√
x+

√
y. Now, by the quadratic formula,

a2 ≤ ab+ c implies a ≤ (b+
√
b2 + 4c)/2 ≤ (b+

√
b2 +

√
4c)/2 = b+

√
c.

4 Inductive decoupling from a geometric point of view

Note that for a quadratic polynomial Q and a sequence ξ⃗ = (ξ1, . . . , ξn) ∈ {−1, 1}n of independent Rademacher
random variables, the event Q(ξ⃗) = 0 is precisely the event that ξ⃗ falls in the vanishing locus of Q. Moreover,
if the quadratic part of Q has rank less than r (i.e., if Q can be expressed as a linear combination of r − 1
squares of linear forms, plus an additional linear form, plus a constant term), then it is possible to interpret
the event Q(ξ⃗) = 0 as the event that ξ1a⃗1+ · · ·+ξna⃗n ∈ Z, where a⃗1, . . . , a⃗n ∈ Rr are vectors in r-dimensional
space, and Z is the vanishing locus of some r-variable quadratic polynomial (indeed, the entries of each a⃗i
correspond to the coefficients of ξi in each of the linear forms described above).

In this section, we obtain an essentially optimal bound (in Theorem 4.2 below) on probabilities of the form
Pr[ξ1a⃗1 + · · ·+ ξna⃗n ∈ Z], where a⃗1, . . . , a⃗n ∈ Rr are vectors satisfying some robust nondegeneracy condition
and Z is a quadric in Rr (or more generally, a quadric inside some affine-linear subspace of Rr), under the
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Figure 4.1. An example of a quadric on a 2-dimensional affine plane in R3.

assumption that the dimension r does not grow with n. This may be viewed as a warm-up to the full proof
of Theorem 1.1: it is proved via the same inductive decoupling scheme, but has fewer technicalities.

Using the connection described in the first paragraph above (with an additional “dropping to a subspace”
argument, of the type we will later see in Section 6), one can use Theorem 4.2 to prove Theorem 1.1 in the
special case where the quadratic part of Q has bounded rank. Actually, Theorem 4.2 is also an ingredient
in the full proof of our main theorem (Theorem 1.1). We also remark that the result of this section fits
nicely in the “geometric Littlewood–Offord” framework of Fox, Kwan and Spink [17]. In particular, the case
of Theorem 4.2 where Z ⊆ R4 is a sphere in four dimensions was explicitly raised as the simplest open case
of the main problem in [17].

Before stating the main result of this section, we record some relevant terminology.

Definition 4.1. As usual, for a polynomial P ∈ R[x1, . . . , xd] we write V(P ) = {x⃗ ∈ Rd : P (x⃗) = 0} for
the vanishing locus of P . A quadric Z ⊊ Rd is the vanishing locus Z = V(P ) of some nonzero quadratic
polynomial P ∈ R[x1, . . . , xd]. We say that a quadric Z ⊊ Rd is irreducible if Z = V(P ) for an irreducible
quadratic polynomial P ∈ R[x1, . . . , xd].

For a d-dimensional affine-linear subspace W ⊆ Rr, we say that Z ⊊ W is a quadric on W if it is the image
of some quadric V(P ) ⊊ Rd under an affine-linear isomorphism ϕ : Rd → W. Equivalently, Z ⊊ W is a
quadric on W if and only if Z = W∩V(P ) for some quadratic polynomial P ∈ R[x1, . . . , xr] with W ̸⊆ V(P ).
We say that a quadric Z ⊊ W is irreducible if it is the image of some irreducible quadric V(P ) ⊊ Rd under
an affine-linear isomorphism ϕ : Rd → W.

As an example, see Figure 4.1 showing a quadric on a 2-dimensional affine plane in R3. Now we are ready to
state the main result of this section.

Theorem 4.2. Let 0 ≤ d < r be integers. Let Z ⊊ W be a quadric on a (d + 1)-dimensional affine-linear
subspace W ⊆ Rr. Consider vectors a⃗1, . . . , a⃗n ∈ Rr such that one can form t disjoint bases of Rr from the
vectors a⃗1, . . . , a⃗n, where t is a positive integer divisible by 2d. Let (ξ1, . . . , ξn) ∈ {−1, 1}n be a sequence of
independent Rademacher random variables. Then

Pr[ξ1a⃗1 + · · ·+ ξna⃗n ∈ Z] ≤ 2dr+1

t(r−d)/2
.

If Z ⊊ W is a quadric on a (d + 1)-dimensional affine-linear subspace W, then Z has dimension at most d
(we do not formally define what “dimension” means in this context, as this is not needed for our arguments,
but appeal to the reader’s intuition). Note that the form of the bound in the above theorem (with t(r−d)/2

in the denominator) is the same as in Corollary 3.4 for d-dimensional affine-linear subspaces.

For the proof of Theorem 4.2, we will rely on the following algebraic fact.

Lemma 4.3. Let d ≥ 2, and let Z ⊊ Rd be an irreducible quadric. Then, at least one of the following holds:

13



(i) There is a direction v⃗ ∈ Rd \ {⃗0} such that Z + Rv⃗ = Z (i.e., Z is invariant under translation along
the direction v⃗), or

(ii) for any vectors x⃗, y⃗ ∈ Rd with x⃗ ̸= y⃗, the intersection (Z − x⃗) ∩ (Z − y⃗) is a quadric on a (d − 1)-
dimensional affine-linear subspace Wx⃗,y⃗ ⊊ Rd.

Proof. Let Z = V(P ) for a nonzero quadratic polynomial P ∈ R[x1, . . . , xd], and suppose that (i) does
not hold. Note that then Z − x⃗ = {w⃗ ∈ Rd : P (w⃗ + x⃗) = 0} for any x⃗ ∈ Rd. For any x⃗, y⃗ ∈ Rd with
x⃗ ̸= y⃗, consider the linear polynomial Lx⃗,y⃗ : w⃗ 7→ P (w⃗ + y⃗) − P (w⃗ + x⃗) and write Wx⃗,y⃗ = V(Lx⃗,y⃗), so
(Z − x⃗) ∩ (Z − y⃗) = (Z − x⃗) ∩Wx⃗,y⃗. This already shows that (Z − x⃗) ∩ (Z − y⃗) is the vanishing locus of a
quadratic polynomial on Wx⃗,y⃗. To verify (ii), we will check that Lx⃗,y⃗ is not the zero polynomial (which shows
that dimWx⃗,y⃗ = d− 1), and that Wx⃗,y⃗ ̸⊆ Z − x⃗ (which implies (Z − x⃗)∩ (Z − y⃗) = (Z − x⃗)∩Wx⃗,y⃗ ⊊ Wx⃗,y⃗).

First, the reason Lx⃗,y⃗ cannot be the zero polynomial is that (i) does not hold. Indeed, if Lx⃗,y⃗ were the zero
polynomial, then for all w⃗ ∈ Rd and λ ∈ Z we would have P (w⃗) = P (w⃗ + λ(x⃗ − y⃗)). That is to say, for all
w⃗ ∈ Rd the quadratic polynomial λ 7→ P (w⃗)− P (w⃗ + λ(x⃗− y⃗)) would have infinitely many zeroes, so would
be the zero polynomial, meaning that P (w⃗) = P (w⃗ + λ(x⃗ − y⃗)) for all λ ∈ R and w⃗ ∈ Rd. Hence we would
have Z + λ(x⃗− y⃗) = Z for all λ ∈ R, so (i) would hold for v⃗ = x⃗− y⃗.

Finally, it remains to show Wx⃗,y⃗ ̸⊆ Z − x⃗. Indeed, otherwise Wx⃗,y⃗ would be an irreducible component of
Z − x⃗, but by our assumptions Z − x⃗ is irreducible (since Z is). We also have Z − x⃗ ̸= Wx⃗,y⃗, since Z − x⃗
not invariant under translation along the direction of any nonzero vector (since Z does not satisfy (i)). So
we indeed have Wx⃗,y⃗ ̸⊆ Z − x⃗.

Now we prove Theorem 4.2.

Proof of Theorem 4.2. We proceed by induction on d. In the base case d = 0, our quadric Z consists of
at most two points, so the theorem statement holds by Corollary 3.4 (taking W in Corollary 3.4 to be 0-
dimensional, i.e., a single point). Assume now that d ≥ 1 (and r ≥ d + 1), and that the theorem statement
holds for smaller values of d. Let X⃗ = ξ1a⃗1 + · · ·+ ξna⃗n.

Step 1: The reducible case. First, it is easy to handle the case where the quadric Z ⊊ W is reducible,
i.e., where the irreducible components of Z are two affine-linear subspaces of dimension d. Indeed, suppose
that Z = V1 ∪ V2 for two d-dimensional affine-linear subspaces V1,V2 ⊊ W. By Corollary 3.4 (i.e., by the
version of Halász’ theorem in [14]), we have

Pr[X⃗ ∈ Z] ≤ Pr[X⃗ ∈ V1] + Pr[X⃗ ∈ V2] ≤
2

t(r−d)/2
,

which implies the desired result.

Step 2: The translation-invariant case. It is also easy to handle the case where there is a direction
v⃗ ̸= 0⃗ such that Z + Rv⃗ = Z, because then we can project our entire problem along the direction of v⃗ to
obtain a lower-dimensional problem (noting that then we also have W +Rv⃗ = W). Indeed, consider a linear
map ϕ : Rr → Rr−1 with kernel span(v⃗), and observe that ϕ(Z) is a quadric on the (d − 1)-dimensional
affine-linear subspace ϕ(W). Then, we have

Pr[X⃗ ∈ Z] = Pr[ϕ(X⃗) ∈ ϕ(Z)] ≤ 2(d−1)(r−1)+1

t(r−d)/2
,

by our induction hypothesis (noting that among ϕ(⃗a1), . . . , ϕ(⃗an) one can still form t disjoint bases), and the
desired result follows.

Step 3: Decoupling. Now, we can assume that Z ⊆ W is an irreducible quadric and that there is no
direction v⃗ ̸= 0⃗ such that Z + Rv⃗ = Z. Let W̃ ⊆ Rr be the (d + 1)-dimensional linear subspace parallel to
W (i.e., W = W̃ + w⃗ for some w⃗ ∈ Rr). For any x⃗ ̸= y⃗ with x⃗− y⃗ ∈ W̃, by Lemma 4.3 (with an affine-linear
isomorphism Rd → W − x⃗), the intersection (Z − x⃗) ∩ (Z − y⃗) is a quadric on a d-dimensional affine-linear
subspace Wx⃗,y⃗ ⊊ W̃ + w⃗x⃗,y⃗ for some w⃗x⃗,y⃗ ∈ Rr. The next step is to split our random variable into two parts
and use the decoupling lemma (Lemma 3.6) to relate our probability Pr[X⃗ ∈ Z] to probabilities that certain
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random variables lie in quadrics of the form (Z − x⃗) ∩ (Z − y⃗) (these probabilities can then be bounded via
the induction hypothesis).

Let [n] = I ∪ J be a partition of the index set [n] into two subsets I, J such that one can form t/2 disjoint
bases from the vectors a⃗i for i ∈ I, and one can also form t/2 disjoint bases from the vectors a⃗j for j ∈ J .
Let X⃗I =

∑
i∈I ξia⃗i and let X⃗J =

∑
j∈J ξj a⃗j (so X⃗ = X⃗I + X⃗J) and let X⃗ ′

I be an independent copy of the
random variable X⃗I . By decoupling (Lemma 3.6) we have

Pr[X⃗ ∈ Z]2 ≤ Pr[X⃗I + X⃗J ∈ Z and X⃗ ′
I + X⃗J ∈ Z]

= Pr[X⃗J ∈ (Z − X⃗I) ∩ (Z − X⃗ ′
I) and X⃗I ̸= X⃗ ′

I ] + Pr[X⃗I + X⃗J ∈ Z and X⃗ ′
I = X⃗I ]. (4.1)

Step 4: Dealing with degenerate intersection. We now study the second term in (4.1) (which can be
thought of as a lower-order “error term” corresponding to the possibility that decoupling does not actually
reduce the dimension of our problem).

For any outcome of X⃗I , we have Pr[X⃗ ′
I = X⃗I | X⃗I ] ≤ (t/2)−r/2 by Halász’ theorem (Corollary 3.4, taking W

to be a single point). So,

Pr[X⃗I + X⃗J ∈ Z and X⃗ ′
I = X⃗I ] ≤ Pr[X⃗I + X⃗J ∈ Z] · (t/2)−r/2 = Pr[X⃗ ∈ Z] · (t/2)−r/2. (4.2)

Step 5: Inductively bounding the main term. Now we deal with the first term in (4.1). Recalling
that W̃ ⊆ Rr is the (d + 1)-dimensional linear subspace parallel to W, note that it is impossible to have
X⃗J ∈ (Z − X⃗I) ∩ (Z − X⃗ ′

I) if X⃗I − X⃗ ′
I ̸∈ W̃ (since then (Z − X⃗I) ∩ (Z − X⃗ ′

I) ⊆ (W − X⃗I) ∩ (W − X⃗ ′
I) = ∅).

So, we combine our induction hypothesis with a bound on the probability that X⃗I − X⃗ ′
I ∈ W̃.

For all outcomes of X⃗ ′
I , by Halász’ theorem (Corollary 3.4) we have

Pr[X⃗I − X⃗ ′
I ∈ W̃ | X⃗ ′

I ] = Pr[X⃗I ∈ W̃ + X⃗ ′
I | X⃗ ′

I ] ≤ (t/2)−(r−d−1)/2.

Also, for any outcomes of X⃗I , X⃗
′
I such that X⃗I ̸= X⃗ ′

I and X⃗I − X⃗ ′
I ∈ W̃, by the discussion in Step 3, the

intersection (Z − X⃗I)∩ (Z − X⃗ ′
I) is a quadric on a d-dimensional affine-linear subspace WX⃗I ,X⃗′

I
⊆ Rr. So by

our induction hypothesis we have

Pr[X⃗J ∈ (Z − X⃗I) ∩ (Z − X⃗ ′
I) | X⃗I , X⃗

′
I ] ≤

2(d−1)r+1

(t/2)(r−d+1)/2
.

Thus, we obtain

Pr[X⃗J ∈ (Z − X⃗I)∩ (Z − X⃗ ′
I) and X⃗I ̸= X⃗ ′

I ] ≤ (t/2)−(r−d−1)/2 · 2(d−1)r+1

(t/2)(r−d+1)/2
=

2(d−1)r+1

(t/2)r−d
≤ 2dr+1

tr−d
. (4.3)

Step 6: Concluding. We can now deduce from (4.1), (4.2) and (4.3) that

Pr[X ∈ Z]2 ≤ Pr[X ∈ Z] · (t/2)−r/2 +
2dr+1

tr−d
= Pr[X ∈ Z] · 2

r/2

tr/2
+

2dr+1

tr−d
.

So, by Lemma 3.8 we have (also using that d ≥ 1 and r ≥ d+ 1 ≥ 2)

Pr[X ∈ Z] ≤ 2r/2

tr/2
+

2(dr+1)/2

t(r−d)/2
≤ 2dr+1

t(r−d)/2
,

as desired.
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5 Proof strategy for the general case

Now we turn to the general (not necessarily low-rank) case of Theorem 1.1. Actually, we consider the following
variation on Theorem 1.1, with a slightly more technical assumption on Q (namely, we need to assume that
the quadratic part of Q “robustly depends on many different variables”). This assumption is very similar to
assumptions in some previous Littlewood–Offord-type theorems [37, 43].

Theorem 5.1. Let Q ∈ R[x1, . . . , xn] be a multivariate quadratic polynomial with quadratic part x⃗⊺Ax⃗ for
some symmetric matrix A ∈ Rn×n. Let s ≥ 1 be an integer, and assume that for every subset S ⊆ [n] with
|S| ≥ n− s, the submatrix A[S × S] has at least one nonzero entry outside its diagonal. Then for a sequence
ξ⃗ ∈ {−1, 1}n of independent Rademacher random variables, we have

Pr[Q(ξ⃗) = 0] ≤ C ′
√
s
,

for some absolute constant C ′.

The reason that the assumption in Theorem 5.1 only pays attention to the nondiagonal entries of A is that
the diagonal entries correspond to square terms of the form x2

i . If xi ∈ {−1, 1} then x2
i is always equal to

1, so such square terms can be treated as constants (and therefore they “do not really contribute” to the
quadratic part of Q).

In Section 11 we will show how to deduce Theorem 1.1 (and Theorem 1.2 for general distributions) from
Theorem 5.1. For most of the rest of the paper, we will focus on proving Theorem 5.1.

At a high level, the strategy to prove Theorem 5.1 is similar to the proof of Theorem 4.2: in order to estimate
the probability Pr[Q(ξ⃗) = 0] for a given quadratic polynomial Q ∈ R[x1, . . . , xn], we inductively estimate
probabilities of the form Pr[Q(ξ⃗) = 0 and Mξ⃗ = w⃗] for a given matrix M ∈ Rk×n and a given vector w⃗ ∈ Rk

(i.e., we estimate the probability that ξ⃗ lies in a given quadric on a given affine-linear subspace). However,
there are additional difficulties in comparison to the proof of Theorem 4.2 in the previous section.

Most importantly, recall that in Theorem 4.2 we worked with a random vector ξ1a⃗1 + . . . ξna⃗n which has “a
lot of anticoncentration in each direction” (we assumed that there are many disjoint bases among the vectors
a⃗1, . . . , a⃗n). This was only possible since the dimension of our space was much less than n: to be precise,
that proof approach can only obtain bounds of the form O(1/

√
n) when we have Ω(n) disjoint bases among

the vectors a⃗1, . . . , a⃗n, which is only possible when we are working in O(1)-dimensional space.

In the proof of Theorem 5.1 we work directly with the random vector ξ⃗ ∈ {−1, 1}n in n-dimensional space.
We cannot ensure good anticoncentration in all directions, so we need to restrict the affine-linear subspaces
we can consider. Specifically, we prove bounds on Pr[Q(ξ⃗) = 0 and Mξ⃗ = w⃗] only when the matrix M
satisfies a Halász-type robust rank condition (as in Definition 3.1). This means that we now need to maintain
this robust rank condition as M changes over the course of the induction.

Also, we encounter much more delicate nondegeneracy issues than in the proof of Theorem 4.2. In particular,
even if Q satisfies the nondegeneracy condition in Theorem 5.1 (robustly depending on many variables), it may
become very degenerate when restricted to a subspace of the form {x⃗ : Mx⃗ = w⃗} for a matrix M ∈ Rk×n and
a vector w⃗ ∈ Rk. For example, consider the case where n is divisible by 2 and Q ∈ R[x1, . . . , xn], M ∈ R1×n

and w⃗ ∈ R1 are defined by

Q(x⃗) = (x1 + · · ·+ xn/2)(xn/2+1 + · · ·+ xn), M = (1, . . . , 1, 0, . . . , 0), w⃗ = 0 (5.1)

(where the first n/2 entries of M ∈ R1×n are “1” and the last n/2 entries are “0”). In this case Q is always
zero on the subspace {x⃗ ∈ Rn : Mx⃗ = w⃗}. So, in order to be able to obtain a sensible bound, we need to
ensure that Q satisfies a nondegeneracy condition with respect to M .

In the rest of this section we describe the strategy of the proof of Theorem 5.1 in a bit more detail, stating
several key lemmas and definitions along the way. First, we elaborate on the “nondegeneracy with respect to
M ” condition mentioned above. To formulate this condition (as well as other similar conditions appearing
later in the proof), we define the notion of a (T,U)-perturbation, as follows.
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Definition 5.2. For matrices A ∈ Rn×m and T ∈ Rk×m and U ∈ Rk×n, a (T,U)-perturbation of A is a
matrix A′ ∈ Rn×m of the form A′ = A+ LT + U⊺R for some matrices L ∈ Rn×k and R ∈ Rk×m, i.e., some
matrix that can be obtained from A by adding linear combinations of rows of T to its rows, and adding linear
combinations of rows of U to its columns.

As the degenerate k = 0 case of the above definition, note that if T ∈ R0×m and U ∈ R0×n are “empty
matrices”, then A′ ∈ Rn×m is a (T,U)-perturbation of A if and only if A′ = A.

For Q,M, w⃗ as defined in the example in (5.1), we can write Q(x⃗) = x⃗⊺Ax⃗ for a symmetric matrix A ∈ Rn×n

(with a block structure where the bottom left block and the top right block, each of size (n/2) × (n/2),
have all entries being 1/2, and all entries outside these blocks are 0). It turns out that this matrix A is an
(M,M)-perturbation of the zero matrix in Rn×n. Roughly speaking, this is the reason for the degenerate
behaviour of Q on the subspace {x⃗ : Mx⃗ = w⃗}. In general, the notion of an (M,M)-perturbation gives a
condition under which two n×n matrices give rise to quadratic polynomials which are “essentially the same”
on an affine-linear subspace of the form {x⃗ : Mx⃗ = w⃗}, as follows.

Lemma 5.3. Fix a matrix M ∈ Rk×n, a vector w⃗ ∈ Rk, and a quadratic polynomial Q ∈ R[x1, . . . , xn] with
quadratic part x⃗⊺Ax⃗ (where A ∈ Rn×n).

Consider an (M,M)-perturbation A′ of A, and let A∗ ∈ Rn×n be a matrix which agrees with A′ on its off-
diagonal entries. Then, there is a quadratic polynomial Q∗ ∈ [x1, . . . , xn] with quadratic part x⃗⊺A∗x⃗ such that
Q∗(ξ⃗) = Q(ξ⃗) for all ξ⃗ ∈ {−1, 1}n with Mξ⃗ = w⃗. In particular, for a sequence ξ⃗ ∈ {−1, 1}n of independent
Rademacher random variables, we have

Pr[Q(ξ⃗) = 0 and Mξ⃗ = w⃗] = Pr[Q∗(ξ⃗) = 0 and Mξ⃗ = w⃗].

Proof. Let A∗ = A′ +D = A+ LM +M⊺R+D for some matrices L ∈ Rn×k and R ∈ Rk×n and a diagonal
matrix D ∈ Rn×n, and let λ1, . . . , λn ∈ R be the diagonal entries of D. Then

x⃗
⊺
A∗x⃗ = x⃗

⊺
Ax⃗+ x⃗

⊺
LMx⃗+ x⃗

⊺
M

⊺
Rx⃗+ x⃗

⊺
Dx⃗ = x⃗

⊺
Ax⃗+ (Mx⃗)

⊺
L
⊺
x⃗+ (Mx⃗)

⊺
Rx⃗+ (λ1x

2
1 + · · ·+ λnx

2
n).

Thus, for every ξ⃗ ∈ {−1, 1}n with Mξ⃗ = w⃗, we have

ξ⃗
⊺
A∗ξ⃗ = ξ⃗

⊺
Aξ⃗ + w⃗

⊺
L
⊺
ξ⃗ + w⃗

⊺
Rx⃗+ (λ1ξ

2
1 + · · ·+ λnξ

2
n) = ξ⃗

⊺
Aξ⃗ + w⃗

⊺
(L

⊺
+R)ξ⃗ + (λ1 + · · ·+ λn).

Hence, we can define the desired quadratic polynomial Q∗ ∈ [x1, . . . , xn] with quadratic part x⃗⊺A∗x⃗ by

Q∗(x⃗) = Q(x⃗) + x⃗
⊺
A∗x⃗− x⃗

⊺
Ax⃗− w⃗

⊺
(L

⊺
+R)x⃗− (λ1 + · · ·+ λn),

and we indeed have Q∗(ξ⃗) = Q(ξ⃗) for all ξ⃗ ∈ {−1, 1}n with Mξ⃗ = w⃗.

Now, recall that our strategy to prove Theorem 5.1 is to inductively upper-bound probabilities of the form
Pr[Q(ξ⃗) = 0 and Mξ⃗ = w⃗], assuming that M satisfies a robust rank condition, and assuming a nondegeneracy
condition on Q with respect to M . It will be convenient to introduce some notation for the maximum possible
such probability, as follows.

Definition 5.4. For an integer k ≥ 0 and real number s ≥ 0, let us define

f(k, s) = sup
(n,Q,M,w⃗)

Pr[Q(ξ⃗) = 0 and Mξ⃗ = w⃗],

where the supremum is taken over all quadruples (n,Q,M, w⃗), where n is a positive integer, Q ∈ R[x1, . . . , xn]
is a quadratic polynomial, M ∈ Hk×n(s) and w⃗ ∈ Rk, such that the following condition holds:

(∗) If we write the quadratic part of Q(x⃗) as x⃗⊺Ax⃗ for a symmetric matrix A ∈ Rn×n, then for every subset
S ⊆ [n] with |S| ≥ n− s, and every (M,M)-perturbation A′ of A, the submatrix A′[S × S] has at least
one nonzero entry outside the diagonal.
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For each such quadruple (n,Q,M, w⃗), the probability above is taken with respect to a sequence of independent
Rademacher random variables ξ⃗ ∈ {−1, 1}n.

Note that we always have f(k, s) ≤ 1, since f(k, s) is defined as a supremum of certain probabilities (which
are all at most 1). Also note that for 0 ≤ s′ ≤ s, we always have f(k, s) ≤ f(k, s′) (since the supremum in
the definition of f(k, s′) is taken over a wider range of quadruples (n,Q,M, w⃗) than for f(k, s)).

Note that for a polynomial Q ∈ R[x1, . . . , xn] and an integer s ≥ 1 as in Theorem 5.1, condition (∗) is
satisfied for k = 0, the empty matrix M ∈ R0×n and the empty vector w⃗ ∈ R0. Indeed, writing the quadratic
part of Q as x⃗⊺Ax⃗ for a symmetric matrix A ∈ Rn×n, the only (M,M) perturbation A′ of A is A′ = A,
and by the assumption in Theorem 5.1 the matrix A′[S × S] = A[S × S] has at least one nonzero entry
outside the diagonal for every subset S ⊆ [n] with |S| ≥ n− s. Therefore we have (noting that the condition
Mξ⃗ = w⃗ ∈ R0 is vacuous)

Pr[Q(ξ⃗) = 0] = Pr[Q(ξ⃗) = 0 and Mξ⃗ = w⃗] ≤ f(0, s).

Thus, proving Theorem 5.1 amounts to showing that f(0, s) ≤ C ′/
√
s for some absolute constant C ′.

Now, the following recursive upper bound on f(k, s) is the main ingredient in our proof of Theorem 5.1.

Theorem 5.5. For any integer k ≥ 0 and any real number s > 0, we have

f(k, s) ≤ max
{
s
−(k+1)/2
∗ , s

−(k+2)/2
∗ + s

−k/4
∗ · f(k + 1, s∗)

1/2
}
,

where s∗ = s/(k + 2)500.

Using this recursive bound, we can obtain an upper bound for f(k, s) inductively (the formula for this upper
bound is rather complicated, so we postpone this calculation to Section 10). With another straightforward
(though somewhat technical) calculation, one can then show that in the k = 0 case this upper bound implies
Theorem 5.1. This latter calculation can also be found in Section 10.

To prove Theorem 5.5, we need to upper-bound Pr[Q(ξ⃗) = 0 and Mξ⃗ = w⃗] for Q,M, w⃗ satisfying the
conditions in Definition 5.4, in terms of a probability of the same form but with slightly different parameters
(most importantly, with “k + 1” in place of “k”). To do so, we use our inductive decoupling scheme outlined
in Section 2.3: we consider a partition [n] = I ∪ J of the index set into two parts I and J , and, using the
decoupling inequality in Lemma 3.6, we will obtain an upper bound on Pr[Q(ξ⃗) = 0 and Mξ⃗ = w⃗] involving
conditional probabilities of the form

Pr
[
Qξ⃗[I](ξ⃗[J ]) = 0 and Mξ⃗[I],ξ⃗ ′[I]ξ⃗[J ] = w⃗ξ[I],ξ⃗ ′[I]

∣∣∣ ξ[I], ξ⃗ ′[I]
]
, (5.2)

where Mξ⃗[I],ξ⃗ ′[I] ∈ R(k+1)×J is a (k + 1)× |J | matrix depending on ξ⃗[I] and ξ⃗ ′[I], and Qξ⃗[I] ∈ R[xj : j ∈ J ]

is a quadratic polynomial whose coefficients depend on ξ⃗[I], and w⃗ξ[I],ξ⃗ ′[I] ∈ Rk+1 is a vector depending on

ξ⃗[I] and ξ⃗ ′[I].

In our proof of Theorem 5.5, we wish to upper-bound conditional probabilities of the form in (5.2) by
f(k+1, s∗). Recalling Definition 5.4, this requires that Mξ⃗[I],ξ⃗ ′[I] ∈ H(k+1)×n(s∗) (i.e, that Mξ⃗[I],ξ⃗ ′[I] robustly
has rank at least k + 1). So, as previously outlined, an important ingredient in the proof is a “robust rank
inheritance” lemma, which implies that this robust rank condition for Mξ⃗[I],ξ⃗ ′[I] holds with sufficiently high
probability.

Now, the way in which Mξ⃗[I],ξ⃗ ′[I] is derived from M depends on Q: specifically, one can check that Mξ⃗[I],ξ⃗ ′[I]

is obtained from M [[k]× J ] by adding the vector 2A[J × I](ξ⃗[I]− ξ⃗ ′[I]) as an additional row, where x⃗⊺Ax⃗ is
the quadratic part of Q(x⃗). The statement of our robust rank inheritance lemma requires an assumption on
Q; to specify this assumption we need another definition.
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Definition 5.6. For integers r ≥ 1 and 0 ≤ k ≤ m ≤ n and s ≥ 0, let Mk,m,n
r (s) ⊆ Rk×m × Rk×n × Rn×m

be the set of triples of matrices (T,U,A) ∈ Rk×m × Rk×n × Rn×m for which there exist disjoint subsets
I1, . . . , Is ⊆ [m] and disjoint subsets J1, . . . , Js ⊆ [n] of size |I1| = · · · = |Is| = |J1| = · · · = |Js| = k + r such
that

(a) For t = 1, . . . , s, the submatrix T [[k]× It] has rank k.
(b) For t = 1, . . . , s, the submatrix U [[k]× Jt] has rank k.
(c) For t = 1, . . . , s, every (T [[k]× It], U [[k]× Jt])-perturbation of the matrix A[Jt × It] has rank at least r.

Remark 5.1. If (T,U,A) ∈ Mk,m,n
r (s) for any r ≥ 1, then we automatically have T ∈ Hk×m(s) and U ∈

Hk×n(s). Also note that the property (T,U,A) ∈ Mk,m,n
r (s) is invariant under rescaling any of the matrices

T , U and A.

In our proof of Theorem 5.5, we consider a partition [n] = I ∪ J as outlined above, and take the matrix “A”
in Definition 5.6 to be the matrix A[J × I] together with T = M [[k]× I] and U = M [[k]× J ]. In this case,
(M [[k] × I],M [[k] × J ], A[J × I]) ∈ Mk,I,J

r (s) says (roughly speaking) that A′[J × I] robustly has rank at
least r for any (M,M)-perturbation A′ of A.

Now, our robust rank inheritance lemma is as follows.

Lemma 5.7. Let s ≥ 1 and 0 ≤ k ≤ m ≤ n be integers. Consider (T,U,A) ∈ Mk,m,n
2 (s), and vectors

y⃗ ∈ Rk and b⃗ ∈ Rn. Let ξ⃗ ∈ {−1, 1}m be a sequence of independent Rademacher random variables, and write
U ′
ξ⃗
∈ R(k+1)×n for the (random) matrix obtained by appending the vector Aξ⃗ − b⃗ as an additional row to U .

Then we have

Pr[T ξ⃗ = y⃗ and U ′
ξ⃗
/∈ H(k+1)×n(s/6)] ≤

(
s

1061(k + 2)20

)−(k+2)/2

.

We will prove Lemma 5.7 in Section 7. We remark that on the right-hand side of the inequality, both the “+2”
in the exponent (k + 2)/2 and the “+2” in the denominator are due to the “2” in the assumption (T,U,A) ∈
Mk,m,n

2 (s); in general we would get a “+r” in both of these places if we assumed that (T,U,A) ∈ Mk,m,n
r (s).

The exponent (k + 2)/2 here leads to the exponent (k + 2)/2 appearing in Theorem 5.5, and the “+2” there
is crucial in order to deduce Theorem 5.1 from Theorem 5.5 (just having “+1” there would not suffice).

In order to actually apply Lemma 5.7 in the proof of Theorem 5.5, we would like to show that there is a
partition [n] = I ∪ J such that (M [[k]× I],M [[k]× J ], A[J × I]) ∈ Mk,I,J

2 (s) for a suitable value of s. Such
a partition might not in general exist, because we are making no assumption that A itself even has rank at
least 2. However, if every (M,M)-perturbation of A robustly has rank at least 2 even after changing the
diagonal entries, we can find a suitable partition [n] = I ∪ J using the following lemma.

Lemma 5.8. Let 0 ≤ k ≤ n be integers and let s ≥ 4k + 8 be a real number. Let M ∈ Hk×n(s) and let
A ∈ Rn×n be a symmetric matrix such that rankA∗[S × S] ≥ 2 for any subset S ⊆ [n] of size |S| ≥ n − s
and any matrix A∗ ∈ Rn×n that agrees with some (M,M)-perturbation of A in all off-diagonal entries. Then
there is a partition [n] = I ∪ J , with |I| ≤ s, such that

(M [[k]× I],M [[k]× J ], A[J × I]) ∈ Mk,I,J
2 (⌊s/(4k + 8)⌋).

We prove Lemma 5.8 in Section 8. Roughly speaking, we are able to greedily find the desired subsets
I1, . . . , Is, J1, . . . , Js in the definition of Mk,m,n

2 (s) in Definition 5.6.

To summarise, the proof of Theorem 5.5 combines a number of ingredients. If A does not satisfy the
assumption in Lemma 5.8 (i.e., if some (M,M)-perturbation of A does not robustly have rank at least 2 after
changing the diagonal entries), then we complete the proof using Theorem 4.2 (in the low-rank case, there are
various types of degeneracies to consider, which can be gracefully handled with a geometric point of view).
Otherwise, we apply Lemma 5.8 to find a suitable partition I ∪ J , and we apply the decoupling inequality
in Lemma 3.6 to (ξ⃗[I], ξ⃗[J ]). We manipulate the resulting expression in roughly the same way as in the
proof of Theorem 4.2, and then bound relevant quantities using Lemma 5.7 and Corollary 3.5. After proving
Theorem 5.5, we can obtain Theorem 5.1 with somewhat technical calculations (presented in Section 10).
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In the next section we state and prove a consequence of Theorem 4.2 which will be suitable to handle the
low-rank case of Theorem 5.5. In Section 7 we prove Lemma 5.7 and in Section 8 we prove Lemma 5.8. The
proof of Theorem 5.5 then appears in Section 9.

6 The low-rank case

In this section, we show how to use Theorem 4.2 to deduce the following proposition, which handles the
low-rank case of Theorem 5.5.

Proposition 6.1. Consider integers 0 ≤ k ≤ n and s ≥ 0 and r ≥ 1. Let M ∈ Hk×n(s), let w⃗ ∈ Rk and let
Q ∈ R[x1, . . . , xn] be a quadratic polynomial. Writing the quadratic part of Q(x⃗) as x⃗⊺Ax⃗ for a symmetric
matrix A, assume that rankA ≤ r − 1 and that there is no subset I ⊆ [n] of size |I| ≥ n − s such that the
matrix A[I × I] is an (M [[k]× I],M [[k]× I])-perturbation of the zero matrix in RI×I .

Then for a sequence ξ⃗ ∈ {−1, 1}n of independent Rademacher random variables we have

Pr[Q(ξ⃗) = 0 and Mξ⃗ = w⃗] ≤
(

s

23r2(k + r)2

)−(k+1)/2

. (6.1)

In our proof of Theorem 5.5, we will use Proposition 6.1 only for r = 5, but we still state it here for general
r (as the proof works for any r).

Deducing Proposition 6.1 from Theorem 4.2 mostly consists of translating from “geometric” to “algebraic”
language. To give a some idea of how this works: note that under the assumptions of Proposition 6.1, we
can write

Q(x⃗) = λ1 · (g(1)(x⃗))2 + · · ·+ λr−1 · (g(r−1)(x⃗))2 + g(r)(x⃗) + c

for some λ1, . . . , λr−1, c ∈ R and some linear forms g(1), . . . , g(r−1), g(r) ∈ R[x1, . . . , xn]. That is to say, we
can write

Q(x⃗) = P (g(1)(x⃗), . . . , g(r)(x⃗)) = P (x1a⃗1 + · · ·+ xna⃗n)

for the quadratic polynomial P (y⃗) = λ1y
2
1+ · · ·+λr−1y

2
r−1+yr+c, where for j = 1, . . . , n, the vector a⃗j ∈ Rr

records the coefficients of xj in the linear forms g(1), . . . , g(r). So, the event {Q(ξ⃗) = 0} can be interpreted
as the event that ξ1a⃗1 + · · ·+ ξna⃗n falls in the vanishing locus of the polynomial P . The joint event {Q(ξ⃗) =

0 and Mξ⃗ = w⃗} can be given a similar geometric interpretation: roughly speaking, we consider k additional
linear forms g(r+1), . . . , g(r+k) ∈ R[x1, . . . , xn] corresponding to the k rows of M , augmenting a⃗1, . . . , a⃗n
accordingly with k additional entries each, and then we consider the event that the (r + k)-dimensional
random vector ξ1a⃗1 + · · · + ξna⃗n falls into a certain quadric Z (still described by the same polynomial P )
on the codimension-k affine-linear subspace W ⊆ Rr+k given by W = {y⃗ ∈ Rr+k : y⃗[{r + 1, . . . , r + k} = w⃗}
(this subspace W ⊆ Rr+k corresponds to the system of equations Mξ⃗ = w⃗).

This more-or-less explains how to reduce Proposition 6.1 to the setting of Theorem 4.2. The only complication
is that it may not be possible to find many disjoint bases of Rr+k among the vectors a⃗1, . . . , a⃗n ∈ Rr+k, as
is necessary to apply Theorem 4.2 (in fact, the vectors a⃗1, . . . , a⃗n ∈ Rr+k might not span Rr+k at all). In
this case, we need to “drop to a subspace” that is robustly spanned by most of the a⃗1, . . . , a⃗n (i.e., we need
to identify some large subset I ⊆ [n], such that we can find many disjoint bases of span(⃗ai : i ∈ I) among
the vectors a⃗i for i ∈ I). This, roughly speaking, corresponds to considering only some subset of the linear
forms g(1), . . . , g(r+k), such that the remaining linear forms are “close to” being linear combinations of these
linear forms (i.e., each of the remaining linear forms agrees with such a linear combination in its coefficients
of the variables xi for i ∈ I). The quadratic polynomial P (y⃗) considered above then needs to be changed
appropriately in order to reflect these relations between the linear forms g(1), . . . , g(r+k).

The following lemma encapsulates this translation discussed above, going from the setting of Proposition 6.1
to the setting of Theorem 4.2.
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Lemma 6.2. Consider integers 0 ≤ k ≤ n and s ≥ 0 and r ≥ 1. Let M ∈ Hk×n(s) and let Q ∈ R[x1 . . . , xn]
be a quadratic polynomial. Writing the quadratic part of Q(x⃗) as x⃗⊺Ax⃗ for a symmetric matrix A ∈ Rn×n,
assume that rankA ≤ r−1 and that there is no subset I ⊆ [n] of size |I| ≥ n−s such that the matrix A[I×I]
is an (M [[k]× I],M [[k]× I])-perturbation of the zero matrix in RI×I .

Then, we can find a positive integer ℓ ≤ r, a partition [n] = I ∪S with |S| ≤ s, linear forms g(1), . . . , g(ℓ+k) ∈
R[x1, . . . , xn], and a quadratic polynomial P ∈ R[y1, . . . , yℓ+k, (xi)i∈S ] such that the following conditions hold.

(i) Q(x1, . . . , xn) = P (g(1)(x⃗), . . . , g(ℓ+k)(x⃗), (xi)i∈S).
(ii) For each j = 1, . . . , k, the coefficient vector of g(ℓ+j) is precisely the j-th row of M .
(iii) Writing M ′ ∈ R(ℓ+k)×n for the (ℓ + k) × n matrix whose j-th row is the coefficient vector of g(j) for

j = 1, . . . , ℓ+ k, we have M ′[[ℓ+ k]× I] ∈ H(ℓ+k)×I(s/r).
(iv) There exist j, j′ ∈ [ℓ] such that the coefficient of yjyj′ in P is nonzero.

We remark that the vectors a⃗i for i ∈ I in the informal explanation above correspond to the columns of
the matrix M ′[[ℓ + k] × I] in Lemma 6.2. Condition (iii) ensures that we can find many disjoint bases of
Rℓ+k among these vectors a⃗i for i ∈ I (recall that this is required to apply Theorem 4.2 to these vectors).
Condition (iv) ensures that the polynomial P does not vanish on our entire subspace W (corresponding to a
system of equations of the form Mξ⃗ = w⃗).

Proof. Let us consider the minimum number ℓ ∈ {0, 1, . . . , r} such that there exists a partition [n] =
I ∪ S with |S| ≤ s · (r − ℓ)/r, linear forms g(1), . . . , g(ℓ+k) ∈ R[x1, . . . , xn], and a quadratic polyno-
mial P ∈ R[y1, . . . , yℓ+k, (xi)i∈S ], such that conditions (i) and (ii) hold (i.e., we have Q(x1, . . . , xn) =
P (g(1)(x⃗), . . . , g(ℓ+k)(x⃗), (xi)i∈S) and for each j = 1, . . . , k, the coefficient vector of g(ℓ+j) is precisely the
j-th row of M).

First, in order to see that this minimum number ℓ is well-defined, let us check that ℓ = r satisfies the
conditions. Indeed, given that rankA ≤ r − 1, we can write

Q(x⃗) = λ1 · (g(1)(x⃗))2 + · · ·+ λr−1 · (g(r−1)(x⃗))2 + g(r)(x⃗) + c

for some λ1, . . . , λr−1, c ∈ R and some linear forms g(1), . . . , g(r−1), g(r) ∈ R[x1, . . . , xn]. That is to say,
defining g(r+1), . . . , g(r+k) ∈ R[x1, . . . , xn] to be the linear forms whose coefficient vectors are given by the
rows of M as in condition (ii), we can write

Q(x⃗) = P (g(1)(x⃗), . . . , g(r+k)(x⃗)),

where P (y1, . . . , yr+k) = λ1y
2
1 + · · · + λr−1y

2
r−1 + yr + c (formally this is a polynomial in r + k variables,

despite the fact that yr+1, . . . , yr+k do not actually appear in it). Note that (ii) holds by definition, and
taking I = [n] and S = ∅, condition (i) holds as well and we have |S| = 0 ≤ s · (r− r)/r. Thus, ℓ = r has the
required properties, and the minimum number ℓ above is well-defined.

Now let ℓ be this minimum number, and choose the partition [n] = I ∪ S, the linear forms g(1), . . . , g(ℓ+k) ∈
R[x1, . . . , xn], and the quadratic polynomial P accordingly with the properties above. Note that |S| ≤
s · (r − ℓ)/r ≤ s, and consequently |I| ≥ n − s. It remains to show that ℓ ≥ 1 and that conditions (iii) and
(iv) hold.

Let us first show (iv). Suppose for contradiction that in the quadratic polynomial P , the coefficient of yjyj′
is zero for all j, j′ ∈ [ℓ]. Then the quadratic part of Q(x1, . . . , xn) = P (g(1)(x⃗), . . . , g(ℓ+k)(x⃗), (xi)i∈S) can be
written as a linear combination of terms of the form g(j)(x⃗)xh with j ∈ {ℓ + 1, . . . , ℓ + k} and h ∈ [n], and
terms of the form xhxi with h ∈ [n] and i ∈ S. By (3.1), this leads to a representation of the symmetric
matrix A as a linear combination of matrices of the form v⃗j e⃗

⊺
h , e⃗hv⃗

⊺
j , e⃗ie⃗

⊺
h and e⃗he⃗

⊺
i for j ∈ {ℓ+1, . . . , ℓ+k},

h ∈ [n] and i ∈ S, where e⃗1, . . . , e⃗n are the standard basis vectors in Rn, and v⃗ℓ+1, . . . , v⃗ℓ+k ∈ Rn denote
the coefficient vectors of g(ℓ+1), . . . , g(ℓ+k) (i.e., the row vectors of M , by condition (ii)). Hence the matrix
A[I × I] is a linear combination of matrices of the form v⃗j [I]e⃗

⊺
h [I] and e⃗h[I]v⃗

⊺
j [I] for j ∈ {ℓ + 1, . . . , ℓ + k}

and h ∈ I. Recalling that v⃗ℓ+1, . . . , v⃗ℓ+k are the row vectors of the matrix M , this means that A[I × I] is a
(M [[k]× I],M [[k]× I])-perturbation of the zero matrix, contradicting our assumption. So indeed, for some
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monomial yjyj′ with j, j′ ∈ [ℓ], the coefficient of yjyj′ in P must be nonzero. This also automatically implies
that ℓ ≥ 1.

It now remains to show (iii), i.e., to show that for the matrix M ′ ∈ R(ℓ+k)×n whose rows are given by the
coefficient vectors of g(1), . . . , g(ℓ+k) we have M ′[[ℓ + k] × I] ∈ H(ℓ+k)×I(s/r). Assume the contrary; then
there exists a nontrivial linear combination of the rows of M ′[[ℓ + k] × I] yielding a vector with at most
s/r nonzero entries. By (ii), the rows of the matrix M ′[{ℓ + 1, . . . , ℓ + k} × [n]] agree with the rows of the
matrix M , and we therefore have M ′[{ℓ+1, . . . , ℓ+k}× [n]] ∈ Hk×n(s) (recalling that M ∈ Hk×n(s)). Using
|S| ≤ s · (r−ℓ)/r ≤ s · (r−1)/r, we can conclude that M ′[{ℓ+1, . . . , ℓ+k}×I] ∈ Hk×I(s−|S|) ⊆ Hk×I(s/r),
so our linear combination cannot only involve rows with indices in {ℓ+ 1, . . . , ℓ+ k}. Thus, we may assume
without loss of generality that it involves the first row of M ′[[ℓ+ k]× I], meaning that this first row differs
in at most s/r entries from some linear combination of the other rows of M ′[[ℓ + k] × I]. In other words,
we can write g(1) as a linear combination of g(2), . . . , g(ℓ+k) and xi for i ∈ S ∪ S′, for some subset S′ ⊆ [n]
of size |S′| ≤ s/r. But this means that Q(x1, . . . , xn) = P (g(1)(x⃗), . . . , g(ℓ+k)(x⃗), (xi)i∈S) can be written as
P ∗(g(2)(x⃗), . . . , g(ℓ+k)(x⃗), (xi)i∈S∪S′) for some quadratic polynomial P ∗ ∈ R[y2, . . . , yℓ+k, (xi)i∈S∪S′ ]. Since
|S ∪ S′| ≤ |S| + |S′| ≤ s · (r − ℓ)/r + s/r = s · (r − ℓ + 1)/r, this contradicts the minimality of ℓ (we now
have a suitable representation of Q in terms of the (ℓ− 1)+ k linear forms g(2), . . . , g(ℓ+k)). So we must have
M ′[[ℓ+ k]× I] ∈ H(ℓ+k)×I(s/r), as desired.

Using Lemma 6.2 and Theorem 4.2, we now prove Proposition 6.1.

Proof of Proposition 6.1. First, note that we may assume that s ≥ 23r
2

(k + r)2, since otherwise (6.1) is
trivially true. Now, apply Lemma 6.2 to obtain a positive integer ℓ ≤ r, a partition [n] = I ∪ S, linear forms
g(1), . . . , g(ℓ+k) ∈ R[x1, . . . , xn] and a quadratic polynomial P ∈ R[y1, . . . , yℓ+k, (xi)i∈S ] satisfying conditions
(i) to (iv) in the statement of the lemma.

Our plan is to show that the bound in (6.1) holds even if we condition on an arbitrary outcome of ξ⃗[S]

(leaving only the randomness in ξ⃗[I]). For any outcome of ξ⃗[S], when plugging in xi = ξ⃗[i] for i ∈ S into
the polynomial Q(x⃗) and the linear forms g(1)(x⃗), . . . , g(ℓ+k)(x⃗), we obtain a polynomial Qξ⃗[S](x⃗[I]) and

linear functions g
(1)
∗ (x⃗[I]) + c

(1)

ξ⃗[S]
, . . . , g

(ℓ+k)
∗ (x⃗[I]) + c

(ℓ+k)

ξ⃗[S]
(where g

(1)
∗ (x⃗[I]), . . . , g

(ℓ+k)
∗ (x⃗[I]) are the linear

forms obtained from g(1)(x⃗), . . . , g(ℓ+k)(x⃗) by omitting all terms with variables xi for i ∈ S, and where
c
(1)

ξ⃗[S]
, . . . , c

(ℓ+k)

ξ⃗[S]
∈ R are real numbers that may depend on ξ⃗[S]) and by (i) we obtain that Qξ⃗[S](x⃗[I]) =

P
(
g
(1)
∗ (x⃗[I]) + c

(1)

ξ⃗[S]
, . . . , g

(ℓ+k)
∗ (x⃗[I]) + c

(ℓ+k)

ξ⃗[S]
, (ξ[i])i∈S

)
. For any outcome of ξ⃗[S], we can furthermore write

P
(
y1 + c

(1)

ξ⃗[S]
, . . . , yℓ+k + c

(ℓ+k)

ξ⃗[S]
, (ξ[i])i∈S

)
= Pξ⃗[S](y1, . . . , yℓ+k) for a polynomial Pξ⃗[S] ∈ R[y1, . . . , yℓ+k] whose

coefficients may depend on ξ⃗[S]. Then we always have Qξ⃗[S](x⃗[I]) = Pξ⃗[S]

(
g
(1)

ξ⃗[S]
(x⃗[I]]), . . . , g

(ℓ+k)

ξ⃗[S]
(x⃗[I])

)
.

Recall that the coefficient vectors of the linear forms g(1)∗ (x⃗[I]), . . . , g
(ℓ+k)
∗ (x⃗[I]) are obtained by restricting the

coefficient vectors of g(1)(x⃗), . . . , g(ℓ+k)(x⃗) to the index set I. In particular, by condition (ii), for j = 1, . . . , k

the coefficient vector of g(ℓ+j)
∗ (x⃗[I]) is the restriction M [[j]× I] of the j-th row of M to I. We then have

Pr
[
Q(ξ⃗) = 0 and Mξ⃗ = w⃗

∣∣∣ ξ⃗[S]]
= Pr

[
Qξ⃗[S](ξ⃗[I]) = 0 and M [[k]× I]ξ⃗[I] = w⃗ξ⃗[S]

∣∣∣ ξ⃗[S]]
= Pr

[
Pξ⃗[S](g

(1)
∗ (ξ⃗[I]), . . . , g

(ℓ+k)
∗ (ξ⃗[I])) = 0 and g

(ℓ+j)
∗ (ξ⃗[I]) = w⃗ξ⃗[S][j] for j = 1, . . . , k

∣∣∣ ξ⃗[S]]
for any outcome of ξ⃗[S], where w⃗ξ⃗[S] = w⃗ −M [[k] × S]ξ⃗[S] ∈ Rk. We wish to show that for all outcomes of

ξ⃗[S], the above conditional probability is bounded by the right-hand side of (6.1).

Recall that P ∈ R[y1, . . . , yℓ+k, (xi)i∈S ] is a quadratic polynomial, and by condition (iv), for some j, j′ ∈ [ℓ]
the coefficient of yjyj′ in P is nonzero. This means that the coefficient of yjyj′ in Pξ⃗[S](y1, . . . , yℓ+k) ∈
R[y1, . . . , yℓ+k] is still nonzero, for any outcome of ξ⃗[S].
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Since the coefficient vectors of the linear forms g(1)(x⃗), . . . , g(ℓ+k)(x⃗) ∈ R[x1, . . . , xn] are the rows of the
matrix M ′ in condition (iii), the coefficient vectors of g(1)∗ (x⃗[I]), . . . , g

(ℓ+k)
∗ (x⃗[I]) ∈ R[xi : i ∈ I] are the rows

of the matrix M ′[[ℓ+ k]× I]. Now, define the vectors a⃗i ∈ Rℓ+k, for i ∈ I, to be the columns of the matrix
M ′[[ℓ+ k]× I]. Then for any outcome of ξ⃗[I], the vector

(
g
(1)
∗ (ξ⃗[I]), . . . , g

(ℓ+k)
∗ (ξ⃗[I])

)
agrees with

∑
i∈I ξ⃗[i]⃗ai.

Furthermore, as M ′[[ℓ+ k]× I] ∈ H(ℓ+k)×I(s/r), by Lemma 3.2(ii) the matrix M ′[[ℓ+ k]× I] must contain
⌈s/(r(ℓ+ k))⌉ ≥ ⌈s/(k + r)2⌉ disjoint nonsingular (ℓ+ k)× (ℓ+ k) submatrices, so among the vectors a⃗i for
i ∈ I we can form ⌈s/(k + r)2⌉ disjoint bases of Rℓ+k. Consider the largest integer t ≤ ⌈s/(k + r)2⌉ which is
divisible by 2ℓ−1, and note that t ≥ ⌈s/(k + r)2⌉/2 ≥ s/(2(k + r)2), since ⌈s/(k + r)2⌉ ≥ 23r

2 ≥ 2ℓ−1.

Now, for any outcome of ξ⃗[S], we obtain

Pr
[
Q(ξ⃗) = 0 and Mξ⃗ = w⃗

∣∣∣ ξ⃗[S]]
= Pr

[
Pξ⃗[S]

(∑
i∈I

ξ⃗[i]⃗ai

)
= 0 and

∑
i∈I

ξ⃗[i]⃗ai[ℓ+ j] = w⃗ξ⃗[S][j] for j = 1, . . . , k

∣∣∣∣∣ ξ⃗[S]
]

= Pr

[
Pξ⃗[S]

(∑
i∈I

ξ⃗[i]⃗ai

)
= 0 and

∑
i∈I

ξ⃗[i]⃗ai ∈ Wξ⃗[S]

∣∣∣ ξ⃗[S]] = Pr

[∑
i∈I

ξ⃗[i]⃗ai ∈ Zξ⃗[S]

∣∣∣∣∣ ξ⃗[S]
]
,

where Wξ⃗[S] ⊆ Rℓ+k is the ℓ-dimensional affine-linear subspace consisting of the points y⃗ ∈ Rℓ+k with
y⃗[ℓ + j] = w⃗ξ⃗[S][j] for j = 1, . . . , k, and Zξ⃗[S] ⊆ Wξ⃗[S] is the subset of Wξ⃗[S] given by Zξ⃗[S] = {y⃗ ∈ Wξ⃗[S] :

Pξ⃗[S](y⃗) = 0}.

We claim that for any outcome of ξ⃗[S], we have Zξ⃗[S] ⊊ Wξ⃗[S], i.e., Zξ⃗[S] is a quadric on Wξ⃗[S]. Indeed, if we
had Zξ⃗[S] = Wξ⃗[S], then the polynomial Pξ⃗[S] would be identically zero on the entire subspace Wξ⃗[S] ⊆ Rℓ+k.
Note that on the space Wξ⃗[S], we can identify Pξ⃗[S] with some quadratic polynomial in the variables y1, . . . , yℓ
(obtained by substituting yℓ+j = w⃗ξ⃗[S][j] for j = 1, . . . , k). This polynomial has a nonzero coefficient for some
monomial of the form yjyj′ with j, j′ ∈ [ℓ], since Pξ⃗[S] also has a nonzero coefficient for such a monomial.
Hence the polynomial Pξ⃗[S] cannot vanish on the entire subspace Wξ⃗[S], so indeed Zξ⃗[S] ⊊ Wξ⃗[S].

Recalling that among the vectors a⃗i for i ∈ I we can form t disjoint bases of Rℓ+k, we can now apply
Theorem 4.2 (after conditioning on any outcome of ξ⃗[S]) and obtain the bound

Pr
[
Q(ξ⃗) = 0 and Mξ⃗ = w⃗

∣∣∣ ξ⃗[S]] = Pr

[∑
i∈I

ξ⃗[i]⃗ai ∈ Zξ⃗[S]

∣∣∣∣∣ ξ⃗[S]
]

≤ 2(ℓ−1)(ℓ+k)+1

t((ℓ+k)−(ℓ−1))/2
≤ 2(ℓ−1)ℓ(k+1)+1

t(k+1)/2
≤ 2ℓ

2(k+1)

(s/(2(k + r)2))(k+1)/2

≤

(
23ℓ

2

(k + r)2

s

)(k+1)/2

=

(
s

23r2(k + r)2

)−(k+1)/2

,

as desired.

7 Robust rank inheritance

In this section, we prove Lemma 5.7 (the robust rank inheritance lemma). Actually, we will deduce Lemma 5.7
from the following somewhat simpler statement with just two matrices T,A instead of three matrices T,U,A
(to deduce Lemma 5.7, we will take r = 2 in the statement below).

Lemma 7.1. Let r ≥ 1 and s ≥ 1 and 0 ≤ k ≤ m ≤ n be integers. Consider matrices T ∈ Rk×m and
A ∈ Rn×m, and vectors w⃗ ∈ Rk and v⃗ ∈ Rn. Assume that there exist disjoint subsets I1, . . . , Is ⊆ [m] and
disjoint subsets J1, . . . , Js ⊆ [n] of size |I1| = · · · = |Is| = |J1| = · · · = |Js| = k + r such that:
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(i) For t = 1, . . . , s, the submatrix T [[k]× It] has rank k.
(ii) For t = 1, . . . , s, every (T [[k]× It], 0)-perturbation of the matrix A[Jt × It] has rank at least r.

Then, for a sequence of independent Rademacher random variables ξ⃗ = (ξ1, . . . , ξm) ∈ {−1, 1}m, we have

Pr[T ξ⃗ = w⃗ and Aξ⃗ − v⃗ has at most s/6 nonzero coordinates] ≤
(

s

1060(k + r)20

)−(k+r)/2

. (7.1)

Note that if k = 0, then condition (i) is vacuous, and in condition (ii), there are no nontrivial (T [[k]× It], 0)-
perturbations. This case of Lemma 7.1 implies Lemma 2.1 (the “Hamming norm” anticoncentration inequality
mentioned in Section 2); the formal deduction can be found at the end of this section.

Also, note that assumptions (i) and (ii) in particular imply that for all t = 1, . . . , s we have

rank

(
A[Jt × It]
T [[k]× It]

)
≥ k + r. (7.2)

Indeed, if this rank were at most k + r − 1, then one would be able to form a basis of the row span of the
above matrix using the k rows of T [[k] × It] and up to r − 1 rows of A[Jt × It] (recall that by assumption
(i) the rows of the matrix T [[k]× It] are linearly independent). But then it would be possible to add linear
combinations of the rows of T [[k] × It] to the rows of A[Jt × It] to obtain a matrix of rank at most r − 1,
contradicting assumption (ii).

In order to prove Lemma 7.1 we will employ a witness-counting approach (as outlined in Section 2.4). We
need to bound the probability that T ξ⃗ = w⃗ and Aξ⃗ − v⃗ has more than n− s/6 zero coordinates. Note that
we can use Halász’ inequality (Theorem 3.3) to upper-bound the probability that T ξ⃗ = w⃗ and a particular
set of coordinates of Aξ⃗ − v⃗ are zero. However, it is far too wasteful to simply take a union bound over all
subsets of n− s/6 coordinates. Instead, we consider certain types of “witness” sequences (h1, . . . , hz) ∈ [n]z

of indices where the coordinates of Aξ⃗ − v⃗ are zero. If Aξ⃗ − v⃗ has many zero coordinates, there must be
many such “witness” sequences, but on the other hand we can bound the expected number of such “witness”
sequences by considering the probability that (Aξ⃗ − v⃗)[{h1, . . . , hz}] = 0⃗ (and T ξ⃗ = w⃗) for a given such
sequence (h1, . . . , hz).

The following lemma states that under the assumptions of Lemma 7.1, one can find a large submatrix of A
which “has its rank robustly” (the assumptions of the assumptions of Lemma 7.1 guarantee that A robustly
has rank at least r, but the rank of A may actually be much larger than r, and that larger rank may be
“fragile”). More precisely, we can find such a submatrix even within any large specified set H of rows.

Lemma 7.2. Let r, k, s,m, n ∈ Z, the matrices T ∈ Rk×m and A ∈ Rn×m, and the sets J1, . . . , Js ⊆ [n] be
as in Lemma 7.1. Then for any subset H ⊆ J1 ∪ · · · ∪ Js of size |H| ≥ (k + r)s − (2/3)s, there are subsets
J ⊆ H and I ⊆ [m] with |J | ≥ |H| − s/6 and |I| ≥ m− s/6 and an integer z ≥ r such that

rank

(
A[J × I]
T [[k]× I]

)
= rank

(
A[J ′ × I ′]
T [[k]× I ′]

)
= k + z (7.3)

for all subsets J ′ ⊆ J and I ′ ⊆ I of sizes |J ′| ≥ |J | − s/(12z2) and |I ′| ≥ |I| − s/(12z2).

Proof. For every integer z ≥ 0, define f(z) =
∑∞

y=z+1 s/(12y
2) and note that f(z) ≤

∑∞
y=1 s/(12y

2) < s/6
for all z ≥ 0. Now consider the minimum integer z ≥ 0 such that there exist subsets J ⊆ H and I ⊆ [m]
with |J | ≥ |H| − f(z) and |I| ≥ m− f(z) and

rank

(
A[J × I]
T [[k]× I]

)
≤ k + z

(such an integer z exists, for example z = m satisfies the condition when taking J = H and I = [m]). We
claim that z ≥ r. Indeed, note that |J | ≥ |H| − f(z) > (k+ r)s− (2/3)s− s/6 = |J1 ∪ · · · ∪ Js| − (5s/6) and
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|I| ≥ m − f(z) > m − s/6, so there are strictly fewer than s indices t ∈ {1, . . . , s} such that It \ I ̸= ∅ or
Jt \ J ̸= ∅. Hence there must be some index t ∈ {1, . . . , s} with It ⊆ I and Jt ⊆ J , and we have

k + z ≥ rank

(
A[J × I]
T [[k]× I]

)
≥ rank

(
A[Jt × It]
T [[k]× It]

)
≥ k + r,

where the last step follows from the assumptions in Lemma 7.1, see (7.2). So we indeed have z ≥ r ≥ 1.

Finally, for any subsets I ′ ⊆ I and J ′ ⊆ J of sizes |I ′| ≥ |I| − s/(12z2) and |J ′| ≥ |J | − s/(12z2), we have
|I ′| ≥ m− f(z)− s/(12z2) = m− f(z− 1) and |J ′| ≥ |H|− f(z)− s/(12z2) = |H|− f(z− 1), so by the choice
of z we must have

k + z ≥ rank

(
A[J × I]
T [[k]× I]

)
≥ rank

(
A[J ′ × I ′]
T [[k]× I ′]

)
≥ k + (z − 1) + 1 = k + z,

implying (7.3).

We can use the robust-rank submatrix guaranteed by Corollary 7.3 to find many sequences (h1, . . . , hz) to
be used as “witnesses”, as follows.

Corollary 7.3. Let r, k, s,m, n ∈ Z, the matrices T ∈ Rk×m and A ∈ Rn×m, and the sets J1, . . . , Js ⊆ [n]
be as in Lemma 7.1. Then for any subset H ⊆ J1 ∪ · · · ∪ Js of size |H| ≥ (k + r)s − (2/3)s, there is some
integer z ≥ r such that there are at least sz/(12z2)z sequences (h1, . . . , hz) ∈ Hz with(

A[{h1, . . . , hz} × [m]]
T

)
∈ H(k+z)×m(s/(12z2)). (7.4)

Proof. Let J ⊆ H and I ⊆ [m] and z ≥ r be as in Lemma 7.2. We first claim that there are at least
sz/(12z2)z sequences (h1, . . . , hz) ∈ Jz ⊆ Hz such that

row-span

(
A[{h1, . . . , hz} × I]

T [[k]× I]

)
= row-span

(
A[J × I]
T [[k]× I]

)
(7.5)

Indeed, the matrix on the right-hand side has rank k + z by (7.3), and the rows of T [[k] × I] are linearly
independent by assumption (i) in Lemma 7.1 (since |I| ≥ m − s/6, there needs to be at least one index
t ∈ {1, . . . , s} with It ⊆ I, meaning that rankT [[k] × I] = T [[k] × It] = k). So we can form a basis of the
row span of the matrix on the right-hand side by taking the rows of T [[k] × I] and adding, one by one, z
different rows of A[J × I]. By (7.3), at every step we have at least s/(12z2) choices for a new row to add to
our basis (indeed, the index set J ′ ⊆ J of all rows in the span of the already selected basis elements must
have size |J ′| < |J | − s/(12z2), since this span has dimension less than k+ z and so otherwise we would have
a contradiction to (7.3) with I ′ = I). Thus, there are indeed at least sz/(12z2)z choices for the sequence
(h1, . . . , hz) ∈ Jz of indices of the rows of A[J × I] selected in this process. For each such sequence (7.5)
holds.

It remains to show that every sequence (h1, . . . , hz) ∈ Jz satisfying (7.5) also satisfies (7.4). So, consider any
(h1, . . . , hz) ∈ Jz satisfying (7.5). To show (7.4), it suffices to show that(

A[{h1, . . . , hz} × I]
T [[k]× I]

)
∈ H(k+z)×I(s/(12z2)). (7.6)

Suppose the contrary; then there exists a subset I ′ ⊆ I of size |I ′| ≥ |I| − s/(12z2) such that

rank

(
A[{h1, . . . , hz} × I ′]

T [[k]× I ′]

)
< k + z.

But now by (7.5) we have

row-span

(
A[J × I ′]
T [[k]× I ′]

)
= row-span

(
A[{h1, . . . , hz} × I ′]

T [[k]× I ′]

)
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and hence
rank

(
A[J × I ′]
T [[k]× I ′]

)
= rank

(
A[{h1, . . . , hz} × I ′]

T [[k]× I ′]

)
< k + z,

contradicting (7.3). So we indeed have (7.6), as desired.

Now we prove Lemma 7.1. We need two slightly different implementations of our witness-counting strategy
described above, with different conditions for the “witness” sequences (h1, . . . , hz) we are counting. In the
case where A “robustly has very high rank”, we can get away with rather crude arguments using Odlyzko’s
lemma. In the complementary case, we need to use Corollary 7.3 and Halász’ inequality (we cannot simply use
Corollary 7.3 and Halász’ inequality in both cases, because the conclusions of Lemma 7.2 and Corollary 7.3
are very weak when z is very large).

Proof of Lemma 7.1. Let11 L = ⌈2(k + r) log s⌉, let J∗ = J1 ∪ · · · ∪ Js ⊆ [n] and note that |J∗| = (k + r)s.
Furthermore note that (7.1) trivially holds if s ≤ 1060(k+r)20, so we may assume that s > 1060(k+r)20 ≥ 1060

and hence log s ≤ s1/20. Then we in particular have

L = ⌈2(k + r) log s⌉ ≤ 4(k + r) · log s ≤ s1/20

250
· s1/20 =

s1/10

250
. (7.7)

Step 1: The robust-high-rank case. First, suppose that for every subset J ′ ⊆ J∗ with |J ′| ≥ |J∗| − s/2,
we have rankA[J ′ × [m]] ≥ L.

Then, for every subset S ⊆ J∗ of size |S| < L, the row span of A[S × [m]] has dimension less than L and
so it can contain at most |J∗| − s/2 rows of the matrix A[J∗ × [m]]. This means that there are at least s/2
indices h ∈ J∗ such that rankA[(S ∪ {h}) × [m]] = rankA[S × [m]] + 1. Let HS ⊆ J∗ denote the set of the
⌈s/2⌉ smallest such indices h ∈ J∗.

For our double-counting argument, we will consider sequences (h1, . . . , hL) ∈ JL
∗ with ht ∈ H{h1,...,ht−1} for

t = 1, . . . , L. For every such sequence, we have rankA[{h1, . . . , ht} × [m]] = rankA[{h1, . . . , ht−1} × [m]] + 1
for t = 1, . . . , L and hence rankA[{h1, . . . , hL} × [m]] = L. Furthermore, note that the total number of such
sequences is exactly ⌈s/2⌉L (since after choosing h1, . . . , ht−1 we have exactly |H{h1,...,ht−1}| = ⌈s/2⌉ choices
for ht).

We claim that for every outcome of ξ⃗ ∈ {−1, 1}m such that Aξ⃗ − v⃗ has at most s/6 nonzero coordinates,
there are at least (s/3)L sequences (h1, . . . , hL) ∈ JL

∗ with ht ∈ H{h1,...,ht−1} for t = 1, . . . , L, such that
(Aξ⃗ − v⃗)[{h1, . . . , hz}] = 0⃗. Indeed, choosing h1, . . . , hL one at a time, at every step we need to choose
ht ∈ H{h1,...,ht−1} with (Aξ⃗ − v⃗)[ht] = 0. At most s/6 of the ⌈s/2⌉ elements of H{h1,...,ht−1} fail this
condition, so we indeed have at least ⌈s/2⌉ − s/6 ≥ s/3 choices at every step. Hence are indeed at least
(s/3)L such sequences (h1, . . . , hL) ∈ JL

∗ .

Thus, the expected number of sequences (h1, . . . , hL) ∈ JL
∗ with ht ∈ H{h1,...,ht−1} for t = 1, . . . , L such

that (Aξ⃗ − v⃗)[{h1, . . . , hz}] = 0⃗ is at least Pr[Aξ⃗ − v⃗ has at most s/6 nonzero coordinates] · (s/3)L. On the
other hand, for every given sequence (h1, . . . , hL) ∈ JL

∗ with ht ∈ H{h1,...,ht−1} for t = 1, . . . , L, having
(Aξ⃗− v⃗)[{h1, . . . , hz}] = 0⃗ is equivalent to A[{h1, . . . , hL}× [m]]ξ⃗ = v⃗[{h1, . . . , hL}] and by Odlyzko’s lemma
(Lemma 3.7), this happens with probability at most 2−L (recalling that rankA[{h1, . . . , hL} × [m]] = L).
Hence the expected number of such sequences (h1, . . . , hL) is at most ⌈s/2⌉L · 2−L. Thus, we obtain

Pr[Aξ⃗ − v⃗ has at most s/6 nonzero coordinates] ≤ ⌈s/2⌉L · 2−L

(s/3)L
≤ (5s/9)L · 2−L

(s/3)L
= (5/6)L ≤ s−(k+r)/2,

recalling that L = ⌈2(k + r) log s⌉ and using that (5/6)4 < 1/2. This in particular implies (7.1).

Step 2: Covering events for the low-rank case. Now, we may assume that for some subset J ′ ⊆ J∗
with |J ′| ≥ |J∗| − s/2, we have rankA[J ′ × [m]] ≤ L.

11Recall that log s denotes the base-2 logarithm of s.
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For every outcome of ξ⃗ ∈ {−1, 1}m, let Hξ⃗ ⊆ J ′ be the set of indices h ∈ J ′ with (Aξ⃗ − v⃗)[h] = 0. Note
that whenever Aξ⃗ − v⃗ has at most s/6 nonzero coordinates, we have |Hξ⃗| ≥ |J ′| − s/6 ≥ |J∗| − s/2− s/6 =

(k+ r)s− (2/3)s, and so by Corollary 7.3 there is some integer z ≥ r such that there are at least sz/(12z2)z

sequences (h1, . . . , hz) ∈ Hz
ξ⃗

satisfying (7.4). Note that for each such sequence, by (7.4) we must in particular
have

k + z = rank

(
A[{h1, . . . , hz} × [m]]

T

)
≤ k + rankA[{h1, . . . , hz} × [m]] ≤ k + rankA[J ′ × [m]] ≤ k + L,

and consequently z ≤ L.

Thus, for every outcome of ξ⃗ ∈ {−1, 1}m such that Aξ⃗− v⃗ has at most s/6 nonzero coordinates, there is some
integer z ∈ {r, r + 1, . . . , L} such that there are at least sz/(12z2)z sequences (h1, . . . , hz) ∈ Jz

∗ satisfying
(7.4) and (Aξ⃗ − v⃗)[{h1, . . . , hz}] = 0⃗. For every z ∈ {r, r + 1, . . . , L}, let Ez be the event that T ξ⃗ = w⃗ and
that there are at least sz/(12z2)z sequences (h1, . . . , hz) ∈ Jz

∗ satisfying (7.4) and (Aξ⃗− v⃗)[{h1, . . . , hz}] = 0⃗.
Then

Pr[T ξ⃗ = w⃗ and Aξ⃗ − v⃗ has at most s/6 nonzero coordinates] ≤
L∑

z=r

Pr[Ez] (7.8)

and it remains to bound the probability of the events Ez for z = r, . . . , L.

Step 3: Double-counting. Let z ∈ {r, r + 1, . . . , L} (and note that then in particular z ≥ r ≥ 1).

For every sequence (h1, . . . , hz) ∈ Jz
∗ satisfying (7.4), we have the equivalence

T ξ⃗ = w⃗ and (Aξ⃗ − v⃗)[{h1, . . . , hz}] = 0⃗ ⇐⇒
(
A[{h1, . . . , hz} × [m]]

T

)
ξ⃗ =

(
v⃗[{h1, . . . , hz}]

w⃗

)
.

So, by the version of Halász’ inequality in Corollary 3.5, we have

Pr
[
T ξ⃗ = w⃗ and (Aξ⃗ − v⃗)[{h1, . . . , hz}] = 0⃗

]
≤
(

s

12z2(z + k)

)−(k+z)/2

≤ (4(k + z)2)k+z · s−(k+z)/2

for every sequence (h1, . . . , hz) ∈ Jz
∗ satisfying (7.4).

Hence, the expected number of sequences (h1, . . . , hz) ∈ Jz
∗ satisfying (7.4) such that (Aξ⃗− v⃗)[{h1, . . . , hz}] =

0⃗ and T ξ⃗ = w⃗ hold, is at most |J∗|z · (4(k + z)2)k+z · s−(k+z)/2. On the other hand, whenever the event Ez
occurs, there are at least sz/(12z2)z such sequences. We deduce that

Pr[Ez] ≤
|J∗|z · (4(k + z)2)k+z · s−(k+z)/2

sz/(12z2)z
≤ ((k + r)s)z(48(k + z)4)k+z

sz · s(k+z)/2
≤ (48(k + z)5)k+z

s(k+z)/2

for every z ∈ {r, . . . , L}.
Step 4: Summing up. We now obtain

L∑
z=r

Pr[Ez] ≤
L∑

z=r

(48(k + z)5)k+z

s(k+z)/2
=

L∑
z=r

a(z), where a(z) =
(48(k + z)5)k+z

s(k+z)/2
for z = r, . . . , L.

For z = r, . . . , L − 1 we compute (recalling that k ≤ ⌈2(k + r) log s⌉ = L ≤ s1/10/250 by (7.7) and hence
k + z + 1 ≤ k + L ≤ 2L ≤ s1/10/100)

a(z + 1)

a(z)
=

48(k + z + 1)5

s1/2
·
(
k + z + 1

k + z

)5(k+z)

≤ 48(s1/10/100)5

s1/2
· e5 ≤ 48 · 35

1005
≤ 1

2
.

So, we have a(z) ≤ 2−(z−r)a(r) for z = r, . . . , L (so a(z) is bounded by a geometric series with common ratio
1/2), and consequently

L∑
z=r

Pr[Ez] ≤
L∑

z=r

a(z) ≤
L∑

z=r

2−(z−r)a(r) ≤ 2 · a(r) = 2 · (48(k + r)5)k+r

s(k+r)/2
≤
(

s

1060(k + r)20

)−(k+r)/2

.

Together with (7.8), this implies (7.1).
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Next, we deduce Lemma 5.7 from Lemma 7.1.

Proof of Lemma 5.7. Recalling that (T,U,A) ∈ Mk,m,n
2 (s), let I1, . . . , Is, J1, . . . , Js be index sets as in the

definition of Mk,m,n
2 (s) in Definition 5.6 (recall in particular that I1, . . . , Is ⊆ [m] are disjoint sets and

J1, . . . , Js ⊆ [n] are disjoint sets).

Note that U ∈ Hk×n(s), due to condition (b) in Definition 5.6. Write WU ⊆ Rn for the row span of U , and
note that we have U ′

ξ⃗
/∈ H(k+1)×n(s/6) if and only if Aξ⃗ − b⃗ agrees in at least n − s/6 coordinates with a

vector v⃗ ∈ WU . Hence

Pr
[
T ξ⃗ = y⃗ and U ′

ξ⃗
/∈ H(k+1)×n(s/6)

]
= Pr

[
T ξ⃗ = y⃗ and there is S ⊆ [n] with |S| ≥ n− s/6 and (Aξ⃗ − b⃗)[S] = v⃗[S] for some v⃗ ∈ WU

]
≤ 2

s

s∑
t=1

Pr
[
T ξ⃗ = y⃗ and there is Jt ⊆ S ⊆ [n] with |S| ≥ n− s/6 and (Aξ⃗ − b⃗)[S] = v⃗[S] for some v⃗ ∈ WU

]
,

where the inequality follows by observing that every set S ⊆ [n] of size |S| ≥ n− s/6 satisfies Jt ⊆ S for at
least s− s/6 ≥ s/2 indices t ∈ {1, . . . , s}. So it suffices to show that for every fixed t = 1, . . . , s we have

Pr
[
T ξ⃗ = y⃗ and there is Jt ⊆ S ⊆ [n] with |S| ≥ n− s/6 and (Aξ⃗ − b⃗)[S] = v⃗[S] for some v⃗ ∈ WU

]
≤
(

s

1060(k + 2)20

)−(k+2)/2

. (7.9)

By condition (b) in Definition 5.6 we can choose a subset J ′
t ⊆ Jt of size |J ′

t| = k such that U [[k] × J ′
t] is

nonsingular . Without loss of generality we may assume that A[J ′
t× [m]] is the all-zero matrix, since the event

on the left-hand side of (7.9) does not change if we add linear combinations of the rows of U to the columns
of A. But this assumption means that (Aξ⃗ − b⃗)[J ′

t] = −b⃗[J ′
t], and recalling that U [[k] × J ′

t] is nonsingular,
there is only exactly one vector v⃗t ∈ WU with v⃗t[J

′
t] = −b⃗[J ′

t]. Hence the event on the left-hand side of (7.9)
can only happen with v⃗ = v⃗t, and we obtain

Pr
[
T ξ⃗ = y⃗ and there is Jt ⊆ S ⊆ [n] with |S| ≥ n− s/6 and (Aξ⃗ − b⃗)[S] = v⃗[S] for some v⃗ ∈ WU

]
= Pr

[
T ξ⃗ = y⃗ and there is Jt ⊆ S ⊆ [n] with |S| ≥ n− s/6 such that (Aξ⃗ − b⃗)[S] = v⃗t[S]

]
≤ Pr[T ξ⃗ = y⃗ and Aξ⃗ − b⃗− v⃗t has at least n− s/6 zero coordinates]

= Pr[T ξ⃗ = y⃗ and Aξ⃗ − b⃗− v⃗t has at most s/6 nonzero coordinates].

The desired bound (7.9) now follows from Lemma 7.1 with r = 2 (note that conditions (i) and (ii) in
Lemma 7.1 hold by conditions (a) and (c) in Definition 5.6, respectively).

We end this section by deducing Lemma 2.1 (the “Hamming norm” anticoncentration inequality stated in the
outline in Section 2) from Lemma 7.1.

Proof of Lemma 2.1. Let Cr = (10r)30r and cr = 1/(6r). As in the statement of the lemma, let A ∈ Rm×n

be a matrix which has rank at least r after deletion of any t rows and t columns.

We claim that for s = ⌈t/r⌉ we can find disjoint subsets I1, . . . , Is ⊆ [n] and disjoint subsets J1, . . . , Js ⊆ [m]
of size |I1| = · · · = |Is| = |J1| = · · · = |Js| = r such that rankA[Jℓ × Iℓ] = r for ℓ = 1, . . . , s. Indeed, we
can find such subsets greedily: after having found I1, . . . , Iℓ ⊆ [n] and J1, . . . , Jℓ ⊆ [m] for some ℓ < t/r,
we can delete all columns with indices in I1 ∪ · · · ∪ Iℓ and all rows with indices in J1 ∪ · · · ∪ Jℓ from A and
the resulting matrix must have rank at least r, so there must be subsets Iℓ+1 ⊆ [n] \ (I1 ∪ · · · ∪ Iℓ) and
Jℓ+1 ⊆ [m] \ (J1 ∪ · · · ∪ Jℓ) with rankA[Jℓ × Iℓ] = r and |Jℓ+1| = |Iℓ+1| = r.
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Having found such subsets I1, . . . , Is ⊆ [n] and J1, . . . , Js ⊆ [m], we can now apply Lemma 7.1 with k = 0 and
T ∈ R0×n being the empty matrix and w⃗ ∈ R0 being the empty vector. Note that condition (i) is the vacuously
true, and condition (ii) is true because for every ℓ = 1, . . . , s the only (T [[k]×It], 0)-perturbation of the matrix
A[Jt × It] is the matrix A[Jt × It] itself, which has rank r. Thus, for a sequence ξ⃗ = (ξ1, . . . , ξn) ∈ {−1, 1}n
of independent Rademacher random variables, and for any vector v⃗ ∈ Rm, we have

Pr[Aξ⃗ differs from v⃗ in fewer than t/(6r) coordinates] ≤ Pr[Aξ⃗ − v⃗ has at most s/6 nonzero coordinates]

≤
( s

1060r20

)−r/2

≤
(

t

1060r21

)−r/2

≤ (10r)30r · t−r/2

(noting that T ξ⃗ = w⃗ holds vacuously for all ξ⃗ ∈ {−1, 1}n).

8 Splitting the index set

In this section, we prove Lemma 5.8, splitting our index set [n] into disjoint subsets I and J such that the
conditions in Definition 5.6 are satisfied. This amounts to finding disjoint subsets I1, . . . , Is, J1, . . . , Js ⊆ [n]
satisfying certain robust-rank-2 conditions. Most of the work is in finding a single pair of subsets I1, J1
satisfying the desired property; we will then be able to find our subsets in a greedy fashion, in a similar way
to the proof of Lemma 3.2(ii).

Proof of Lemma 5.8. Let 0 ≤ k ≤ n, s ≥ 4k + 8, M ∈ Hk×n(s) and A ∈ Rn×n be as in the statement of the
lemma. Recall that A is a symmetric matrix and that we are assuming rankA∗[S × S] ≥ 2 for any subset
S ⊆ [n] of size |S| ≥ n − s and any matrix A∗ ∈ Rn×n that agrees with some (M,M)-perturbation of A in
all off-diagonal entries.

Step 1: Setup. For ℓ = ⌊s/(4k + 8)⌋, we wish to find disjoint subsets I1, . . . , Iℓ, J1, . . . , Jℓ ⊆ [n] of size
|I1| = · · · = |Iℓ| = |J1| = · · · = |Jℓ| = k + 2 such that the following three conditions hold for t = 1, . . . , ℓ:

(a) The submatrix M [[k]× It] has rank k.
(b) The submatrix M [[k]× Jt] has rank k.
(c) Every (M [[k]× It],M [[k]× Jt])-perturbation of the matrix A[Jt × It] has rank at least 2.

This suffices, since we can then take I = I1∪· · ·∪Iℓ and J = [n]\I to obtain a partition [n] = I∪J satisfying
the conclusion of the lemma (the conditions (a)–(c) in Definition 5.6 precisely correspond to conditions (a)
to (c) above, and we have k ≤ |I| ≤ |J | since |I| = ℓ(k + 2) and |J | ≥ |J1 ∪ · · · ∪ Jℓ| = ℓ(k + 2)).

To find such disjoint subsets I1, . . . , Iℓ, J1, . . . , Jℓ ⊆ [n], it suffices to show that for any subset R ⊆ [n] with
|R| > n− s/2, we can find disjoint subsets I1, J1 ⊆ R of size |I1| = |J1| = k + 2 such that conditions (a)–(c)
above hold for t = 1. Indeed, then we can then construct the desired subsets I1, . . . , Iℓ, J1, . . . , Jℓ ⊆ [n]
greedily (at every step choosing It, Jt ⊆ [n] \ (I1 ∪ · · · ∪ It−1 ∪ J1 ∪ · · · ∪ Jt−1). Showing this will be our
objective for the rest of the proof, so let us fix a subset R ⊆ [n] with |R| > n− s/2.

Since M ∈ Hk×n(s), we can find disjoint subsets I ′1, J
′
1 ⊆ R of size |I ′1| = |J ′

1| = k with rankM [[k] × I ′1] =
rankM [[k] × J ′

1] = k. We will obtain I1, J1 by augmenting I ′1 and J ′
1 with two additional indices each (we

will find suitable indices for this using our assumption on A).

Step 2: Augmenting the index sets. Since the k × k matrices M [[k] × I ′1] and M [[k] × J ′
1] are both

nonsingular, we can add linear combinations of the rows of M to the rows and columns of A to obtain an
(M,M)-perturbation A′ of A such that all entries of A′[J ′

1× [n]] and all entries of A′[[n]×I ′1] are zero. Define
R′ = R \ (I ′1 ∪ J ′

1) and note that |R′| ≥ n − s/2 − 2k ≥ n − s + 4. By our assumption on A, the submatrix
A′[R′ × R′] must have some nonzero off-diagonal entry a′j,i with distinct i, j ∈ R′ (if all off-diagonal entries
were zero, by modifying the diagonal entries of A′ we would be able to find a matrix A∗ ∈ Rn×n agreeing
with the (M,M)-perturbation A′ of A in all off-diagonal entries such that rankA∗[R′×R′] = 0, contradicting
our assumption on A).
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Now, let A∗ be the matrix obtained from A′ by adjusting the diagonal entries a′h,h for h ∈ R′ \ {i, j} in such
a way that each 2 × 2 submatrix of the form A∗[{j, h} × {i, h}] (for any h ∈ R′ \ {i, j}) is singular. Since
A∗ agrees with the (M,M)-perturbation A′ of A in all off-diagonal entries, we have rankA∗[S × S] ≥ 2 for
every subset S ⊆ [n] of size |S| ≥ n − s, and in particular for the subset S = R′ \ {i, j}. Hence we obtain
rankA∗[(R′ \ {i})× (R′ \ {j})] ≥ 2, and also note that the (j, i)-entry of A∗ is a∗j,i = a′j,i ̸= 0.

Now, if a matrix has rank at least 2, then for any nonzero row (respectively, column), we can find a second
linearly independent row (respectively, column). Applying this fact to the matrix A∗[(R′ \ {i})× (R′ \ {j})]
and the row with index j, we can find an index j′ ∈ R′ \ {i, j} such that rankA∗[{j, j′} × (R′ \ {j})] = 2
(i.e., such that the row with index j′ is linearly independent from the row with index j). Applying the fact
again to the matrix A∗[{j, j′} × (R′ \ {j})] and the column with index i, we can find an index i′ ∈ R′ \ {j, i}
such that rankA∗[{j, j′} × {i, i′}] = 2. Now, we must have j′ ̸= i′ (since rankA∗[{j, h} × {i, h}] ≤ 1
for all h ∈ R′ \ {j, i}). So, {j, j′} and {i, i′} are disjoint subsets of R′ = R \ (I ′1 ∪ J ′

1), and we have
rankA′[{j, j′} × {i, i′}] = rankA∗[{j, j′} × {i, i′}] = 2. Defining I1 = I ′1 ∪ {i, i′} and J1 = J ′

1 ∪ {i, i′}, we
obtain disjoint subsets of R of size k + 2.

Step 3: Proving the full-rank condition. We now need to show that the subsets I1, J1 ⊆ R ⊆ [n] satisfy
conditions (a)–(c) above for t = 1. This is equivalent to showing that the (2k + 2)× (2k + 2) matrix(

A[J1 × I1] M [[k]× J1]
⊺

M [[k]× I1] 0

)
has full rank 2k + 2. But note that the above matrix can be reduced to 0 0 M [[k]× J ′

1]
⊺

0 A′[{j, j′} × {i, i′}] M [[k]× {j, j′}]⊺
M [[k]× I ′1] M [[k]× {i, i′}] 0


by elementary row and column operations (precisely the row and column operations that were used to obtain
A′ from A in the previous step of the proof). Recalling that the matrices M [[k] × J ′

1], M [[k] × I ′1] and
A′[{j, j′} × {i, i′}] are nonsingular, the desired result follows.

9 Proof of the recursive bound in Theorem 5.5

In this section, we finally prove Theorem 5.5, using the results established in the previous three sections.

Proof of Theorem 5.5. As in the statement of the theorem, let k ≥ 0 be an integer, s > 0 be a real number
and define s∗ = s/(k+2)500. To show the desired bound on f(k, s), we need to show that for any quadruple
(n,Q,M, w⃗) as in Definition 5.4, we have

Pr[Q(ξ⃗) = 0 and Mξ⃗ = w⃗] ≤ max
{
s
−(k+1)/2
∗ , s

−(k+2)/2
∗ + s

−k/4
∗ · f(k + 1, s∗)

1/2
}
, (9.1)

where the probability is taken with respect to a sequence of independent Rademacher random variables
ξ⃗ ∈ {−1, 1}n. This is clearly true if s∗ ≤ 1, so we may assume without loss of generality that s∗ > 1 and
hence s > (k + 2)500 ≥ 2500.

So let n be let a positive integer, Q ∈ R[x1, . . . , xn] be a quadratic polynomial, let M ∈ Hk×n(s) and w⃗ ∈ Rk.
Let us write the quadratic part of Q(x⃗) as x⃗⊺Ax⃗ for a symmetric matrix A ∈ Rn×n, and assume that for
every subset S ⊆ [n] with |S| ≥ n− s, and every (M,M)-perturbation A′ of A, the submatrix A′[S × S] has
at least one nonzero entry outside the diagonal (this is condition (∗) in Definition 5.4).

As the first step of the proof, we treat the case where the matrix A does not robustly have rank at least 2.
In the remaining steps of the proof we can then assume that the matrix A does have rank at least 2 robustly.

Step 1: The low-rank case. Suppose that there is a matrix B ∈ Rn×n which can be obtained from
an (M,M)-perturbation of A by changing its diagonal entries, and a set S of size |S| ≥ n − 2s/3, such
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that rankB[S × S] ≤ 2. Note that then B⊺ can also be obtained from an (M,M)-perturbation of A⊺ = A
by changing its diagonal entries, and satisfies rankB⊺[S × S] ≤ 2. Consider the symmetric matrix A∗ =
1
2 (B + B⊺); note that A∗ can be obtained from an (M,M)-perturbation of 1

2 (A + A) = A by changing its
diagonal entries, and we have rankA∗[S × S] ≤ 4.

Let Q∗ ∈ R[x1, . . . , xn] be a quadratic polynomial with quadratic part x⃗⊺A∗x⃗ such that Q(ξ⃗) = Q∗(ξ⃗) for all
ξ⃗ ∈ {−1, 1}n with Mξ⃗ = w⃗ (such a polynomial Q∗ exists by Lemma 5.3).

Now, let T = [n] \ S, and note that it suffices to prove the probability bound in (9.1) conditioned on every
possible outcome for ξ⃗[T ]. For any given outcome of ξ⃗[T ], we can write Q∗(ξ⃗) as Q∗

ξ⃗[T ]
(ξ⃗[S]), for some

quadratic polynomial Q∗
ξ⃗[T ]

in the variables ξ⃗[i] for i ∈ S, with quadratic part x⃗[S]⊺A∗[S × S]x⃗[S] (and

whose linear and constant coefficients depend on ξ⃗[T ]). Simply put, this polynomial is obtained from Q∗ by
plugging in the given values of ξ⃗[i] for i ∈ T . Recall that we always have Q(ξ⃗) = Q∗(ξ⃗) = Q∗

ξ⃗[T ]
(ξ⃗[S]) (for

any ξ⃗ ∈ {−1, 1}n with Mξ⃗ = w⃗).

Now, we claim that for any subset S′ ⊆ S of size |S′| ≥ |S| − s/3 ≥ n − s, the matrix A∗[S′ × S′] cannot
be a (M [[k] × S′],M [[k] × S′])-perturbation of the zero matrix in RS′×S′

. Indeed, if A∗[S′ × S′] was a
(M [[k]× S′],M [[k]× S′])-perturbation of the zero matrix, then from the matrix A[S′ × S′] one could obtain
the zero matrix by taking an (M [[k]× S′],M [[k]× S′])-perturbation and changing its diagonal entries. But
this means that there is some (M,M)-perturbation A′ of A such A′[S′ × S′] agrees with the zero matrix in
RS′×S′

in all off-diagonal entries. This means that A′[S′ × S′] does not have any nonzero entries outside
its diagonal, contradicting our assumption on A made above (coming from condition (∗) Definition 5.4).
This means that for any subset S′ ⊆ S of size |S′| ≥ |S| − s/3, the matrix A∗[S′ × S′] is indeed not a
(M [[k]× S′],M [[k]× S′])-perturbation of the zero matrix.

Furthermore M [[k] × S] ∈ Hk×S(s/3) and rankA∗[S × S] ≤ 4, so we can apply Proposition 6.1 with r = 5

to the matrix M [[k] × S], the vector w⃗ − M [[k] × T ]ξ⃗[T ] ∈ Rk, and the quadratic polynomial Q∗
ξ⃗[T ]

in the

variables ξ⃗[i] for i ∈ S. The conclusion of the proposition then gives

Pr
[
Q(ξ⃗) = 0 and Mξ⃗ = w⃗

∣∣∣ ξ⃗[T ]] = Pr
[
Q∗

ξ⃗[T ]
(ξ⃗[S]) = 0 and M [[k]× S]ξ⃗[S] = w⃗ −M [[k]× T ]ξ⃗[T ]

∣∣∣ ξ⃗[T ]]
≤
(

⌊s/3⌋
275(k + 5)2

)−(k+1)/2

≤ s
−(k+1)/2
∗ .

for every possible outcome of ξ⃗[T ]. Hence Pr[Q(ξ⃗) = 0 and Mξ⃗ = w⃗] ≤ s
−(k+1)/2
∗ , which in particular proves

(9.1).

Step 2: Decoupling. From now on, we may assume that rankB[S × S] ≥ 3 for any matrix B ∈ Rn×n

which can be obtained from an (M,M)-perturbation of A by changing its diagonal entries, and any set S of
size |S| ≥ n− 2s/3. This means in particular that the assumption in Lemma 5.8 is satisfied for s/2 ≥ 4k+8,
and therefore Lemma 5.8 gives us a partition [n] = I ∪ J with |I| ≤ s/2, such that(

M [[k]× I], M [[k]× J ], A[J × I]
)
∈ Mk,I,J

2

(
⌊s/(8k + 16)⌋

)
.

Recalling the second part of Remark 5.1, this implies(
M [[k]× I], M [[k]× J ], −2A[J × I]

)
∈ Mk,I,J

2

(
⌊s/(8k + 16)⌋

)
⊆ Mk,I,J

2

(
6 · ⌊s/(48k + 96)⌋

)
(9.2)

(which in particular means that 6 · ⌊s/(48k + 96)⌋ ≤ |I| ≤ |J |).

Let ξ⃗ ′[I] be an independent copy of ξ⃗[I] (i.e., consider independent random variables ξ⃗ ′[i] ∈ {−1, 1} for i ∈ I,
independent from all entries of ξ⃗). Now, let us extend ξ⃗ ′[I] to a vector ξ⃗ ′ ∈ Rn by defining ξ⃗ ′[j] = ξ⃗[j] for
all j ∈ J . Note that then ξ⃗ ′ consists of the data (ξ⃗ ′[I], ξ⃗[J ]), while ξ⃗ consists of the data (ξ⃗[I], ξ⃗[J ]). By
decoupling (Lemma 3.6) we have

Pr[Q(ξ⃗) = 0 and Mξ⃗ = w⃗]2
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≤ Pr[Q(ξ⃗) = Q(ξ⃗ ′) = 0 and Mξ⃗ = Mξ⃗ ′ = w⃗]

= Pr[Q(ξ⃗) = 0 and Q(ξ⃗)−Q(ξ⃗ ′) = 0 and Mξ⃗ = w⃗ and M(ξ⃗ − ξ⃗ ′) = 0⃗]

= Pr
[
Q(ξ⃗) = 0 and Q(ξ⃗)−Q(ξ⃗ ′) = 0 and Mξ⃗ = w⃗ and M [[k]× I](ξ⃗[I]− ξ⃗ ′[I]) = 0⃗

]
. (9.3)

Note that the event M [[k] × I](ξ⃗[I] − ξ⃗ ′[I]) = 0⃗ depends only on the outcomes of ξ⃗[I] and ξ⃗ ′[I] (and not
on the outcome of ξ⃗[J ]). We will later bound the probability of this event using Corollary 3.5. For fixed
outcomes of ξ⃗[I] and ξ⃗ ′[I], we can express the conditions Q(ξ⃗) = 0 and Q(ξ⃗) − Q(ξ⃗ ′) = 0 and Mξ⃗ = w⃗ in
terms of ξ⃗[J ]; namely we can write them in the form Qξ⃗[I](ξ⃗[J ]) = 0 and Mξ⃗[I],ξ⃗ ′[I]ξ⃗[J ] = w⃗ξ⃗[I],ξ⃗ ′[I] for some

quadratic polynomial Qξ⃗[I] and some matrix Mξ⃗[I],ξ⃗ ′[I] (which depend on the outcomes of ξ⃗[I] and ξ⃗ ′[I]).

More specifically, for a given outcome of ξ⃗[I], the event

{Q(ξ⃗) = 0} can be written as {Qξ⃗[I](ξ⃗[J ]) = 0}, (9.4)

where Qξ⃗[I] is the quadratic polynomial in the variables xj for j ∈ J obtained from Q by replacing each

variable xi for i ∈ I = [n] \ J by the given value of ξ⃗[i]. Then, by definition, we have Qξ⃗[I](ξ⃗[J ]) = Q(ξ⃗) for

any outcome of ξ⃗[J ]. Also note that the quadratic part of the polynomial Qξ⃗[I] is given by x⃗[J ]⊺A[J ×J ]x⃗[J ].

Furthermore, for given outcomes of ξ⃗[I] and ξ⃗ ′[I], the event

{Mξ⃗ = w⃗ and Q(ξ⃗)−Q(ξ⃗ ′) = 0} can be written as {Mξ⃗[I],ξ⃗ ′[I]ξ⃗[J ] = w⃗ξ⃗[I],ξ⃗ ′[I]} (9.5)

where the matrix Mξ⃗[I],ξ⃗ ′[I] ∈ R(k+1)×J and the vector w⃗ξ⃗[I],ξ⃗ ′[I] ∈ Rk+1 are defined as follows: When plugging

in the given values for ξ⃗[i] for i ∈ I, we can interpret Mξ⃗ = w⃗ as a system of linear equations in the variables
ξ⃗[j] for j ∈ J = [n]\I. This system of linear equations has the form M [[k]×J ]ξ⃗[J ] = w⃗−M [[k]×I](ξ⃗[I]−ξ⃗ ′[I]).
Furthermore, when plugging the given values for ξ⃗[i] and ξ⃗ ′[i] for i ∈ I into Q(ξ⃗) − Q(ξ⃗ ′) = 0, we obtain
another linear equation in the variables ξ⃗[j] for j ∈ J (indeed, the quadratic terms in the variables ξ⃗[j] for
j ∈ J cancel out in the difference Q(ξ⃗) − Q(ξ⃗ ′)). The coefficient vector of this linear equation is precisely
2A[J × I](ξ⃗[I]− ξ⃗ ′[I]). Appending this additional linear equation to our previous system of linear equations
in the variables ξ⃗[j] for j ∈ J , we obtain a system of k + 1 equations that we can express in the form
Mξ⃗[I],ξ⃗ ′[I]ξ⃗[J ] = w⃗ξ⃗[I],ξ⃗ ′[I] for a matrix Mξ⃗[I],ξ⃗ ′[I] ∈ R(k+1)×J and a vector w⃗ξ⃗[I],ξ⃗ ′[I] ∈ Rk+1. Note that the
first k rows of the matrix Mξ⃗[I],ξ⃗ ′[I] ∈ R(k+1)×J are given by M [[k] × J ], and the last row is given by (the

transpose of) the vector 2A[J × I](ξ⃗[I]− ξ⃗ ′[I]).

For given outcomes of ξ⃗[I] and ξ⃗ ′[I], we would like to bound the probability of having Qξ⃗[I](ξ⃗[J ]) = 0 and

Mξ⃗[I],ξ⃗ ′[I]ξ⃗[J ] = w⃗ξ⃗[I],ξ⃗ ′[I] (subject to the randomness of ξ⃗[J ]). If Mξ⃗[I],ξ⃗ ′[I] ∈ H(k+1)×J(s′) for some suitable
s′, then we will be able to bound this probability by f(k+1, s′); see Definition 5.4. In the next step, we first
handle the case where Mξ⃗[I],ξ⃗ ′[I] ̸∈ H(k+1)×J(s′).

Step 3: Failure of the Halász condition. We define s′ = ⌊s/(48k + 96)⌋, then k ≤ 6s′ ≤ |I| (recalling
(9.2) and s > (k + 2)500). Our goal in this step is to bound the probability that the outcomes of ξ⃗[I] and
ξ⃗ ′[I] are such that M [[k]× I](ξ⃗[I]− ξ⃗ ′[I]) = 0⃗ and Mξ⃗[I],ξ⃗ ′[I] ̸∈ H(k+1)×J(s′). To do so, let us condition on an

arbitrary outcome of ξ⃗[I]. Let us apply Lemma 5.7 with 0 ≤ k ≤ 6s′ ≤ |I| ≤ |J |, the random vector ξ⃗ ′[I], the
matrices T = M [[k]× I], U = M [[k]× J ] and −2A[J × I] (noting that then (T,U,−2A[J × I]) ∈ Mk,I,J

2 (6s′)

by (9.2)), as well as the vectors y⃗ = M [[k] × I]ξ⃗[I] and b⃗ = −2A[J × I]ξ⃗[I]. Note that then the random
matrix U ′

ξ⃗
in Lemma 5.7 is precisely the matrix Mξ⃗[I],ξ⃗ ′[I] (namely, the matrix obtained from U = M [[k]×J ]

by appending the vector −2A[J × I]ξ⃗ ′[I]− b⃗ = 2A[J × I](ξ⃗[I]− ξ⃗ ′[I]) as an additional row). So, we obtain

Pr
[
M [[k]× I](ξ⃗[I]− ξ⃗ ′[I]) = 0⃗ and Mξ⃗[I],ξ⃗ ′[I] /∈ H(k+1)×J(s′)

∣∣∣ ξ⃗[I]] ≤ ( 6s′

1061(k + 2)20

)−(k+2)/2

≤ s
−(k+2)/2
∗

(9.6)
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for any outcome of ξ⃗[I] (here, the probability is with respect to the randomness of ξ⃗ ′[I]). In the last step,
we used that s′ = ⌊s/(48k + 96)⌋ and therefore s′/(1061(k + 2)20) ≥ s/(1063(k + 2)21) ≥ s/(k + 2)273 > s∗
(since k + 2 ≥ 2).

Step 4: Bounding the main term. Recall from Step 2 that rankB[S × S] ≥ 3 for any matrix B ∈ Rn×n

which can be obtained from an (M,M)-perturbation of A by changing its diagonal entries, and any subset
S ⊆ J of size |S| ≥ |J | − s′ (here we are using that |J | − s′ ≥ n − 2s/3 as s′ ≤ s/6 and |J | = n − |I| ≥
n − s/2). Recalling that the matrix Mξ⃗[I],ξ⃗ ′[I] is obtained from M [[k] × J ] by adding one row, this implies
that rankB[S × S] ≥ 1 for any matrix B ∈ RJ×J obtained from an (Mξ⃗[I],ξ⃗ ′[I],Mξ⃗[I],ξ⃗ ′[I])-perturbation of
A[J × J ] by changing its diagonal entries, and any subset S ⊆ J of size |S| ≥ |J | − s′. Thus, A′[S × S] must
have at least one nonzero entry outside the diagonal for every subset S ⊆ J of size |S| ≥ |J | − s′ and every
(Mξ⃗[I],ξ⃗ ′[I],Mξ⃗[I],ξ⃗ ′[I])-perturbation A′ of A[J × J ].

This means that whenever we have Mξ⃗[I],ξ⃗ ′[I] ∈ H(k+1)×J(s′), the quadruple (|J |, Qξ⃗[I],Mξ⃗[I],ξ⃗ ′[I], w⃗ξ⃗[I],ξ⃗ ′[I])

satisfies the conditions in Definition 5.4, with parameters k + 1 and s′ (recall that Qξ⃗[I] has quadratic part

x⃗[J ]⊺A[J × J ]x⃗[J ]). Hence, for any outcomes of ξ⃗[I] and ξ⃗ ′[I] such that Mξ⃗[I],ξ⃗ ′[I] ∈ H(k+1)×J(s′), we have
the conditional probability bound

Pr
[
Q(ξ⃗) = 0 and Mξ⃗ = w⃗ and Q(ξ⃗)−Q(ξ⃗ ′) = 0

∣∣∣ ξ⃗[I], ξ⃗ ′[I]
]

= Pr
[
Qξ⃗[I](ξ⃗[J ]) = 0 and Mξ⃗[I],ξ⃗ ′[I]ξ⃗[J ] = w⃗ξ⃗[I],ξ⃗ ′[I]

∣∣∣ ξ⃗[I], ξ⃗ ′[I]
]
≤ f(k + 1, s′) ≤ f(k + 1, s∗) (9.7)

(for the first step, recall (9.4) and (9.5), and for the last step note that s′ = ⌊s/(48k+96)⌋ ≥ s/(k+2)500 = s∗).

Step 5: Concluding. For ease of notation, let us abbreviate H(k+1)×J(s′) by H. By (9.3) we have

Pr[Q(ξ⃗) = 0 and Mξ⃗ = w⃗]2

≤ Pr
[
Q(ξ⃗) = 0 and Q(ξ⃗)−Q(ξ⃗ ′) = 0 and Mξ⃗ = w⃗ and M [[k]× I](ξ⃗[I]− ξ⃗ ′[I]) = 0⃗

]
≤ Pr

[
Q(ξ⃗) = 0 and Q(ξ⃗)−Q(ξ⃗ ′) = 0 and Mξ⃗ = w⃗ and M [[k]× I](ξ⃗[I]− ξ⃗ ′[I]) = 0⃗ and Mξ⃗[I],ξ⃗ ′[I] ∈ H

]
+ [Q(ξ⃗) = 0 and Mξ⃗ = w⃗ and M [[k]× I](ξ⃗[I]− ξ⃗ ′[I]) = 0⃗ and Mξ⃗[I],ξ⃗ ′[I] /∈ H]

≤ Pr
[
M [[k]× I](ξ⃗[I]− ξ⃗ ′[I]) = 0⃗

]
sup

ξ⃗[I],ξ⃗ ′[I]
M

ξ⃗[I],ξ⃗ ′[I]∈H

Pr
[
Q(ξ⃗) = 0 and Mξ⃗ = w⃗ and Q(ξ⃗)−Q(ξ⃗ ′) = 0

∣∣∣ ξ⃗[I], ξ⃗ ′[I]
]

+ Pr
[
Q(ξ⃗) = 0 and Mξ⃗ = w⃗

]
sup
ξ⃗[I]

Pr
[
M [[k]× I](ξ⃗[I]− ξ⃗ ′[I]) = 0⃗ and Mξ⃗[I],ξ⃗ ′[I] /∈ H

∣∣∣ ξ⃗[I]].
Note that M [[k] × I] ∈ Hk×I(6s′) by (9.2) and Remark 5.1. Therefore, by Corollary 3.5 (applied with
w⃗ = M [[k]× I]ξ⃗ ′[I] for any fixed outcome of ξ⃗ ′[I]) we have Pr

[
M [[k]× I](ξ⃗[I]− ξ⃗ ′[I]) = 0⃗

]
≤ (6s′/k)−k/2 ≤

s
−k/2
∗ if k ≥ 1 (recalling that s′ = ⌊s/(48k + 96)⌋ and s∗ = s/(k + 2)500). If k = 0, then we trivially have
Pr
[
M [[k] × I](ξ⃗[I] − ξ⃗ ′[I]) = 0⃗

]
≤ s

−k/2
∗ , so this inequality holds in either case. Plugging this observation,

as well as (9.7) and (9.6) into the above chain of inequalities, we obtain

Pr[Q(ξ⃗) = 0 and Mξ⃗ = w⃗]2 ≤ s
−k/2
∗ · f(k + 1, s∗) + Pr[Q(ξ⃗) = 0 and Mξ⃗ = w⃗] · s−(k+2)/2

∗

Applying Lemma 3.8, this yields

Pr[Q(ξ⃗) = 0 and Mξ⃗ = w⃗] ≤ s
−(k+2)/2
∗ + s

−k/4
∗ · f(k + 1, s∗)

1/2,

implying the desired bound in (9.1).

10 Deducing a non-recursive bound

In this section, we prove Theorem 5.1. First, from the recursive bound for f(k, s) in Theorem 5.5, one can
deduce the following non-recursive bound.
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Corollary 10.1. For any integers 0 ≤ k ≤ ℓ and any real s > 0 we have

f(k, s) ≤ (sk,ℓ)
−ℓ/2ℓ−k+1

ℓ−1∏
j=k

(sk,j)
−j/2j−k+2

+

ℓ−1∑
i=k

(sk,i)
−(i+2)/2i−k+1

i−1∏
j=k

(sk,j)
−j/2j−k+2

, (10.1)

where for i = k, . . . , ℓ we define
sk,i =

s

(i+ 2)500(i−k+1)
.

In order to analyse the bound on the left-hand side of (10.1), we make the following simple observation.

Lemma 10.2. For any integers 0 ≤ k ≤ i, we have

i−1∑
j=k

j

2j−k+2
=

k + 1

2
− i+ 1

2i−k+1
.

Proof. The identity can easily be shown by induction on i− k. The base case i− k = 0 (i.e., i = k) is trivial,
as both sides are zero. For the induction step, with i− k ≥ 1, we compute

i−1∑
j=k

j

2j−k+2
=

i−2∑
j=k

j

2j−k+2
+

i− 1

2i−k+1
=

k + 1

2
− i

2i−k
+

i− 1

2i−k+1
=

k + 1

2
− i+ 1

2i−k+1
.

Using the above observation, let us now deduce Corollary 10.1 from Theorem 5.5 by induction on ℓ− k and
some tedious but straightforward calculations.

Proof of Corollary 10.1. We prove the desired bound by induction on ℓ − k. If ℓ − k = 0 (i.e., if ℓ = k), we
need to show that f(k, s) ≤ (sk,k)

−k/2. If k = 0, this is trivially true as f(k, s) ≤ 1 = (s0,0)
−0/2. To check

f(k, s) ≤ (sk,k)
−k/2 for k ≥ 1, recall that for every quadruple (n,Q,M, w⃗) in the supremum in the definition

of f(k, s) in Definition 5.4, we have M ∈ Hk×n(s) and therefore by Corollary 3.5

Pr[Q(ξ⃗) = 0 and Mξ⃗ = w⃗] ≤ Pr[Mξ⃗ = w⃗] ≤ (s/k)−k/2 ≤
(

s

(k + 2)500

)−k/2

= (sk,k)
−k/2.

This shows f(k, s) ≤ (sk,k)
−k/2, as desired.

Let us now assume that ℓ − k ≥ 1 and that we already proved the desired bound for all smaller values of
ℓ− k. Note that now by Theorem 5.5 we have

f(k, s) ≤ max
{
s
−(k+1)/2
∗ , s

−(k+2)/2
∗ + s

−k/4
∗ · f(k + 1, s∗)

1/2
}
,

with s∗ = s/(k+2)500. So it suffices to show that both terms in this maximum are bounded by the left-hand
side of (10.1).

First, note that s∗ = s/(k+2)500 ≥ sk,i for all i = k, . . . , ℓ. This means that in the case s∗ ≤ 1, we also have
sk,i ≤ 1 for all i = k, . . . , ℓ and hence (10.1) follows trivially from f(k, s) ≤ 1. We may therefore assume that
s∗ > 1.

For the first term in the maximum above, note that by Lemma 10.2 applied to i = ℓ, we have

ℓ

2ℓ−k+1
+

ℓ−1∑
j=k

j

2j−k+2
=

ℓ

2ℓ−k+1
+

k + 1

2
− ℓ+ 1

2ℓ−k+1
=

k + 1

2
− 1

2ℓ−k+1
<

k + 1

2

Hence

s
−(k+1)/2
∗ ≤ (s∗)

−ℓ/2ℓ−k+1
ℓ−1∏
j=k

(s∗)
−j/2j−k+2

≤ (sk,ℓ)
−ℓ/2ℓ−k+1

ℓ−1∏
j=k

(sk,j)
−j/2j−k+2

,
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which in particular shows that s
−(k+1)/2
∗ is bounded by the left-hand side of (10.1).

To bound the second term, first note that by the inductive assumption we have

f(k + 1, s∗) ≤ (s′k+1,ℓ)
−ℓ/2ℓ−k

ℓ−1∏
j=k+1

(s′k+1,j)
−j/2j−k+1

+

ℓ−1∑
i=k+1

(s′k+1,i)
−(i+2)/2i−k

i−1∏
j=k+1

(s′k+1,j)
−j/2j−k+1

,

defining
s′k+1,i =

s∗
(i+ 2)500(i−k)

=
s

(i+ 2)500(i−k) · (k + 2)500
.

for i = k + 1, . . . , ℓ. Note that we have s′k+1,i ≥ sk,i for all i = k + 1, . . . , ℓ, implying

f(k + 1, s∗) ≤ (sk,ℓ)
−ℓ/2ℓ−k

ℓ−1∏
j=k+1

(sk,j)
−j/2j−k+1

+

ℓ−1∑
i=k+1

(sk,i)
−(i+2)/2i−k

i−1∏
j=k+1

(sk,j)
−j/2j−k+1

.

As
√
x+ y ≤

√
x+

√
y for all x, y ≥ 0, this implies

f(k + 1, s∗)
1/2 ≤ (sk,ℓ)

−ℓ/2ℓ−k+1
ℓ−1∏

j=k+1

(sk,j)
−j/2j−k+2

+

ℓ−1∑
i=k+1

(sk,i)
−(i+2)/2i−k+1

i−1∏
j=k+1

(sk,j)
−j/2j−k+2

.

Also using that sk,k = s∗, we now obtain

s
−(k+2)/2
∗ + s

−k/4
∗ · f(k + 1, s∗)

1/2

≤ (sk,k)
−(k+2)/2 + (sk,ℓ)

−ℓ/2ℓ−k+1

(sk,k)
−k/4

ℓ−1∏
j=k+1

(sk,j)
−j/2j−k+2

+

ℓ−1∑
i=k+1

(sk,i)
−(i+2)/2i−k+1

(sk,k)
−k/4

i−1∏
j=k+1

(sk,j)
−j/2j−k+2

= (sk,k)
−(k+2)/2 + (sk,ℓ)

−ℓ/2ℓ−k+1
ℓ−1∏
j=k

(sk,j)
−j/2j−k+2

+

ℓ−1∑
i=k+1

(sk,i)
−(i+2)/2i−k+1

i−1∏
j=k

(sk,j)
−j/2j−k+2

= (sk,ℓ)
−ℓ/2ℓ−k+1

ℓ−1∏
j=k

(sk,j)
−j/2j−k+2

+

ℓ−1∑
i=k

(sk,i)
−(i+2)/2i−k+1

i−1∏
j=k

(sk,j)
−j/2j−k+2

.

Hence the second term in the maximum above also satisfies the desired bound, completing the proof.

Finally, we show how to deduce Theorem 5.1 from the k = 0 case of Corollary 10.1.

Proof of Theorem 5.1. Let Q ∈ R[x1, . . . , xn], A ∈ Rn×n and s be as in Theorem 5.1. We may assume that
s ≥ 4 (otherwise the bound in Theorem 5.1 holds trivially as long as C ′ ≥ 2). Let k = 0, let M ∈ H0×n(s) be
the empty 0× n matrix, and let w⃗ ∈ R0 be the empty vector. Note that the quadruple (n,Q,M, w⃗) satisfies
condition (∗) in Definition 5.4, because the only (M,M)-perturbation of A is the matrix A′ = A, and by
the assumption in Theorem 5.1, for every subset S ⊆ [n] of size |S| ≥ n− s, the submatrix A[S × S] has at
least one nonzero entry outside its diagonal. Thus, for a sequence ξ⃗ ∈ {−1, 1}n of independent Rademacher
random variables, we have

Pr[Q(ξ⃗) = 0] = Pr[Q(ξ⃗) = 0 and Mξ⃗ = w⃗] ≤ f(0, s)

and hence by Corollary 10.1

Pr[Q(ξ⃗) = 0] ≤ (s0,ℓ)
−ℓ/2ℓ+1

ℓ−1∏
j=0

(s0,j)
−j/2j+2

+

ℓ−1∑
i=0

(s0,i)
−(i+2)/2i+1

i−1∏
j=0

(s0,j)
−j/2j+2
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for every integer ℓ ≥ 0 (with s0,i = s/(i + 2)500(i+1) for i = 0, . . . , ℓ as defined in Corollary 10.1). Then for
every integer ℓ ≥ 0 we obtain

Pr[Q(ξ⃗) = 0] ≤
ℓ∏

i=0

(i+ 2)500(i+1)(i+2)/2i+1

·

s−ℓ/2ℓ+1
ℓ−1∏
j=0

s−j/2j+2

+

ℓ−1∑
i=0

s−(i+2)/2i+1
i−1∏
j=0

s−j/2j+2


= exp

(
500

ℓ∑
i=0

(i+ 2)2 ln(i+ 2)

2i+1

)
·

(
s−1/2+1/2ℓ+1

+

ℓ−1∑
i=0

s−1/2−1/2i+1

)

using Lemma 10.2 for k = 0. Noting that the series
∑∞

i=0(i+2)2 ln(i+2)/2i+1 =
∑∞

i=2 i
2 ln i/2i−1 converges,

for all integers ℓ ≥ 0 we obtain

Pr[Q(ξ⃗) = 0] ≤ C1 ·

(
s−1/2+1/2ℓ+1

+

ℓ−1∑
i=0

s−1/2−1/2i+1

)
= C1 · s−1/2 ·

(
s1/2

ℓ+1

+

ℓ−1∑
i=0

s−2ℓ−i/2ℓ+1

)

for some absolute constant C1 ≥ 1. Plugging in ℓ = ⌊log log s⌋ − 1, we have

2 ≤ s1/2
ℓ+1

≤ 4

and therefore

Pr[Q(ξ⃗) = 0] ≤ C1 · s−1/2 ·

(
4 +

ℓ−1∑
i=0

(1/2)2
ℓ−i

)
≤ C1√

s
·

(
4 +

ℓ−1∑
i=0

(1/2)ℓ−i

)
≤ 5C1√

s
.

Setting C ′ = 5C1, this gives the desired bound.

11 Deduction of main results

In this section, we deduce our main theorem (Theorem 1.1) and its generalisation to arbitrary distributions
(Theorem 1.2) from the slightly more technical statement of Theorem 5.1. Note that Theorem 1.2 directly
implies Theorem 1.1, taking ξ1, . . . , ξn to be independent Rademacher random variables, and taking δ = 1/2.
So, we will just prove Theorem 1.2 (however, we remark that the proof gets easier and certain steps can be
skipped if one is only interested in Theorem 1.1).

First, to apply Theorem 5.1 in the general setting of Theorem 1.2, we use that any discrete random variable
can be expressed in a way such that after some further conditioning one basically obtains a Rademacher
random variable. The following lemma strengthens an observation made by Meka, Nguyen and Vu [37] for a
similar purpose.

Lemma 11.1. For every discrete random variable ζ ∈ R, we can find a representation of the form

ζ = α+ ξβ

for a Rademacher random variable ξ ∈ {−1, 1} and a discrete random vector (α, β) ∈ R2 which is independent
of ξ. Moreover, this representation can be chosen such that the distribution of (α, β) satisfies the following
two conditions:

(a) There is at most one real number a ∈ R with Pr[(α, β) = (a, 0)] > 0
(b) If there is some value z ∈ R with Pr[ζ = z] > 1/2, then we always have α+ β = z (for any outcome of

the random vector (α, β) ∈ R2).

Proof. If the random variable ζ is constant, i.e., if Pr[ζ = z] = 1 for some z ∈ R, we can define the random
vector (α, β) ∈ R2 to always take the constant value (z, 0). So let us from now on assume that ζ is not
constant.
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Case 1: There is a majority outcome. First, we consider the case where Pr[ζ = z] ≥ 1/2 for some
z ∈ R. Let ρ = Pr[ζ ̸= z] ≤ 1/2. Then, we can take the random vector (α, β) ∈ R2 to be equal to
(z, 0) with probability 1− 2ρ and equal to ((z + Y )/2, (z − Y )/2) with probability 2ρ, where Y is a sample
from the distribution of ζ conditioned on the event ζ ̸= z. Note that we then always have α + β = z (as
α + β = z + 0 = z or α + β = (z + Y )/2 + (z − Y )/2 = z). Also note for all a ∈ R with a ̸= z we have
Pr[(α, β) = (a, 0)] = 0, since Y never takes the value z and so we can only have β = 0 when α = z. Now,
taking ξ ∈ {−1, 1} to be a Rademacher random variable that is independent of the random vector (α, β),
the expression α + ξβ evaluates to z ± 0 = z with probability 1 − 2ρ, to (z + Y )/2 + (z − Y )/2 = z with
probability ρ and to (z+Y )/2− (z−Y )/2 = Y with probability ρ. Hence the distribution of α+ξβ coincides
with the distribution of ζ. We can therefore find a coupling of ζ with (α, β) and ξ such that (α, β) ∈ R2 and
ξ ∈ {−1, 1} are independent and ζ = α+ ξβ.

Case 2: There is no majority outcome. Now, let us consider the case where Pr[ζ = z] < 1/2 for all
z ∈ R. Let x be a median of ζ (meaning that Pr[ζ ≥ x] ≥ 1/2 and Pr[ζ ≤ x] ≥ 1/2; for example we can
take x = sup{x ∈ R : Pr[ζ ≥ x] ≥ 1/2}). As Pr[ζ = x] < 1/2, we can see that 0 < Pr[ζ < x] ≤ 1/2 and
0 < Pr[ζ > x] ≤ 1/2.

Now, let ρ1 = Pr[ζ < x] and ρ2 = Pr[ζ > x]. Let us assume without loss of generality that ρ1 ≥ ρ2 (the case
ρ2 ≥ ρ1 is analogous). Let Y1 (respectively, Y2) be a sample from the distribution of ζ conditioned on the
event ζ < x (respectively, the event ζ > x). We can now take the random vector (α, β) ∈ R2 to be equal
to (x, 0) with probability 1 − 2ρ1, equal to ((x + Y1)/2, (x − Y1)/2) with probability 2ρ1 − 2ρ2, and equal
to ((Y2 + Y1)/2, (Y2 − Y1)/2) with probability 2ρ2. Note that we can only have β = 0 when α = x, since
we always have Y1 < x and Y2 > x. Now, taking ξ ∈ {−1, 1} to be a Rademacher random variable that is
independent of the random vector (α, β) ∈ R2, the expression α+ ξβ evaluates to x± 0 = x with probability
1−2ρ1, to (x+Y1)/2+(x−Y1)/2 = x with probability ρ1−ρ2, to (x+Y1)/2−(x−Y1)/2 = Y1 with probability
ρ1 − ρ2, to (Y2 + Y1)/2− (Y2 − Y1)/2 = Y1 with probability ρ2, and to (Y2 + Y1)/2 + (Y2 − Y1)/2 = Y2 with
probability ρ2. So all in all, α + ξβ evaluates to x with probability 1 − ρ1 − ρ2 = Pr[ζ = x], to Y1 with
probability ρ1 and to Y2 with probability ρ2. Hence the distribution of α + ξβ agrees with the distribution
of ζ, and we can again find the desired coupling such that ζ = α+ ξβ.

In the setting of Lemma 11.1, note that if there is a real number a ∈ R with Pr[(α, β) = (a, 0)] > 0, then we
have Pr[β = 0] = Pr[(α, β) = (a, 0)] ≤ Pr[ζ = a] (here we used (a)). On the other hand, if there is no such
a ∈ R, we clearly have Pr[β = 0] = 0. Thus, in any case we can conclude that

Pr[β = 0] ≤ sup
z∈R

Pr[ζ = z]. (11.1)

We will also need a generalisation of the Erdős–Littlewood–Offord theorem to arbitrary discrete random
variables (i.e., not just for Rademacher random variables). The following theorem follows directly from the
result of [30], and can also be deduced from the ordinary Erdős–Littlewood–Offord theorem.

Theorem 11.2. Fix δ > 0, and let X1, . . . , Xt ∈ R be independent discrete random variables satisfying
supz∈R Pr[Xi = z] ≤ 1− δ for all i = 1, . . . , t. Then we have

sup
z∈R

Pr[X1 + · · ·+Xt = z] ≤ C ′
δ√
t
,

for some constant C ′
δ only depending on δ.

Let us first prove Theorem 1.2 under the additional assumption that all point probabilities of the variables
ζ1, . . . , ζn are at most 1− δ. This does not require the full strength of Lemma 11.1 (we will not need (b) in
Lemma 11.1).

Proposition 11.3. The statement of Theorem 1.2 holds under the additional assumption that we have
supz∈R Pr[ζi = z] ≤ 1− δ for all i = 1, . . . , n.
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Proof. For ease of notation, we write ζ⃗ = (ζ1, . . . , ζn). Let C ′ ≥ 1 be an absolute constant such that
Theorem 5.1 holds, and let Cδ = max(8C ′/δ, 2C ′

δ) for the constant C ′
δ in Theorem 11.2. Note that the

claimed probability bound is trivially true if
√
m ≤ Cδ, so we may assume that m ≥ (Cδ)

2 ≥ 64/δ2.

Recall that Q ∈ R[x1, . . . , xn] is a quadratic polynomial, and that we are assuming that for any fixing box
R1 × · · · ×Rn of Q (where R1, . . . , Rn are nonempty subsets of the supports of ζ1, . . . , ζn, respectively) there
are at least m indices i ∈ {1, . . . , n} with Pr[ζi ∈ Ri] ≤ 1 − δ. Note that this assumption is not affected by
changing the constant term of Q. It therefore suffices to prove

Pr[Q(ζ⃗) = 0] ≤ Cδ√
m
. (11.2)

Indeed, for any z ∈ R, applying this inequality to the polynomial Q − z gives Pr[Q(ζ⃗) = z] ≤ Cδ/
√
m, as

claimed. To prove (11.2), we distinguish two cases.

Case 1: Quadratic anticoncentration. First, consider the case that for some ℓ ≥ m/4 there exist
distinct indices i1, . . . , iℓ, j1, . . . , jℓ ∈ [n] such that for each h = 1, . . . , ℓ the coefficient of xihxjh in the
quadratic polynomial Q is nonzero (and let ch ̸= 0 denote this coefficient). In this case, our goal is to apply
Theorem 5.1.

For each i = 1, . . . , n, let us represent the random variable ζi as ζi = αi + ξiβi, for a Rademacher random
variable ξi ∈ {−1, 1} and a random vector (αi, βi) ∈ R2, as in Lemma 11.1, in such a way that ξ1, . . . , ξn
and (α1, β1), . . . , (αn, βn) are all mutually independent. Note that by (11.1) and our assumption in the
proposition, we have

Pr[βi = 0] ≤ sup
z∈R

Pr[ζi = z] ≤ 1− δ

for i = 1, . . . , n. Thus, for each h = 1, . . . , ℓ, we obtain

Pr[βihβjh ̸= 0] = Pr[βih ̸= 0] · Pr[βih ̸= 0] ≥ δ2,

and furthermore the events βihβjh ̸= 0 are independent for all h = 1, . . . , ℓ. Thus, by a Chernoff bound (see
for example [24, Theorem 2.1]), we have

Pr
[
fewer than δ2ℓ/2 indices h ∈ {1, . . . , ℓ} satisfy βihβjh ̸= 0

]
≤ e−δ2ℓ/8 ≤ e−δ2m/32 ≤ 32

δ2m
≤ 4/δ√

m
, (11.3)

recalling ℓ ≥ m/4 and m ≥ 64/δ2 (i.e., δ
√
m ≥ 8). Conditioning on any outcomes of (α1, β1), . . . , (αn, βn),

such that βihβjh ̸= 0 for at least δ2ℓ/2 indices h ∈ {1, . . . , ℓ}, we can interpret Q(ζ1, . . . , ζn) as a quadratic
polynomial in the independent Rademacher random variables ξ1, . . . , ξn by plugging in ζi = αi + ξiβi for
i = 1, . . . , n. Note that for h = 1, . . . , ℓ the coefficient of ξihξjh in this quadratic polynomial is chβihβjh . Hence
there are at least δ2ℓ/2 ≥ δ2m/8 indices h ∈ {1, . . . , ℓ} such that the coefficient of ξihξjh in this quadratic
polynomial is nonzero, and so this quadratic polynomial satisfies the condition in Theorem 5.1 for any
positive integer s < δ2m/8 (indeed, for at least δ2m/8 indices h ∈ {1, . . . , ℓ} the (ih, jh)-entry of the matrix
A appearing in this condition is nonzero, and for every subset S ⊆ [n] of size |S| ≥ n− s > n− δ2m/8, the
submatrix A[S×S] must contain one of these nonzero entries). Taking s = ⌈δ2m/8⌉−1 ≥ δ2m/8−1 ≥ δ2m/16
(recalling that m ≥ 64/δ2), by Theorem 5.1 we obtain

Pr
[
Q(ζ⃗) = 0

∣∣ (α1, β1), . . . , (αn, βn)
]
≤ C ′√

δ2m/16
=

4C ′/δ√
m

when conditioning on any outcomes of (α1, β1), . . . , (αn, βn) such that βihβjh ̸= 0 for at least δ2ℓ/2 indices
h ∈ {1, . . . , ℓ}. All in all, together with (11.3), this yields

Pr[Q(ζ⃗) = 0] ≤ 4C ′/δ√
m

+
4/δ√
m

≤ 8C ′/δ√
m

≤ Cδ√
m
,

showing the desired bound (11.2).
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Case 2: Linear anticoncentration. From now on we may assume that the condition in Case 1 does
not hold. For the maximum possible ℓ, consider distinct indices i1, . . . , iℓ, j1, . . . , jℓ ∈ [n] such that for
h = 1, . . . , ℓ the coefficient of xihxjh in Q is nonzero. By our assumption for this case, we have ℓ < m/4. Let
J = {i1, . . . , iℓ, j1, . . . , jℓ} and I = [n] \ J . Note that then, by the maximality of ℓ, for any distinct i, i′ ∈ I,
the coefficient of xixi′ in Q is zero.

Our plan is to condition on an arbitrary outcome of ζ⃗[J ], and to apply Theorem 11.2 in the resulting
conditional probability space (only using the randomness of ζi for i ∈ I).

For any outcome of ζ⃗[J ], we can interpret Q(ζ⃗) as a polynomial in the remaining variables ζi for i ∈ I (with
coefficients depending on ζ⃗[J ]). Writing Qζ⃗[J] for this polynomial, we always have Q(ζ⃗) = Qζ⃗[J](ζ⃗[I]). For any

distinct i, i′ ∈ I, the coefficient of ζiζi′ in Qζ⃗[J] is zero, so Qζ⃗[J] can be written as a sum
∑

i∈I P
(i)

ζ⃗[J]
(ζi), where

for each i ∈ I, the summand P
(i)

ζ⃗[J]
(ζi) is a quadratic polynomial in the single variable ζi (with coefficients

depending on ζ⃗[J ]). We now have

Pr
[
Q(ζ⃗) = 0

∣∣∣ ζ⃗[J ]] = Pr
[
Qζ⃗[J](ζ⃗[I]) = 0

∣∣∣ ζ⃗[J ]] = Pr

[∑
i∈I

P
(i)

ζ⃗[J]
(ζi) = 0

∣∣∣∣∣ ζ⃗[J ]
]

for every outcome of ζ⃗[J ].

For any outcome of ζ⃗[J ], let Tζ⃗[J] ⊆ I = [n]\J be the set of indices i ∈ I with supz∈R Pr
[
P

(i)

ζ⃗[J]
(ζi) = z

∣∣ ζ⃗[J ]] ≤
1− δ. We claim that we must always have |Tζ⃗[J]| ≥ m/2, due to the assumption in Theorem 1.2 concerning
fixing boxes. Indeed, suppose for the purpose of contradiction that there is an outcome w⃗ = (wj)j∈J ∈ RJ of
ζ⃗[J ] such that |Tw⃗| < m/2. Then, we have |I \Tw⃗| > n−m (recalling that |I| = n−|J | = n− 2ℓ > n−m/2).
We can construct a fixing box R1 × · · · ×Rn for the polynomial Q as follows:

• For j ∈ J , take Rj = {wj};
• For t ∈ Tw⃗, take Rt = {yt} for some arbitrary element yt of the support of ζt;
• For i ∈ I \ Tw⃗, take zi ∈ R such that Pr

[
P

(i)
w⃗ (ζi) = zi

]
> 1 − δ (such a value zi exists by the

definition of Tw⃗), and let Ri be the set of all y in the support of ζi such that P
(i)
w⃗ (y) = zi (i.e.,

Ri = (P
(i)
w⃗ )−1(zi) ∩ supp(ζi)).

Note that Q is constant on R1 × · · · ×Rn: indeed, for any (ζ1, . . . , ζn) ∈ R1 × · · · ×Rn we have

Q(ζ1, . . . , ζn) = Qw⃗(ζ⃗[I]) =
∑
i∈I

P
(i)
w⃗ (ζi) =

∑
t∈Tw⃗

P
(t)
w⃗ (yt) +

∑
i∈I\Tw⃗

zi.

So, R1×· · ·×Rn is indeed a fixing box of Q. On the other hand we have Pr[ζi ∈ Ri] = Pr
[
P

(i)

ζ⃗[J]
(ζi) = zi

]
> 1−δ

for all i ∈ I \ Tw⃗. As |I \ Tw⃗| > n−m, this means that there are strictly fewer than m indices i ∈ {1, . . . , n}
with Pr[ζi ∈ Ri] ≤ 1− δ, contradicting our assumption.

We have established that |Tζ⃗[J]| ≥ m/2 for any outcome of ζ⃗[J ]. For any outcomes of ζ⃗[J ] and ζ⃗[I \ Tζ⃗[J]],
we now have

Pr

[∑
i∈I

P
(i)

ζ⃗[J]
(ζi) = 0

∣∣∣∣∣ ζ⃗[J ], ζ⃗[I \ Tζ⃗[J]]

]
= Pr

[ ∑
i∈T

ζ⃗[J]

P
(i)

ζ⃗[J]
(ζi) = −

∑
i∈I\T

ζ⃗[J]

P
(i)

ζ⃗[J]
(ζi)

∣∣∣∣∣ ζ⃗[J ], ζ⃗[I \ Tζ⃗[J]]

]

≤ C ′
δ√

|Tζ⃗[J]|
≤ C ′

δ√
m/2

≤ 2C ′
δ√
m

by Theorem 11.2. To be precise, for any possible outcomes of ζ⃗[J ] and ζ⃗[I \Tζ⃗[J]], we apply Theorem 11.2 in

the conditional probability space given these outcomes, with the random variables Xi = P
(i)

ζ⃗[J]
(ζi) for i ∈ Tζ⃗[J],
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noting that by the definition of Tζ⃗[J] we then have

sup
z∈R

Pr
[
Xi = z

∣∣∣ ζ⃗[J ], ζ⃗[I \ Tζ⃗[J]]
]
≤ 1− δ

for each i ∈ Tζ⃗[J]. So overall we obtain

Pr
[
Q(ζ⃗) = 0

∣∣∣ ζ⃗[J ]] = Pr

[∑
i∈I

P
(i)

ζ⃗[J]
(ζi) = 0

∣∣∣∣∣ ζ⃗[J ]
]
≤ 2C ′

δ√
m

≤ Cδ√
m

for any outcome of ξ⃗[J ]. This implies the desired bound in (11.2).

Finally, we deduce the full statement of Theorem 1.2 from Proposition 11.3.

Proof of Theorem 1.2. We may assume without loss of generality that 0 < δ < 1/2. Let Cδ be a constant
such that Proposition 11.3 holds (i.e., such that the statement in Theorem 1.2 holds under the additional
assumption that supz∈R Pr[ζi = z] ≤ 1− δ for all i = 1, . . . , n). Let us also write ζ⃗ = (ζ1, . . . , ζn).

Let J ⊆ [n] be the set of indices j for which Pr[ζj = zj ] > 1−δ holds for some zj ∈ R (such a zj is unique if it
exists). For each j ∈ J , let us represent the random variable ζj as ζj = αj + ξjβj , for a Rademacher random
variable ξj ∈ {−1, 1} and a random vector (αj , βj) ∈ R2, as in Lemma 11.1. We do this in such a way that
the random variables ξj and the random vectors (αj , βj) are all mutually independent for all j ∈ J . Note that
we always have αj + βj = zj for all j ∈ J (by (b) in Lemma 11.1, recalling that Pr[ζ = zj ] > 1− δ > 1/2).

Now, our plan is to condition on arbitrary outcomes of (αj , βj) for j ∈ J , and prove the desired bound using
the randomness of ξj for j ∈ J , and the randomness of ζi for i /∈ J , applying Proposition 11.3.

For each j ∈ J and each outcome of (αj , βj), the conditional distribution of ζj given our outcome of (αj , βj) is
described by Pr[ζj = αj+βj | (αj , βj)] = Pr[ζj = αj−βj | (αj , βj)] = 1/2 if βj ̸= 0, and Pr[ζj = zj | (αj , βj)] =
1 if βj = 0 (then αj − βj = αj + βj = zj , so ζj is constant). Note that conditioning on outcomes of (αj , βj)
for j ∈ J does not change the distribution of ζi for i /∈ J , and does not change the fact that the random
variables ζ1, . . . , ζn are independent.

For any outcome of β⃗[J ] (i.e., for any outcomes of βj for j ∈ J), let Hβ⃗[J] ⊆ J be the set of indices j ∈ J

such that βj = 0, and let Iβ⃗[J] = [n] \ Hβ⃗[J] (i.e., Iβ⃗[J] is the subset of indices for which ζi “still has some
randomness” after conditioning on the outcomes of (αj , βj) for j ∈ J). Note that we always have [n]\J ⊆ Iβ⃗[J].
Furthermore note that for any outcome of ((αj , βj))j∈J , we have

sup
z∈R

Pr
[
ζi = z

∣∣∣ ((αj , βj)
)
j∈J

]
≤ 1− δ

for all i ∈ Iβ⃗[J] (here we are using that δ < 1/2) and

Pr
[
ζi = zi

∣∣∣ ((αj , βj)
)
j∈J

]
= 1

for all i ∈ Hβ⃗[J].

Now, for any outcome of β⃗[J ] (which determines Hβ⃗[J] and Iβ⃗[J]), we have Q(ζ⃗) = Qβ⃗[J](ζ⃗[Iβ⃗[J]]), where

Qβ⃗[J] is the polynomial in the entries of ζ⃗[Iβ⃗[J]] obtained from Q(ζ⃗) by substituting ζi with zi for all i ∈ Hβ⃗[J]

(recall that we always have ζi = zi for all i ∈ Hβ⃗[J]).

We claim that, if we condition on any outcomes of (αj , βj) for j ∈ J , then with respect to the resulting
conditional probability space, Qβ⃗[J](ζ⃗i[Iβ⃗[J]]) satisfies the fixing box assumption in Theorem 1.2 (and therefore
satisfies the assumptions of Proposition 11.3). Indeed, for any outcome of ((αj , βj))j∈J , consider a fixing
box

∏
i∈I

β⃗[J]
Ri for Qβ⃗[J](ζ⃗[Iβ⃗[J]]), and suppose for the purpose of contradiction that there are fewer than m
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indices i ∈ Iβ⃗[J] with Pr[ζi ∈ Ri | ((αj , βj))j∈J ] ≤ 1 − δ. Then, we can extend our fixing box for Qβ⃗[J] to a
fixing box R1×· · ·×Rn for Q(ζ1, . . . , ζn) by simply taking Rj = {zj} for all j ∈ Hβ⃗[J] ⊆ J . Note that for each
j ∈ Hβ⃗[J] ⊆ J we have Pr[ζj ∈ Rj ] = Pr[ζj = zj ] > 1− δ. Also, for j ∈ J \Hβ⃗[J] = J ∩ Iβ⃗[J] (i.e., for j ∈ J

with βj ̸= 0), we can only have Pr[ζj ∈ Rj ] ≤ 1−δ if zj ̸∈ Rj (as Pr[ζj = zj ] > 1−δ), and in this case we also
have Pr[ζj ∈ Rj | (αj , βj)] ≤ 1/2 ≤ 1− δ (as Pr[ζj = zj | (αj , βj)] = Pr[ζj = αj + βj | (αj , βj)] = 1/2). Finally,
note that conditioning on ((αj , βj))j∈J does not change the distributions of ζi for i ∈ [n]\J ⊆ Iβ⃗[J]. So every
index i ∈ [n] with Pr[ζi ∈ Ri] ≤ 1− δ has the property that i ∈ Iβ⃗[J] and Pr[ζi ∈ Ri | ((αj , βj))j∈J ] ≤ 1− δ.
Hence, there are fewer than m indices i ∈ [n] with Pr[ζi ∈ Ri] ≤ 1 − δ, contradicting our assumption on
Q(ζ1, . . . , ζn).

Given the above discussion, for any outcomes of (αj , βj) for j ∈ J , we can apply Proposition 11.3, to obtain

sup
z∈R

Pr
[
Q(ζ1, . . . , ζn) = z

∣∣∣ ((αj , βj)
)
j∈J

]
≤ Cδ√

m
.

The desired desired unconditional probability bound follows.

12 Concluding remarks

In this paper we have obtained essentially optimal bounds for the quadratic Littlewood–Offord problem.
There are many interesting directions for further research.

Immediate generalisations. Theorem 1.1 is only about point concentration, and it would be interesting
to prove a counterpart for small-ball concentration; i.e., under which assumptions on Q can we prove that

sup
z∈R

Pr[|Q(ξ1, . . . , ξn)− z| ≤ 1] ≤ O

(
1√
n

)
?

It would also be nice to prove a generalisation of Theorem 1.1 to polynomials of degree greater than 2.
Generalising the conjecture of Nguyen and Vu, we believe the statement of Theorem 1.1 should hold whenever
Q is a polynomial of bounded degree (note that without a bounded-degree assumption we cannot hope for
sensible anticoncentration bounds; consider for example the parity function Q(x1, . . . , xn) = x1x2 . . . xn).

It is sometimes the case that techniques for point concentration can be straightforwardly adapted for small-ball
concentration, and techniques for quadratic polynomials can be straightforwardly adapted for higher-degree
polynomials (in particular, the previous bounds of Meka–Nguyen–Vu [37] and Kane [28], mentioned in the
introduction, handle small ball concentration for polynomials of any bounded degree). The high-level strategy
of the proof of Theorem 1.1 (as sketched in Section 2) makes sense in a very general context, but when trying
to generalise Theorem 1.1 in the obvious ways, one runs into some subtle technical issues (see Remarks 2.1
and 2.2). We think it would be very interesting to investigate this further.

It would also be desirable to generalise our “geometric” theorem (Theorem 4.2) to geometric objects other
than quadrics inside affine-linear subspaces. For example, we make the following conjecture (closely related
to higher-degree generalisations of the Littlewood–Offord problem, and closely related to the directions in
[17]).

Conjecture 12.1. Let 0 ≤ d < r and q be integers. Let Z ⊆ Rr be an algebraic variety of dimension
d, with degree at most q. Consider vectors a⃗1, . . . , a⃗n ∈ Rr such that for some positive integer t, one can
form t disjoint bases from the vectors a⃗1, . . . , a⃗n. Let (ξ1, . . . , ξn) ∈ {−1, 1}n be a sequence of independent
Rademacher random variables. Then

Pr[ξ1a⃗1 + · · ·+ ξna⃗n ∈ Z] ≤ Cd,r,q

t(r−d)/2

for some Cd,r,q only depending on d, r, q.
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The Gotsman–Linial conjecture. The Gotsman–Linial conjecture is a conjecture in Boolean analysis
which generalises nearly all polynomial Littlewood–Offord-type theorems. To state this conjecture we need
to introduce some notation.

The i-th influence of a Boolean function F : {−1, 1}n → {−1, 1} is defined as

Infi(F ) = Pr[F (ξ1, . . . , ξi−1, ξi, ξi+1, . . . ξn) ̸= F (ξ1, . . . , ξi−1,−ξi, ξi+1, . . . ξn)]

(i.e., the probability that changing the ith bit changes the output of the function). The total influence
(also sometimes called the average sensitivity) Inf(F ) of F is Inf1(F ) + · · · + Infn(F ). For a function
Q : {−1, 1}n → R, the threshold function FQ : {−1, 1}n → {−1, 1} of Q is the Boolean function that
detects whether Q(x1, . . . , xn) ≥ 0 or not. If Q is a degree-d polynomial, we say FQ is a degree-d threshold
function.

Gotsman and Linial [20] made a notorious conjecture on the highest total influence that an n-variable degree-
d polynomial threshold function can have (namely, they conjectured that the total influence is maximised
when Q(x1, . . . , xn) is a certain product of d terms of the form (x1+ · · ·+xn+a)). Unfortunately, the precise
form of this conjecture has been falsified [4, 29] (it holds for the linear case d = 1 but already fails in the
quadratic case d = 2).

Nonetheless, it still seems plausible that for every n-variable degree-d polynomial the total influence of
threshold function can be bounded by O(d

√
n), or at least by Cd

√
n for some constant Cd depending on d

(conjectures in this direction are sometimes variously called the weak Gotsman–Linial conjecture). If such a
bound were to hold, it would be an easy exercise to deduce Theorem 1.1 (and the generalisations discussed
above). It would be interesting to investigate whether the techniques in this paper can be used to make
progress on (at least the quadratic form of the) weak Gotsman–Linial conjecture.

Inverse theory. For both the linear and quadratic Littlewood–Offord problems, one cannot hope for a
general bound stronger than O(1/

√
n). However, it is natural to investigate assumptions under which one

can prove stronger bounds.

In the linear case (studying random variables of the form X = a1ξ1+ · · ·+anξn), this has been an enormously
successful direction of research. Early highlights include Stanley’s solution of the so-called Erdős–Moser
problem [46] (introducing tools from algebraic topology to prove an optimal bound under the assumption
that all of the coefficients a1, . . . , an are distinct), and a paper of Halász [21] which introduced Fourier-
analytic methods to prove stronger bounds when a1, . . . , an are in a certain sense “additively unstructured”.
Perhaps most famously, Tao and Vu [51] proved a so-called Inverse Littlewood–Offord theorem, which shows
that supz∈R Pr[X = z] is extremely small (smaller than n−C for any constant C) unless a1, . . . , an have very
special additive structure (roughly speaking, most of a1, . . . , an lie inside a generalised arithmetic progression).
This had a number of important applications in random matrix theory [48, 49, 51]. The inverse theory of the
linear Littlewood–Offord theorem is now essentially complete, thanks to optimal inverse theorems of Nguyen
and Vu [38] and Rudelson and Vershinyn [45] (see also [50]) that give a precise quantification of the extent
to which anticoncentration is controlled by the additive structure of a1, . . . , an.

In the quadratic case (studying random variables of the form X = Q(ξ1, . . . , ξn) for a quadratic polynomial
Q), much less is known. An analogue of the original Tao–Vu inverse theorem was proved by Nguyen [39],
but it is not clear how an optimal inverse theorem should even be formulated. Such a theorem would have to
somehow incorporate the additive information that is relevant for the linear Littlewood–Offord problem, in
addition to algebraic considerations (e.g., whether Q factorises into linear factors or not). See [5, 27, 32] for
some progress and conjectures related to algebraic aspects of the inverse theory of the quadratic Littlewood–
Offord problem.
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