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Abstract. There is no known polynomial-time algorithm for graph isomorphism testing, but elemen-
tary combinatorial “refinement” algorithms seem to be very efficient in practice. Some philosophical
justification for this phenomenon is provided by a classical theorem of Babai, Erdős and Selkow: an ex-
tremely simple polynomial-time combinatorial algorithm (variously known as “naïve refinement”, “naïve
vertex classification”, “colour refinement” or the “1-dimensional Weisfeiler–Leman algorithm”) yields a
so-called canonical labelling scheme for “almost all graphs”. More precisely, for a typical outcome of a
random graph G(n, 1/2), this simple combinatorial algorithm assigns labels to vertices in a way that
easily permits isomorphism-testing against any other graph.

We improve the Babai–Erdős–Selkow theorem in two directions. First, we consider randomly per-
turbed graphs, in accordance with the smoothed analysis philosophy of Spielman and Teng: for any
graph G, naïve refinement becomes effective after a tiny random perturbation to G (specifically, the
addition and removal of O(n logn) random edges). Actually, with a twist on naïve refinement, we show
that O(n) random additions and removals suffice. These results significantly improve on previous work
of Gaudio, Rácz and Sridhar, and are in certain senses best-possible.

Second, we complete a long line of research on canonical labelling and automorphisms for random
graphs: for any p (possibly depending on n), we prove that a random graph G(n, p) can typically
be canonically labelled in polynomial time. This is most interesting in the extremely sparse regime
where p has order of magnitude c/n; denser regimes were previously handled by Bollobás, Czajka–
Pandurangan, and Linial–Mosheiff. Our proof also provides a description of the automorphism group
of a typical outcome of G(n, pn) (slightly correcting a prediction of Linial–Mosheiff).

1. Introduction

Given a pair of graphs G1 and G2 (on the same vertex set {1, . . . , n}, say), how can we test whether
they are isomorphic? Perhaps the most obvious first thought is to try to identify some easily-computable
isomorphism-invariant information that distinguishes the two graphs. For example, one can easily com-
pute the degrees of the vertices of G1 and the degrees of the vertices in G2, sort these lists and check
if they are the same. If they are different, we have successfully determined that the graphs are not
isomorphic (and if they are the same our test was inconclusive).

Perhaps the most influential approach along these lines is called colour refinement, also known as
naïve refinement or the 1-dimensional Weisfeiler–Leman algorithm1. This is an algorithm that produces
a “colour” for each vertex; the colour of a vertex describes the degree of that vertex, together with all
other data that one can obtain by allowing degree information to “percolate through the graph”. We
will define the algorithm formally in Definition 2.2 (and give an example in Figure 1), but briefly: at
the start of the algorithm, every vertex “looks the same”. Then, in the first step we distinguish vertices
by their degrees (i.e., the colour of each vertex is its degree). In the second step, we distinguish vertices
by their number of neighbours with each degree (i.e., each vertex now has a colour consisting of its own
degree, together with a multiset of the degrees of its neighbours). In general, at each step we update
the colour of each vertex by appending the multiset of colours of its neighbours. After some number of
iterations of this procedure, it will “stabilise” in the sense that no further vertices can be distinguished
from each other.

It turns out that the colour refinement algorithm can be executed very efficiently: in a graph with
n vertices, the stable colouring can be computed2 in time O(n2 log n). It is not hard to see that if the
algorithm manages to assign each vertex of G a distinct label, then the sequence of colours in the stable
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1The origin of this idea is difficult to pin down, but it seems to have been first proposed by Morgan [55] in 1965 in the
context of computational chemistry!

2We are brushing over some subtleties here, which we will discuss further in Section 2.
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colouring uniquely determines the isomorphism class of G. In fact, more is true: in this case one can use
the colours to define a canonical labelling of G. This notion will be defined formally in Definition 2.1,
but roughly speaking it means that one can label the vertices of G with the integers {1, . . . , n} (assuming
G has n vertices), in such a way that isomorphic graphs are always labelled the same way.

Unfortunately, colour refinement is not always so effective. For example, in a regular graph, where
every vertex has the same degree, colour refinement is useless on its own, as it cannot distinguish any
vertices from each other. However, a landmark result of Babai, Erdős and Selkow shows that this
situation is “atypical”: the proportion of n-vertex graphs which cannot be canonically labelled using
colour refinement tends to zero as n → ∞ (see also the improvements in [8, 46, 54]). This result is most
easily stated in the language of random graphs, as follows.

Theorem 1.1. For a random graph3 G ∼ G(n, 1/2), whp4 the colour refinement algorithm distinguishes
all vertices from each other. In particular, whp G can be tested for isomorphism with any other graph in
polynomial time.

Theorem 1.1 is widely touted as philosophical justification for why algorithms based on colour refine-
ment seem to be so effective in practice. Indeed, all graph isomorphism algorithms in common usage
employ a modification of colour refinement called individualisation-refinement5. It is well-known that
algorithms of this type take exponential time on worst-case inputs (see [58] for recent general results in
this direction), but one rarely seems to encounter such inputs in practice. Of course, we would be remiss
not to mention that from a theoretical point of view, fully sub-exponential algorithms are now available:
there is an amazing line of work due to Babai, Luks, Zemlyachenko and others (see [6] for a survey)
applying deep ideas from group theory to the graph isomorphism problem, which culminated in Babai’s
recent quasipolynomial-time graph isomorphism [5] and canonical labelling [7] algorithms.

Remark. The study of the colour refinement algorithm is of interest beyond its direct utility in graph
isomorphism testing. Indeed, if graphs G and H are indistinguishable by colour refinement, we say that
G and H are fractionally isomorphic; this is an important notion of intrinsic interest in graph theory, that
has surprisingly many equivalent formulations (e.g., in terms of first-order logic [19], universal covers [2],
tree homomorphism counts [29] and doubly-stochastic similarity of adjacency matrices [66]). See for
example the surveys [35,60] and the monograph [10] for more.

We also remark that the colour refinement algorithm represents the limit of so-called graph neural
networks for graph isomorphism testing [57, 70]; these connections have recently been of significant
interest in the machine learning community (see [52,56] for surveys).

1.1. Smoothed analysis. As our first main direction in this paper, we take the philosophy of Theo-
rem 1.1 much further, combining it with the celebrated smoothed analysis framework of Spielman and
Teng [64]. To give some context: the simplex algorithm for linear optimisation is another fundamental
example of an algorithm which seems to perform well in practice but takes exponential time in the worst
case. As a very strong explanation for this, Spielman and Teng proved that if one takes any linear opti-
misation problem and applies a slight random perturbation, then for a typical outcome of the resulting
perturbed linear optimisation problem, the simplex algorithm succeeds in polynomial time. This shows
that poorly-performing instances are “fragile” or “unstable”, and perhaps we should not expect them to
appear in practice.

In the setting of graphs, as first observed by Spielman and Teng [64], the most natural way to define
a perturbation is in terms of symmetric difference: for graphs G,G′ on the same vertex set, write
G△G′ for the graph containing all edges which are in exactly one of G and G′ (we can think of G′

as the “perturbation graph”, specifying where we should “flip” edges of G to non-edges, or vice versa).
Dramatically strengthening Theorem 1.1, we prove that for any graph, randomly perturbing each edge
with probability about log n/n (i.e., adding and removing about n log n random edges6) is sufficient to
make colour refinement succeed whp.

3In the random graph G(n, p) (called the binomial or sometimes the Erdős–Rényi random graph), we fix a set of n

vertices and include each of the
(n
2

)
possible edges with probability p independently.

4We say a property holds with high probability, or “whp” for short, if it holds with probability tending to 1. Here and
for the rest of the paper, all asymptotics are as n → ∞.

5It will not be relevant for the present paper to formally describe this paradigm, but for the curious reader: the idea is
that occasionally a vertex must be artificially distinguished from the other vertices of its colour in order to “break regularity”
(one must then consider all possible ways to make this artificial choice).

6Note that G(n, p) tends to have about p
(n
2

)
≈ pn2 edges.
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Theorem 1.2. Fix a constant ε > 0 and consider any p ∈ [0, 1/2] satisfying p ≥ (1 + ε) log n/n. For
any graph G0, and with Grand ∼ G(n, p), whp the colour refinement algorithm distinguishes all vertices
of G0△Grand from each other. In particular, whp G0△Grand can be tested for isomorphism with any
other graph in polynomial time.

Note that the p = 1/2 case of Theorem 1.2 is precisely Theorem 1.1. Indeed, when p = 1/2, the
random perturbation is so extreme that all information from the original graph is lost and we end up
with a purely random graph. (We may restrict our attention to p ≤ 1/2, because perturbing G with a
random graph G(n, p) is the same as perturbing the complement of G with a random graph G(n, 1−p).)

We remark that we are not the first to consider smoothed analysis for graph isomorphism: this setting
was also recently considered by Gaudio, Rácz and Sridhar [33], though only under quite restrictive
conditions on G0, and with a stronger assumption on p (both of which make the problem substantially
easier). Specifically, they found an efficient canonical labelling scheme that succeeds whp as long as G0

satisfies a certain “sparse neighbourhoods” property, and as long as p has order of magnitude between
(log n)2/n and (log n)−3.

It is not hard to see that the assumption on p in Theorem 1.2 cannot be significantly improved.
Indeed, if G0 is the empty graph and p ≤ (1− ε) log n/n, then G0△Grand is likely to have many isolated
vertices (see e.g. [30, Theorem 3.1]), which cannot be distinguished by colour refinement. This does not
necessarily mean that colour refinement fails to provide a canonical labelling scheme (isolated vertices can
be labelled arbitrarily), but to illustrate a more serious problem, suppose G0 is a disconnected graph in
which every component is a 3-regular graph on at most 10 vertices. If we perturb with edge probability
p ≤ (1/20) log n/n, it is not hard to see that whp many of the components of G will be completely
untouched by the random perturbation (and therefore colour refinement will be unable to distinguish
the vertices in these components, despite the components potentially having very different structure).

Of course, while tiny regular components may foil colour refinement, they are not really a fundamental
problem for canonical labelling (as we can afford to use very inefficient canonical labelling algorithms
on these tiny components). We are able to go beyond Theorem 1.2 via a modification of the colour
refinement algorithm in this spirit. Indeed, with a variation on the colour refinement algorithm called
the 2-dimensional Weisfeiler–Leman algorithm, and a new notion of a disparity graph (which allows us to
define an appropriate generalisation of the notion of a “tiny component”), together with an exponential-
time canonical labelling algorithm of Corneil and Goldberg [22] (only applied to the analogues of “tiny
components”), we are able to define a combinatorial canonical labelling scheme which becomes effective
after extremely mild random perturbation (perturbation probability about 1/n).

Theorem 1.3. There is a set of graphs H, and an explicit polynomial-time canonical labelling algorithm
for graphs in H (which can also detect whether a graph lies in H), such that the following holds.

Consider any p ∈ [0, 1/2] satisfying p ≥ 100/n. For any graph G0, and Grand ∼ G(n, p), whp
G0△Grand ∈ H. In particular, whp G0△Grand can be tested for isomorphism with any other graph in
polynomial time.

We highlight that the algorithm for Theorem 1.3 is a “combinatorial” algorithm, using completely
elementary refinement/recursion techniques (in particular, the algorithm can be interpreted as falling
into the individualisation-refinement paradigm, and it does not use any group theory). Actually, up to
constant factors, the restriction p ≥ 100/n in Theorem 1.3 is essentially best possible for combinatorial
algorithms, given state-of-the-art worst-case guarantees: if we were to takeGrand ∼ G(n, p) for p = o(1/n)
(i.e., if we were to take a milder random perturbation than in Theorem 1.3), then any polynomial-time
canonical labelling algorithm that succeeds whp for graphs of the form G0△Grand would immediately
give rise7 to a sub-exponential-time canonical labelling algorithm for all graphs (i.e., an algorithm that
runs in time eo(n)). Although such algorithms are known to exist (most obviously, we already mentioned
Babai’s quasipolynomial time algorithm), they all fundamentally use group theory.

The proof of Theorem 1.3 involves a wide range of different ideas, which we outline at some length
in Section 1.3. As an extremely brief summary: we first use expansion and anticoncentration estimates,
together with a characterisation of colour refinement in terms of universal covers, to prove that the
colour refinement algorithm (applied to G0△Grand) typically assigns distinct colours to the vertices in
the so-called 3-core of Grand. This is already enough to prove Theorem 1.2, but to prove Theorem 1.3

7For any graph G∗, we can consider a larger graph G0 with many copies of G∗ as connected components, with parameters
chosen such that a very mild random perturbation typically leaves some copies of G∗ completely unaffected (and therefore
a canonical labelling of the randomly perturbed graph can be translated into a canonical labelling of G∗). We omit the
details.
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(with its weaker assumption on p), we need to combine this with a delicate sprinkling argument, in which
we slowly reveal the edges of Grand, and study how the 3-core changes during this process. Every time a
new vertex joins the 3-core (thereby receiving a unique colour by the colour refinement algorithm), this
new colour information cascades through the 2-dimensional Weisfeiler–Leman algorithm, breaking up
many of the colour classes into smaller parts. This has the effect of partitioning the graph into smaller
and smaller parts, which can be treated separately at the end.

1.2. Sparse random graphs. After the Babai–Erdős–Selkow theorem (Theorem 1.1) on canonical
labelling for G(n, 1/2), one of the most obvious directions for further study was to consider sparser
random graphs G(n, pn) (note that it suffices to consider pn ≤ 1/2, since canonical labelling is not really
affected by complementation).

The first work in this direction was by Bollobás (see [14, Theorem 3.17]), who showed that the proof
approach for Theorem 1.1 works as long as pn does not decay too rapidly with n. Combining this with a
later result of Bollobás [13] (which considered a very different type of canonical labelling scheme, under
different assumptions on pn), and a result of Czajka and Pandurangan [24] (which considered colour
refinement for an intermediate range of pn), one obtains polynomial-time canonical labelling schemes as
long as npn − log n → ∞ as n → ∞. This condition on pn is significant because it is the same range
where random graphs are typically rigid : as was famously proved by Wright [69], such random graphs
typically have only trivial automorphisms, whereas if npn− log n→ −∞ then there typically exist many
automorphisms.

Even sparser graphs were recently considered by Linial and Mosheiff [53]; they handled the regime
where npn → ∞ using another different type of canonical labelling scheme. The regime npn → 0 is easy,
as in this regime (see [30, Section 2.1]) the components of G(n, pn) are all trees with size at most o(log n)
(so various different types of trivial canonical labelling schemes suffice; see for example [4]). That is to
say, the only regime left unaddressed is the regime where pn is about c/n for some constant c.

As our next main result, we close this gap, finding a canonical labelling scheme for all pn.

Theorem 1.4. There is a set of graphs H, and an explicit polynomial-time canonical labelling algorithm
for graphs in H (which can also detect whether a graph lies in H), such that the following holds.

For any sequence (pn)n∈N ∈ [0, 1]N, and Gn ∼ G(n, pn), whp Gn ∈ H. In particular, whp Gn can be
tested for isomorphism with any other graph in polynomial time.

In fact, we prove that colour refinement on its own yields a canonical labelling scheme whp, unless pn
has order of magnitude c/n. If pn has order of magnitude c/n, then colour refinement still almost works;
the only obstruction is connected components which have a single cycle, which can be easily handled
separately in a number of different ways.

Remark 1.5. There are important connections between the colour refinement algorithm and mathematical
logic (see for example the monograph [34]). Our proof shows that random graphs of any density typically
have Weisfeiler–Leman dimension at most 2 (and if we delete components with a single cycle, the
Weisfeiler dimension is exactly equal to 1). That is to say, random graphs of any density can typically
be uniquely distinguished by the 2-variable fragment of first-order logic with counting quantifiers.

Remark 1.6. An equivalent version of Theorem 1.4, in the regime pn = O(1/n), has been independently
proved in concurrent work by Oleg Verbitsky and Maksim Zhukovskii [68] (they also study the colour
refinement algorithm, but with quite different methods: while we take advantage of our general machinery
already used to prove Theorem 1.3, Verbitsky and Zhukovskii take advantage of structural descriptions of
the “anatomy” of a sparse random graph [27,28]). We believe both proof approaches to be of independent
interest.

Given the machinery developed to prove Theorem 1.3, the proof of Theorem 1.4 is rather simple.
Special care needs to be taken in the regime where p is very close to 1/n (this is the critical regime for
the phase transition of Erdős–Rényi random graphs).

A related problem is to characterise the automorphism group of a random graph. Linial and Mosheiff
achieved this when npn → ∞, and asked about the case where pn has order of magnitude 1/n (specifically,
they wrote that they “suspect” that the largest biconnected component of the so-called 2-core has trivial
automorphism group). We prove that Linial and Mosheiff’s suspicion is mostly (but not exactly) correct.
To state our theorem in this direction, we need a further definition.
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Definition 1.7. For a graph G, let corek(G) be its k-core (its largest subgraph with minimum degree
at least k). A bare path8 in a graph is a path whose internal vertices have degree 2.

Note that any graph G can always be obtained by gluing a (possibly trivial) rooted tree to each
vertex of core2(G), and adding some tree components. As observed by Linial and Mosheiff, in order
to characterise the automorphisms of G, it suffices to characterise how such automorphisms act on
core2(G). Indeed, having specified how an automorphism acts on core2(G), all that remains is to specify
automorphisms of the rooted trees attached with each vertex, and the tree components. (Note that
automorphisms of rooted trees are easy to characterise; we can only permute vertices at the same depth,
and only if their corresponding subtrees are isomorphic).

Theorem 1.8. Consider any sequence (pn)n∈N and let G ∼ G(n, pn). Then, G satisfies the following
property whp. Every automorphism of G fixes the vertices of the core2(G), with the following (possible)
exceptions.

• For every cycle component of core2(G), automorphisms of this cycle may give rise to automor-
phisms of G.

• For every pair of cycles components in core2(G) which have the same length, there may be an
automorphism of G which exchanges these two cycles.

• For a pair of vertices u, v with degree at least 3 in core2(G), such that (in core2(G)) there are
multiple bare paths between u and v, there may be an automorphism of G which exchanges these
bare paths.

• For a vertex u with degree at least 3 in core2(G), such that (in core2(G)) there is a (closed) bare
path from u to itself, there may be an automorphism of G which “flips” this bare path (reversing
the order of the internal vertices).

If npn → ∞, it is not hard to see that whp none of the above exceptions actually occur. Indeed, in
the 2-core, whp: there is no pair of bare paths of the same length between any pair of degree-3 vertices,
there are no bare paths from a vertex to itself, and there are no cycle components. However, when
say pn = 2/n, there is a non-negligible probability that each of the aforementioned configurations exist
(and that the rooted trees attached to these configurations permit automorphisms of G which permute
vertices of core2(G)): the asymptotic distribution of the numbers of each of these configurations can
be described by a sequence of independent Poisson random variables with nonzero means. This can be
shown by the method of moments (see for example [41, Section 6.1]); we omit the details.

Remark 1.9. In the independent work of Verbitsky and Zhukovskii mentioned in Remark 1.6, they also
deduced Theorem 1.8. They also went on to characterise all the automorphisms of core2(G) (not just
those induced by automorphisms of G); this requires some additional work.

1.3. Key proof ideas. Before presenting the full proofs of Theorems 1.2 to 1.4 and 1.8, we take a
moment to describe some of the key ideas in the proofs.

1.3.1. Exploring universal covers. The starting point for all the proofs in this paper is an observation
essentially due to Angluin [2], that the stable colouring obtained by the colour refinement algorithm
assigns two vertices the same colour if and only if the universal covers rooted at those vertices are
isomorphic. We will use a minor modification of the notion of a universal cover called a view, which
encodes the same information but which is slightly more convenient for our purposes. Roughly speaking,
the view TG(v) rooted at a vertex v in a graph G is a (potentially infinite) tree encoding all possible
walks in G starting from v (see Section 3 for a precise definition).

Without random perturbation, we are helpless to deal with the fact that many vertices may have
isomorphic views (e.g., if G is d-regular, then TG(v) is always isomorphic to the infinite rooted tree
where each vertex has d children). The power of random perturbation is that, if two vertices u and v
“see different vertices in their walks” (for example, if the set of neighbours of u is very different from
the set of neighbours of v), then the random perturbation is likely to affect TG(u) and TG(v) differently,
distinguishing them from each other. One of the key technical results in this paper is a general lemma
(Proposition 4.1) which makes this precise.

8Such paths are also sometimes called threads in the structural graph theory community.
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1.3.2. Distinguishing vertices via random perturbation: expansion and anticoncentration. It is difficult
to give a quick summary of Proposition 4.1 without the necessary definitions, but to give a flavour: we
define sets Si({u, v}) which describe the vertices which “feature differently” in length-i walks starting
from u and length-i walks starting from v. Proposition 4.1 says that even extremely mildly randomly
perturbed graphs typically have the property that if for some vertices u, v, and some i, the set Si({u, v})
contains more than about log n vertices, then u and v are assigned different colours by colour refinement.

To prove this, we first use the expansion properties of random graphs (via a coupling of the type
often appearing in analysis of branching processes) to “boost” the condition on Si({u, v}), showing that
if Si({u, v}) has more than about log n vertices then there is typically some j ≥ i such that Sj({u, v})
has n1−o(1) vertices.

There is then a huge amount of “space” in Sj({u, v}) to take advantage of fluctuations due to the
random perturbation. In particular, we show how to algorithmically divide Sj({u, v}) into “buckets”
with different degree statistics, use the edges within these buckets to describe certain fluctuations in
TG(u) and TG(v) via certain essentially independent inhomogeneous random walks on Z, and then apply
an anticoncentration inequality (a variant of the classical Erdős–Littlewood–Offord inequality) to show
that it is extremely unlikely that these random walks behave in the same way for u and v (so unlikely
that we can union bound over all u, v).

Of course, in order to actually apply Proposition 4.1, we need to study the pairs u, v for which
Si({u, v}) has more than about log n vertices (for some i). If the perturbation probability is greater than
about log n/n (as in Theorem 1.2), it is easy to show that whp all pairs of vertices have this property
(in this case we can even take i = 1). For milder random perturbation (or sparser random graphs), we
will need to restrict our attention to certain pairs u, v lying in certain special subgraphs, as we discuss
next.

1.3.3. The 2-core and the kernel. Recall from Definition 1.7 that the k-core of a graph G is its maximal
subgraph of minimum degree at least k. The kernel of G is the smallest multigraph homeomorphic to
the 2-core of G (i.e., with the same topological structure as the 2-core). It can be obtained from the
2-core by iteratively replacing bare paths (also defined in Definition 1.7) by single edges.

Especially in the setting of random graphs, cores and kernels are objects of fundamental interest,
typically possessing extremely strong expansion properties. In particular, the kernel of a random graph
in some sense describes its fundamental underlying expander structure: a celebrated theorem of Ding,
Lubetzky and Peres [28] shows that one can in some sense “build a random graph from its kernel” by
(very informally) starting from a random expander (the kernel), randomly replacing some edges with
bare paths, (to obtain the 2-core), and randomly affixing some trees.

If k ≥ 3, the expansion properties of the k-core make it quite convenient to apply Proposition 4.1: it
is fairly simple to show that, for k ≥ 3, a mildly randomly perturbed graph typically has the property
that colour refinement assigns a unique colour to all vertices of the k-core of Grand. This immediately
implies Theorem 1.2 (since when p ≥ (1 + ε) log n/n the 3-core of Grand typically comprises the entire
vertex set).

However, in very sparse regimes (in particular, when p < c/n for a certain constant c, famously
computed by Pittel, Spencer and Wormald [61]), the 3-core is typically empty, and we are forced to turn
to the 2-core and the kernel. Unfortunately, this makes everything much more delicate. We prove a
somewhat technical lemma (Proposition 5.2) showing that a mildly randomly perturbed graph typically
has the property that colour refinement can distinguish the vertices9 of degree at least 3 in the 2-core.

1.3.4. Sparse random graphs. The above considerations on the 2-core apply when p ≥ (1 + ε)/n (for
any constant ε > 0). Considering the case where the initial graph G0 is empty, it is straightforward to
deduce that simple canonical labelling schemes are typically effective for sparse random graphs G(n, p),
when p ≥ (1 + ε)/n (thus proving Theorem 1.4 in this regime).

The significance of this assumption on p is that it corresponds to the celebrated phase transition for
Erdős–Rényi random graphs: when the edge probability is somewhat above 1/n, there is typically a
giant component with good expansion properties, but when the edge probability is somewhat less than
1/n, there are typically only tiny components with very poor expansion properties (see for example the
monographs [14,30,41] for more).

In the critical regime (1 − ε)/n < p < (1 + ε)/n, we proceed differently. In this regime, every
component of G(n, p) with more than one cycle has quite large diameter : exploration processes can run

9This is not strictly speaking true; for the purposes of this outline we are ignoring a technical caveat concerning very
rare configurations of edges in the 2-core.
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for quite a long time without exhausting all the vertices in the graph, and we can accumulate quite a lot
of independent randomness over this time. The anticoncentration from this randomness gives us another
way to prove that different vertices are assigned different colours by colour refinement (completing the
proof of Theorem 1.4). The details of this argument appear in Section 7.

1.3.5. Sprinkling via the 3-core. For Theorem 1.3 (on canonical labelling of very mildly randomly per-
turbed graphs), the role of the k-core (and Proposition 5.2, discussed in Section 1.3.3) is that it provides
a kind of “monotonicity” that allows us to use a technique called sprinkling.

For the unfamiliar reader: sprinkling, in its most basic form, is the observation that a random graph
Grand ∼ G(n, p) can be interpreted as the union of two independent random graphs G1

rand∪G2
rand, where

G1
rand, G

2
rand ∼ G(n, p′) with 1 − p = (1 − p′)2. This observation allows one to first show that certain

properties hold whp for G1
rand, then reveal an outcome of G1

rand satisfying these properties, and use the
independent randomness of G2

rand to “boost” these properties.
Sprinkling only really makes sense when we are dealing with properties of Grand that are monotone, in

the sense that once we have established the property for some subgraph of Grand, adding the remaining
edges of Grand cannot destroy the property. Unfortunately, the colour refinement algorithm is highly
non-monotone: in general, adding additional edges can allow the algorithm to distinguish more vertices,
but can also prevent the algorithm from distinguishing some vertices. In the proof of Theorem 1.3,
the critical role played by Proposition 5.2 is that it makes a connection between the colour refinement
algorithm and the k-core, which is a fundamentally monotone object. For example, if a vertex is in the
k-core of G1

rand, then it is guaranteed to be in the k-core of G1
rand ∪G2

rand.
We will actually split our random perturbation Grand into many independent random perturbations

G1
rand, . . . , G

T
rand ∈ G(n, p′) (in the proof of Theorem 1.3 we will take T = 8). If p′ ≥ 10/n, then one can

show that whp the first random perturbation G1
rand already has a giant 3-core10, and by Proposition 5.2

we can safely assume that each of the vertices in this 3-core will be assigned unique colours by the colour
refinement algorithm (applied to the randomly perturbed graph G = G0△(G1

rand∪· · ·∪GT
rand), which we

have not yet fully revealed). Then, in each subsequent random perturbation Gi
rand, for i ≥ 2, additional

vertices randomly join the 3-core, and we can assume that they will also receive unique colours.
The upshot is that, whatever properties we are able to prove about the stable colouring produced by

the colour refinement algorithm, we can “boost” these properties by randomly assigning unique colours
to some vertices (and studying how this new information propagates through the colour refinement
algorithm). To describe the types of properties we are interested in, we need to define the notion of a
disparity graph, as follows.

1.3.6. Small components in disparity graphs. Recall that Theorem 1.2 cannot hold for p = o(log n/n).
The key obstruction to keep in mind is that if G0 has many tiny regular connected components, then very
mild random perturbation will leave some of these components untouched, and the colour refinement
algorithm will not be able to distinguish the vertices in these components.

For the proof of Theorem 1.3, we therefore need an appropriate generalisation of the notion of “tiny
component” (taking into account the fact that tiny components in the complement of G play the same
role as tiny components of G). To this end, we introduce the notion of a disparity graph.

Definition 1.10. For a graph G, a set of colours Ω and a colouring c : V (G) → Ω, define the majority
graph M(G, c) (on the same vertex set as G) as follows. For any (possibly non-distinct) pair of colours
ω, ω′ ∈ Ω:

• If at least half of the possible edges between vertices of colours ω and ω′ are in fact present as
edges of G, then M(G, c) contains every possible edge between vertices of colours ω and ω′.

• Otherwise (if fewer than half of the possible edges between vertices of colours ω and ω′ are
present), M(G, c) contains no edges between vertices of colours ω and ω′.

Then, define the disparity graph D(G, c) =M(G, c)△G.

Informally speaking, the majority graph M(G, c) is the best possible approximation to G among all
graphs which are “homogeneous” between colour classes (for every pair of colour classes, to decide whether
to put all edges between them or no edges between them, we look at the majority behaviour in G among
vertices of those colours). Then, the disparity graph identifies the places where the majority graph differs
from G. Equivalently, we can define the disparity graph to be the graph obtained by considering every

10With a little more work, it would suffice to consider the vertices of degree at least 3 in the 2-core, in which case we
only need p′ to be slightly larger than 1/n. However, the 3-core is much more convenient to work with.
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pair of colour classes and deciding whether to complement the edges between those colour classes or not,
depending on which of the two choices would make the graph sparser.

If c is the stable colouring obtained from the colour refinement algorithm, it is not hard to show that a
canonical labelling of D(G, c) yields a canonical labelling of G (this is stated formally in Proposition 2.5
later in the paper). So, we can canonically label G in polynomial time whenever D(G, c) has sufficiently
small components (small enough that we can afford to use known inefficient canonical labelling schemes
on each component).

1.3.7. Percolation for a weaker result. Let c be the stable colouring obtained by the colour refinement
algorithm. To prove Theorem 1.3, it would suffice to prove that whp the disparity graph D(G0△Grand, c)
has small components (for a polynomial-time combinatorial algorithm, we need every component to have
O(log n) vertices, so that we can afford to use an exponential-time canonical labelling algorithm of Corneil
and Goldberg [22] on each component11).

Unfortunately, we were not quite able to manage this when the random perturbation probability is
O(1/n) (as demanded by Theorem 1.3). Indeed, our proof of Theorem 1.3 requires a more sophisticated
variant of the colour refinement algorithm, as we discuss later in this outline. However, the above goal
is achievable if the random perturbation probability is at least (say) 100 log log n/n. For expository
purposes we next sketch how to prove this, before moving on to the more sophisticated ideas in the full
proof of Theorem 1.3 (the details of this simpler argument can be found in Appendix B).

As discussed in Section 1.3.5, we can interpret our random perturbation Grand as a composition of
three random perturbations G1

rand ∪ G2
rand ∪ G3

rand. The first random perturbation G1
rand already whp

establishes a giant 3-core (of size at least n/2, say); we can assume that the vertices in this 3-core
get unique colours (and are hence isolated vertices in the disparity graph), so we only need to worry
about the vertices outside the 3-core. Our two additional random perturbations G2

rand and G3
rand each

cause an independent random subset of vertices to receive unique colours (as they join the 3-core): if
p ≥ 100 log log n/n, we calculate that each vertex receives a unique colour with probability at least
1− o(1/ log n).

With one round of sprinkling (i.e., with the random assignment of unique colours provided by G2
rand,

followed by the colour refinement algorithm) we can show that the disparity graph has maximum degree
O(log n) whp12. Indeed, the disparity graph describes how the neighbourhood of a vertex differs from
the “majority behaviour” among vertices of its colour class, so if there is a vertex with high degree in the
disparity graph, then there is a pair of vertices in the same colour class with very different neighbourhoods.
With a union bound over pairs of vertices, it is easy to show that no such pairs persist after a round of
sprinkling (the random assignment of unique colours typically allows the colour refinement algorithm to
distinguish all such pairs).

For our second round of sprinkling (provided by G3
rand), we view the random assignment of unique

colours as percolation: if a vertex gets a unique colour, then it becomes isolated in the disparity graph,
and we can imagine that that vertex is deleted. We are interested in the connected components that
remain after these deletions13. But if the disparity graph has degree O(log n) before sprinkling, and
each vertex is deleted with probability 1− o(1/ log n), one can show that these deletions usually shatter
the disparity graph into small components (the necessary analysis is similar to analysis of subcritical
branching processes). This percolation step is the part where we are fundamentally using that the random
perturbation probability is at least about log log n/n: if the perturbation probability were smaller than
this, then the deletions would not be severe enough to break the disparity graph into small components.

1.3.8. Splitting colour classes and components. In order to go beyond the ideas in the previous subsection,
to work with random perturbation probabilities as small as O(1/n), we need to get a much stronger
conclusion from our sprinkled random perturbation. Every time a vertex is added to the 3-core (and gets
a unique colour), this vertex is not simply removed from the disparity graph: the new colour information

11We remark that it does actually seem to make the problem much easier if we weaken this requirement on the size
of each component (which we may, if we are willing to use a more sophisticated group-theoretic algorithm, with better
worst-case guarantees, on each connected component).

12For this bound we only need that (say) p ≥ 100/n (this implies that in each round of sprinkling, every vertex joins
the 3-core with probability at least 0.9). Using that p ≥ 100 log logn/n (so in every round of sprinkling, every vertex joins
the 3-core with probability at least 1 − o(1/ logn)), we can actually show that the degrees are at most O(logn/ log logn)
whp. But, this stronger bound would not really affect the final result.

13Here we are sweeping under the rug some technical issues related to the “consistency” of the disparity graph as the
underlying graph changes. This turns out to be quite delicate, and is handled in Lemma 6.3.
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has a cascading effect (via the colour refinement algorithm) that affects the colours of many other vertices,
indirectly affecting the connected components of the disparity graph.

First, it is instructive to think about the effect of sprinkling on the connected components (of the
disparity graph) which intersect a given colour class C. If there is a vertex v which has a neighbour
in C (with respect to the disparity graph), then assigning v a unique colour causes C to break into
multiple colour classes: namely, the colour refinement algorithm will be able to distinguish the vertices
in C adjacent to v from the vertices in C which are not adjacent to v (it is a simple consequence of the
definition of the disparity graph that v is adjacent to at most half the vertices in C).

So, we can consider an exploration process that starts from the vertices of C, and explores14 all the
vertices which share a connected component with a vertex in C. Each time we consider a new vertex, we
reveal whether it is assigned a unique colour, and propagate this information via the colour refinement
algorithm15. As we continue this exploration/refinement process, the colour classes will start to break
up into smaller pieces. There is a limit to how long this process can continue, since colour classes of size
1 cannot be broken up further. Indeed, by considering an auxiliary submartingale (which measures how
the number of colours we have discovered so far compares to the number of vertices we have explored so
far, at each point in the process), we can prove that our exploration process is likely to terminate after
O(|C|) steps, having explored all the vertices that share a component with a vertex in C. That is to say,
the sizes of the connected components of the disparity graph (after sprinkling) are bounded in terms of
the sizes of the colour classes (before sprinkling).

Unfortunately, we cannot hope to show that the colour classes are small, in general (indeed, if G has
many isolated vertices, then all these vertices will be assigned the same colour by any canonical vertex-
colouring scheme). However, the above idea can be “localised” to a connected component: We prove a
crucial lemma (Lemma 6.10), which tells us that in order to show that the disparity graph has connected
components with O(log n) vertices (after sprinkling), it suffices to show that, before sprinkling, for all
colour classes C and connected components X of the disparity graph, we have |C ∩X| = O(log n).

In order to show that these intersection sizes |C ∩X| are small, we need another round of sprinkling
which “shatters large components into small colour classes”. In order for this sprinkling to have a strong
enough effect, we need to consider a more powerful variant of the colour refinement algorithm, as follows.

1.3.9. Distinguishing vertices via the 2-dimensional Weisfeiler–Leman algorithm. The 2-dimensional
Weisfeiler–Leman algorithm refines colourings of pairs of vertices: starting with a certain “trivial” colour-
ing ϕG : V (G)2 → Ω, we repeatedly refine ϕG based on statistics of 3-vertex configurations, until a stable
colouring f : V (G)2 → {0, 1} is reached. This colouring of pairs of vertices then gives rise to a colouring
of individual vertices v 7→ f(v, v), which contains a lot more information than the result of ordinary
colour refinement.

In particular, this more sophisticated refinement operation allows us to distinguish vertices based on
distances: in the final vertex-colouring, every two vertices of the same colour see the same number of
vertices of every given colour at any given distance (in the disparity graph). As discussed in Section 1.3.7,
after a single round of sprinkling whp the disparity graph has maximum degree O(log n), so if a connected
component X has more than logarithmically many vertices then it is quite sparse, meaning that there
is a very rich variety of different pairs of vertices at different distances. So, when sprinkling causes new
vertices to receive unique colours, hopefully the 2-dimensional Weisfeiler–Leman algorithm will be able
to significantly break up the colour classes in X (recall that our goal is now to prove that the intersections
between colour classes and connected components have size O(log n)).

Naïvely, one might hope to prove this via a simple union bound over subsets Z ⊆ X of about log n
vertices: for any such set Z, one might try to prove that after a round of sprinkling, and the 2-dimensional
Weisfeiler–Leman algorithm, it is overwhelmingly unlikely that all vertices of Z have the same colour. To
prove this, it would suffice to show that for any such Z there are many vertices which see some vertices
of Z at different distances (so if any of these many vertices receive a new unique colour, this could be
used by the 2-dimensional Weisfeiler–Leman algorithm to give different colours to some of the vertices
of Z).

Unfortunately, this direct approach does not seem to yield any nontrivial bounds, without making
structural assumptions about G. Instead, we use a “fingerprint” technique reminiscent of the method of

14For the purposes of this outline, the reader can imagine that at each step we choose the unexplored vertex which is
closest to C in the current disparity graph, though our actual exploration process is a bit more complicated.

15The resulting changes to the colouring also change the disparity graph. In particular, vertices which used to be in
the same connected component may later be spread over multiple connected components, but this is not really a problem.
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hypergraph containers in extremal combinatorics, which reduces the scope of our union bound. Specif-
ically, if there were a large colour class C ′ ⊆ X after sprinkling, we show that this would imply the
existence of a much smaller “fingerprint” set S ⊆ X which sees many vertices (specifically, many vertices
of C ′) at a variety of different distances. We can then take a cheaper union bound over the smaller
fingerprint sets S.

We remark that the above sketch was very simplified, and serves only to illustrate the rough ideas.
The full proof of Theorem 1.3 (which appears in Section 6) confronts a number of delicate technical
issues and requires seven rounds of sprinkling, each of which gradually reduce the degrees, colour classes
and connected components of the disparity graph.

1.4. Further directions. There are a number of natural directions for further research. First is the
question of optimising the probability implicit in the “whp” in each of Theorems 1.2 to 1.4, and im-
proving the runtimes of the relevant algorithms. In the setting of Theorem 1.1, both these issues were
comprehensively settled by Babai and Kucera [8]: they showed that, except with exponentially small
probability, two steps of colour refinement suffice (yielding a linear-time algorithm).

The algorithm in Theorem 1.2 (colour refinement) runs in time O((n+m) log n), where n and m are
the numbers of vertices and edges of our graph of interest, while the algorithm in Theorem 1.4 naïvely
runs in about quadratic-time, due to repeated iteration of the colour refinement algorithm. With some
careful analysis, it may be possible to bound the necessary number of colour refinement steps, to obtain
an optimal linear-time algorithm in the setting of Theorem 1.2, and at least to improve the runtime
in the setting of Theorem 1.4. In the setting of Theorem 1.2, it may even be feasible to very precisely
characterise the necessary number of colour refinement steps: recent work on “shotgun reassembly” [32,42]
indicates that there should be a phase transition between two steps being necessary, and three steps being
necessary, at around p = (log n)2(log log n)−3/n.

Regarding Theorem 1.3: this algorithm also naïvely runs in about quadratic-time, due to the use of
the 2-dimensional Weisfeiler–Leman algorithm. However, we do not need the full power of the general
algorithms that we cite, and it seems plausible that special-purpose variants could be designed that might
also yield a running time of O((n+m) log n).

Also, there is the possibility of improving on the amount of random perturbation in Theorem 1.3.
In particular, taking advantage of group-theoretic techniques (e.g., using the quasipolynomial-time al-
gorithm of Babai [7]), it might be possible to design a canonical labelling scheme that becomes effective
with tiny amounts of random perturbation (e.g., perturbation probability o(1/n)).

Next, there is the possibility of stronger connections between our results on smoothed analysis for
graph isomorphism, and the work of Spielman and Teng on smoothed analysis for linear optimisation.
Indeed, (a slight variant of) the colour refinement algorithm is used for dimension reduction in linear
optimisation (see [36]) and it would be interesting to consider smoothed analysis in this setting.

Finally, there is the possibility of considering smoothed analysis for many different types of graph
algorithms other than isomorphism-testing. Some early work in this direction was undertaken by Spiel-
man and Teng [63], but somewhat surprisingly, despite the algorithmic origin of the smoothed analysis
framework, there is now a much larger body of work on randomly perturbed graphs in extremal and prob-
abilistic graph theory (see for example [1, 3, 9, 11, 12, 16–18, 25, 26, 37, 38, 43, 49–51]) than on algorithmic
questions.

1.5. Notation. Our graph-theoretic notation is for the most part standard. For a graph G, we write
V (G) for its set of vertices. We write G[S] for the subgraph of G induced by the vertex subset S, write
G[S, T ] for the bipartite subgraph of G induced between S and T (assuming S, T are disjoint), and write
G△G′ for the symmetric difference of two graphs G,G′ on the same vertex set (i.e., e is an edge of G△G′

if it is an edge of exactly one of G,G′). We write distG(u, v) for the distance between two vertices u, v,
and we write G(n, p) for the Erdős–Rényi random graph on n vertices with edge probability p.

We (slightly abusively) conflate vertex-colourings with vertex-partitions. In particular, for vertex-
colourings c : V (G) → Ω and c′ : V (G) → Ω′, we say that c is a refinement of c′ (or c′ is a coarsening of
c) if each colour class of c is a subset of a colour class of c′.

Our use of asymptotic notation is standard as well. For functions f = f(n) and g = g(n), we write
f = O(g) to mean that there is a constant C such that |f | ≤ C|g|, f = Ω(g) to mean that there is
a constant c > 0 such that |f | ≥ c|g| for sufficiently large n, and f = o(g) to mean that f/g → 0 as
n→ ∞. We say that an event occurs with high probability (“whp”) if it holds with probability 1− o(1).

For a real number x, the floor and ceiling functions are denoted ⌊x⌋ = max{i ∈ Z : i ≤ x} and
⌈x⌉ = min{i ∈ Z : i ≥ x}. We will however sometimes omit floor and ceiling symbols and assume large
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numbers are integers, wherever divisibility considerations are not important. All logarithms in this paper
are in base e, unless specified otherwise.

1.6. Organisation of the paper. The structure of the paper is as follows. We start with some pre-
liminaries in Section 2; in particular, this section features the formal definitions of many of the notions
informally discussed in this introduction. Some of the more routine proofs in this section are deferred to
Appendix A.

Then, in Section 3 we introduce some machinery for working with views, and in Section 4 we use this
machinery to prove a general lemma (Proposition 4.1) giving an expansion-type condition under which
two vertices are typically assigned different colours by colour refinement.

In Section 5 we apply Proposition 4.1 to prove that (under suitable random perturbation) colour
refinement typically assigns unique colours to all of the vertices of degree 3 in the 2-core of Grand which
satisfy a certain technical condition. We deduce (in Proposition 5.5) that colour refinement typically
assigns unique colours to all the vertices in the 3-core of Grand. This immediately implies Theorem 1.2.

In Section 6 we prove Theorem 1.3, combining the results in Section 5 with a large number of additional
ideas. This section can be read independently of most of the rest of the paper (treating Proposition 5.5 as
a black box). A subset of the ideas in Section 6 can also be used to give a much simpler proof of a slightly
weaker result (assuming that the random perturbation probability p is at least about log log n/n); we
include the details in Appendix B.

Finally, in Section 7 we prove Theorems 1.4 and 1.8, via the results in Section 5 and some additional
considerations for near-critical random graphs.

1.7. Acknowledgements. We would like to thank Oleg Verbitsky and Maksim Zhukovskii for several
insightful comments, and for alerting us to their independent work (see Remarks 1.6 and 1.9). The
first two authors would also like to thank Marc Lelarge for insightful discussions which inspired some of
the directions in this paper, and the second author would like to thank Oliver Riordan for interesting
comments on the necessary number of colour refinement steps (see Section 1.4).

2. Basic notions and preliminary lemmas

In this section we formally define some of the notions informally discussed in the introduction, and we
state and prove some general-purpose lemmas that will be used throughout the paper. In Section 2.1 we
present some general definitions and results about canonical labelling, in Section 2.2 we collect some basic
facts about colour refinement, in Section 2.3 we define the 2-dimensional Weisfeiler–Leman algorithm
and collect some basic results about it, and in Section 2.4 we collect some probabilistic estimates.

2.1. Canonical labelling. We start by formally defining the notion of canonical labelling.

Definition 2.1. Let Gn be the set of all graphs on the vertex set {1, . . . , n}, and let Sn be the set of all
permutations of {1, . . . , n}. A labelling scheme is a map Φ : Gn → Sn. For a graph G ∈ Gn, we write
Φ((G)) ∈ Gn for the graph obtained by applying the permutation Φ(G) to the vertices and edges of G.

We say that a family of graphs F ⊆ Gn is isomorphism-closed if it is a disjoint union of isomorphism
classes in Gn. For an isomorphism-closed family of graphs F ⊆ Gn, we say that Φ : Gn → Sn is a
canonical labelling scheme for F if Φ((G)) = Φ((G′)) whenever G,G′ ∈ F are isomorphic.

Intuitively speaking, one should think of a canonical labelling scheme as a way to assign labels to an
unlabelled graph G, where we are not allowed to make “arbitrary choices” (e.g., arbitrarily breaking ties),
unless different outcomes of those choices correspond to automorphisms of G.

Note that a canonical labelling scheme Φ for an isomorphism-closed family F ⊆ Gn gives rise to a
simple way to test for isomorphism between a graph G ∈ F and any other graph G′ ∈ Gn: simply
compute Φ((G)) and Φ((G′)), and compare the two labelled graphs (e.g., by their adjacency matrices).

The primary engine underlying all canonical labelling schemes in this paper is the so-called colour
refinement algorithm. It was informally introduced in the introduction; here we define it more formally.

Definition 2.2. For a graph G and a colouring c : V (G) → Ω, the refinement RGc : V (G) → Ω×NΩ of
c is defined by RGc(v) = (c(v), (dω(v))ω∈Ω), where dω(v) denotes the number of neighbours of v which
have colour ω (with respect to c). Note that every colouring c : V (G) → Ω defines a partition of V (G)
into colour classes. If c, c′ define the same vertex partition, then RGc,RGc

′ also define the same vertex
partition. So, we can actually view RG as an operator on vertex partitions.
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σ

Rσ

R2σ = R∗σ

Figure 1. An illustration of the colour refinement algorithm on the 4-edge path.

Also, denote the t-fold iteration of RG by

Rt
Gc = RG . . .RG︸ ︷︷ ︸

t times

c.

Note that for any colouring c, the partition defined by RGc is always a refinement of the partition
defined by c. For a vertex set of size n, the longest possible chain of proper refinements has length n,
so if we start with any colouring c in an n-vertex graph, and repeatedly apply the refinement operation
RG (at most n times), we always end up with a “stable colouring”. That is to say, there is always some
t ≤ n such that Rt

Gc and Rt+1
G c define the same vertex partition. We denote the corresponding stable

colouring by R∗
Gc = Rt

Gc.
We will write σG : V (G) → {0} for the trivial colouring in which every vertex is given the same “0”

colour.

So, RGσG distinguishes vertices by their degree, and R∗
GσG is the stable colouring obtained by the

colour refinement algorithm as described in the introduction. See Figure 1 for an example. For all the
notation introduced in Definition 2.2, we will often omit the subscript “G” when it is clear from context.

If R∗σ assigns every vertex in G a distinct colour, then it is easy to obtain a canonical labelling for
G from R∗σ: we simply fix some total order of all the potential colours of vertices (e.g. lexicographical
order), and assign the labels {1, . . . , n} in increasing order. However, it is not completely obvious that
this gives rise to an efficient canonical labelling scheme: naïvely, after many steps of refinement the sizes
of the labels become extremely large. In order to address this, after each step of colour refinement we
can re-encode all colours with some subset of the integers {1, . . . , n} (i.e., we do not actually care about
the identities of the colours, only the induced partition of the vertices), but we must be careful to do this
“in a canonical way” (i.e., all choices can only depend on the isomorphism class of our graph). This issue
is comprehensively handled by Berkholz, Bonsma and Grohe [10] (building on ideas in [20, 39, 59]), who
present an algorithm that computes a canonical stable colouring of G in time O((n +m) log n) (where
m is the number of edges in G).

Theorem 2.3. Let F ⊆ Gn be the set of all graphs on the vertex set {1, . . . , n} for which R∗σ assigns
each vertex a distinct colour. Then, the colour refinement algorithm defined in [10] is a canonical labelling
scheme for F . It computes a canonical labelling for a graph G ∈ F in time O((n +m) log n) (where m
is the number of edges in G).

We will use Theorem 2.3 to prove Theorem 1.2, but for Theorems 1.3 and 1.4 we will need some
more robust lemmas on canonical labelling. First, recall the definition of the disparity graph from
Definition 1.10. As mentioned in Section 1.3.6, we obtain an efficient canonical labelling scheme when
the disparity graph can itself be efficiently labelled; we formalise this in Proposition 2.5 below, after
introducing another definition.

Definition 2.4. A canonical colouring scheme (cG)G∈Gn is an assignment of a colouring cG : V (G) → Ω
to each graph G ∈ Gn, in such a way that for any graphs G,H ∈ Gn, and any isomorphism ψ from G to
H, we have cH(ψ(v)) = cG(v) for all v ∈ V (G).

Note that the colour refinement algorithm, starting from the trivial colouring, defines a canonical
colouring scheme (i.e., let cG = R∗

Gσ). However, in our proof of Theorem 1.3 we will end up needing a
slightly more sophisticated canonical colouring scheme (to be defined in Section 2.3).

Proposition 2.5. Let ΦH be a canonical labelling scheme for a graph family H ⊆ Gn, and let (cG)G∈Gn

be a canonical colouring scheme, such that ΦH(G) and cG can both be computed in time T .
Let F be the family of all graphs G ∈ Gn such that D(G, cG) ∈ H. Then there is a canonical labelling

scheme Φ for F , such that for every G ∈ F , we can compute Φ(G) in time O(n2 + T ).
12



Proof. For a graph G ∈ F(v), our canonical labelling Φ(G) ∈ Sn is computed as follows. First compute
the colouring cG (in time T ). Then, compute the disparity graph D(G, cG) (this can be done in time
O(n2)). To each vertex v associate the pair(

cG(v), ΦH(D(G, cG))(v)
)
.

Then, obtain Φ(G) by ordering the vertices lexicographically by their associated pairs. To see that this
indeed describes a canonical labelling scheme, note that every automorphism of D(G, cG) which fixes the
colouring cG is an automorphism of G. □

We will need to combine Proposition 2.5 with an efficient canonical labelling scheme for graphs with
small connected components (it is easy to deal with each connected component separately, so this really
comes down to worst-case guarantees for graphs on a fixed number of vertices). There are algorithms
based on group-theoretic ideas with very strong theoretical guarantees (due to recent work of Babai [7]),
but as the purpose of this paper is to study the typical performance of combinatorial algorithms, we will
instead use the following theorem of Corneil and Goldberg [22]: with an ingenious recursion scheme, it is
possible to canonically label graphs in exponential time (improving on naïve factorial-time algorithms).

Theorem 2.6. There is a canonical labelling scheme Φ for Gn such that for every G ∈ Gn, we can
compute Φ(G) in time exp(O(n)).

We record the following corollary of Proposition 2.5 and Theorem 2.6.

Corollary 2.7. Fix a polynomial-time computable canonical colouring scheme (cG)G∈Gn . Fix a constant
C, and let FC be the set of all graphs G on the vertex set {1, . . . , n}, for which D(G, cG), has connected
components with at most C log n vertices. Then there is a polynomial-time-computable canonical labelling
scheme for FC .

For the reader unfamiliar with canonical labelling, we provide some details in Appendix A for how
exactly to deduce Corollary 2.7 from Proposition 2.5 and Theorem 2.6 (i.e., how to handle connected
components separately).

Next, for Theorem 1.4, we need a generalisation of Theorem 2.3 to a much larger class of graphs, as
follows.

Definition 2.8. A graph G is CR-determined if the multiset of colours in R∗σ distinguishes G from
all non-isomorphic graphs (i.e., if there is no other graph H, not isomorphic to G, for which colour
refinement produces the same multiset of colours).

We remark that there is a combinatorial characterisation of CR-determined graphs (see [4,47]), though
we will not need this.

Theorem 2.9. Let F ⊆ Gn be the set of all CR-determined graphs on the vertex set {1, . . . , n}. Then
there is a canonical labelling algorithm that computes a canonical labelling for a graph G ∈ F in polyno-
mial time.

The canonical labelling algorithm for Theorem 2.9 is a slight variation on the colour refinement
algorithm (due to Tinhofer [67] and Immerman and Lander [40], and made canonical by Arvind, Köbler,
Rattan and Verbitsky [4]; see also [47] for similar independent results). The idea is that if the colour
refinement algorithm reaches a stable colouring in which two vertices have the same colour, we arbitrarily
give one of those two vertices a unique colour, and continue.

To use Theorem 2.9 in our proof of Theorem 1.4, we will need a way to show that graphs are CR-
determined. To this end, it almost suffices to study the vertices in the kernel of G (i.e., the vertices with
degree at least 3 in the 2-core), as follows.

Definition 2.10. For a graph G, let V2,3(G) denote the vertices in the 2-core of G which have degree
at least 3.

Proposition 2.11. Let G be a connected graph with V2,3(G) ̸= ∅. If R∗σ assigns all vertices of V2,3(G)
distinct colours, then G is CR-determined.

It is fairly straightforward to prove Proposition 2.11 by reasoning carefully about how to reconstruct
G given R∗σ (first put bare paths between vertices of V2,3(G) to obtain core2(G), then attach trees to
core2(G) to obtain G). For completeness, we provide some details in Appendix A.
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Remark 2.12. With the same considerations, it is straightforward to characterise the automorphisms of a
graph G for which all vertices of V2,3(G) are assigned distinct colours. Indeed, the vertices of V2,3(G) are
fixed by any automorphism, so the only flexibility comes from components with at most one cycle (i.e.,
components with no vertices of V2,3(G)), bare paths between vertices of V2,3(G), and the trees attached
to core2(G). This is relevant for Theorem 1.8.

Proposition 2.11 does not tell us anything about graphs with V2,3(G) = ∅, but these graphs are easy
to handle separately. Indeed, every connected graph with V2,3(G) = ∅ either has no cycles (i.e., is a tree)
or has exactly one cycle. Such graphs have very simple structure, and there are many ways to handle
them; for example, all such graphs are outerplanar (i.e., they have a planar embedding for which all
vertices belong to the outer face of the embedding), so we can appeal to the following classical theorem
of Sysło [65].

Theorem 2.13. There is an O(n)-time algorithm to canonically label the family of n-vertex outerplanar
graphs.

Combining Theorems 2.9 and 2.13 and Proposition 2.11 yields the following corollary (the details of
the deduction appear in Appendix A).

Corollary 2.14. Let F ⊆ Gn be the set of graphs G on the vertex set {1, . . . , n} for which R∗σ assigns
vertices of V2,3(G) distinct colours. Then there is a polynomial-time computable canonical labelling
scheme for F .

2.2. Basic facts about colour refinement. We collect some simple observations about colour refine-
ment. First, we observe that stable colourings of G are always equitable16: G is regular between each
pair of colour classes.

Definition 2.15. For a graph G, a colouring c : V (G) → Ω is equitable if for any two distinct colour
classes A,B of G, the induced subgraph G[A] is regular, and the induced bipartite subgraph G[A,B] is
a biregular bipartite graph.

Fact 2.16. Consider any graph G and any colouring c : V (G) → Ω, and let Vi, Vj be two distinct colour
classes of R∗c. Then G is equitable.

In fact, R∗c is the coarsest equitable partition refining c, in the sense that any equitable colouring c′
refining c is also a refinement of R∗c.

The uniqueness of R∗c as the coarsest equitable partition refining c (in Fact 2.16) has the following
consequence for the “consistency” of the colour refinement algorithm: if we start the colour refinement
algorithm from any coarsening of R∗σ, it will still end up at R∗σ.

Fact 2.17. Consider any graph G, and let c : V (G) → Ω be a colouring which is a coarsening of R∗σ.
Then, R∗σ and R∗c define the same partition of V (G).

Finally, we observe that the colour refinement algorithm can “see” which pairs of colours in a graph G
are connected by a path. This is also true for the disparity graph, and for a more general class of graphs
in which we can prescribe for each pair of colour classes whether to complement the edges between those
colour classes.

Definition 2.18. For a graph G, a vertex-colouring V (G) → Ω, and a matrix L ∈ {0, 1}Ω×Ω, let
ML(G, c) be the graph defined as follows. For any (possibly non-distinct) pair of colours ω, ω′ ∈ Ω:

• If Lω,ω′ = 1, then ML(G, c) contains every possible edge between vertices of colours ω and ω′.
• If Lω,ω′ = 0, then ML(G, c) contains no edges between vertices of colours ω and ω′.

Then, define the generalised disparity graph DL(G, c) =ML(G, c)△G.

Fact 2.19. Fix a graph G, let c = R∗σ, and let Ω be the set of colours used by c. Consider any
L ∈ {0, 1}Ω×Ω, any two vertices u, v for which c(u) = c(v), and any colour ω ∈ Ω. Then, with respect to
the graph DL(G, c), there is a path from u to an ω-coloured vertex if and only if there is a path from v
to an ω-coloured vertex.

16This should not be confused with a different meaning of the term “equitable colouring” more common in extremal
graph theory (namely, that the colouring has a roughly equal number of vertices in each colour).
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Proof sketch. The key point is that c induces an equitable partition of DL(G, c) (indeed, c is an equitable
partition of G by Fact 2.16, and complementing edges between pairs of colour classes does not change
this property). So, if there is a path from u to a colour class Cω via some sequence of colour classes
C1, . . . , Cℓ, then by biregularity, through the same sequence of colour classes it is also possible to find a
path from v to Cω. □

We remark that the main reason we introduced the general notion of L-disparity graphs is that if we
have two colourings c, c′ of a graph G, such that c′ is a refinement of c, then the disparity graph D(G, c)
with respect to c can be interpreted as a generalised disparity graph DL(G, c

′) with respect to c′.

2.3. The 2-dimensional Weisfeiler–Leman algorithm. In this section we introduce a variant of
colour refinement called the 2-dimensional Weisfeiler–Leman algorithm, which is a refinement algorithm
for colourings of pairs of vertices, instead of colourings of single vertices17.

Definition 2.20. For a graph G and a colouring f : V (G)2 → Ω of the ordered pairs of vertices
of G, the 2-dimensional refinement (2R)f : V (G)2 → Ω × NΩ of f is defined by (2R)f(u, v) =
(f(u, v), (dω1,ω2

(u, v))(ω1,ω2)∈Ω2), where dω1,ω2
(u, v) denotes the number of vertices w ∈ V (G) such that

(f(u,w), f(w, v)) = (ω1, ω2). As in Definition 2.2, let (2R)∗f be the “stable colouring”, obtained by
iterating the refinement operation 2R until we see the same vertex-pair partition twice in a row.

For a vertex colouring c : V (G) → Ω, we write ϕG,c : V (G)2 → Ω⊔ {0, 1} for the colouring defined by
ϕG,c(u, v) = 1 if uv is an edge, ϕG,c(u, v) = c(v) if u = v, and ϕG(u, v) = 0 otherwise (here we write ⊔
for disjoint union). We write ϕG as shorthand for ϕG,σG

, recalling that σG is the trivial vertex-colouring
of V (G) assigning every vertex the same colour.

Also, for a colouring f : V (G)2 → Ω, define the “vertex-projection” Πf : V (G) → Ω by Πf(v) =
f(v, v). Let V∗ = Π(2R)∗ be the vertex-projection of the 2-dimensional Weisfeiler–Leman algorithm.

Remark 2.21. There are (at least) two slightly different definitions of the 2-dimensional Weisfeiler–Leman
algorithm, with different properties. The definition above was the original one introduced by Cai, Fürer
and Immerman [19], and is sometimes called the “2-folklore-Weisfeiler–Leman” algorithm (see [57]).

The first crucial fact we need about the 2-dimensional Weisfeiler–Leman algorithm is that it is effi-
ciently computable. This was first observed by Cai, Fürer and Immerman [19].

Fact 2.22. For any graph G, the stable vertex-pair-colouring (2R)∗ϕG can be computed in polynomial
time. Moreover, this can be done “canonically” in the sense that different relabellings of the same graph
always yield the same colouring (2R)∗ϕG.

Specifically, Cai, Fürer and Immerman [19] proved that the stable vertex-pair-colouring (2R)∗ϕG can
be computed in time O(n3 log n), but we will need an additional O(log n) “overhead” in order to make sure
that all choices are made canonically (as discussed before Theorem 2.3, to prevent the sizes of the labels
becoming too large we need to re-label the colours at each step; if we do not wish to make “arbitrary
choices” then for this re-labelling we need a lexicographic sorting step). In the setting of the colour
refinement algorithm, Bonsma, Berkholz and Grohe showed how to remove this “O(log n) overhead”; this
may also be possible for the 2-dimensional Weisfeiler–Leman algorithm, but we were not able to find this
in the literature.

The next crucial fact we need about the 2-dimensional Weisfeiler–Leman algorithm (really, the entire
reason we need to consider this algorithm, instead of the simpler colour refinement algorithm) is that it
can “detect distances between vertices”, generalising Fact 2.19. Specifically, V∗ϕG(u) = (2R)∗ϕG(u, u)
tells us the number of vertices of each colour at every given distance from u. This can be easily proved
by induction (see also [21, Theorem 2.6.7] for a proof in a somewhat more general framework). We will
need a version of this fact for the generalised disparity graphs defined in Definition 2.18, which can be
proved in the same way.

Fact 2.23. Fix a vertex-colouring c of a graph G, and let Ω be the set of colours used by V∗c. Consider
any L ∈ {0, 1}Ω×Ω, any two vertices u, v for which V∗c(u) = V∗c(v), any colour ω ∈ Ω and any
i ∈ N ∪ {∞}. Then, with respect to the graph DL(G,V∗c), the number of ω-coloured vertices at distance
i from u is exactly the same as the number of ω-coloured vertices at distance i from v.

17As the reader may have guessed, the colour refinement algorithm (also known as the 1-dimensional Weisfeiler–Leman
algorithm) and the 2-dimensional Weisfeiler–Leman algorithm are both special cases of a more general k-dimensional
Weisfeiler–Leman algorithm, first defined in an influential paper of Cai, Fürer and Immerman [19]. This will not be
relevant for the present paper.

15



A special case of Fact 2.23 (where L is the all-0 matrix, and i = 1) is that V∗ϕG,c(u) is always an
equitable partition. Since V∗ϕG,c(u) is a refinement of c, it is a refinement of the stable colouring R∗c
produced by the colour refinement algorithm, by Fact 2.16. (Informally, the 2-dimensional Weisfeiler–
Leman algorithm is “at least as powerful” as the colour refinement algorithm).

Fact 2.24. For any vertex-colouring c of a graph G, the vertex-colouring V∗ϕG,c is a refinement of R∗c.

Finally, we need an analogue of Fact 2.17, on the “consistency” of the 2-dimensional Weisfeiler–Leman
algorithm: if we start the 2-dimensional Weisfeiler–Leman algorithm from any coarsening of (2R)∗f ,
we will end up with a coarsening of (2R)∗f . This is a direct consequence of, e.g., the discussion in
[21, Section 2.6.1] (see also [31, Proposition 2.1]), which characterises the vertex-pair-partition defined
by (2R)∗f as the unique coarsest coherent configuration refining f (here “coherent configurations” are
the 2-dimensional analogues of the equitable partitions defined in Definition 2.15).

Fact 2.25. Fix any graph G and any vertex-pair colouring f : V (G)2 → Ω. If g : V (G)2 → Ω is a
coarsening of (2R)∗f , then (2R)∗g is a coarsening of (2R)∗f .

2.4. Probabilistic estimates. At several points in the paper we will need some general-purpose prob-
abilistic estimates. First, we need a Chernoff bound for sums of independent random variables; the
following can be deduced from [41, Theorem 2.1].

Lemma 2.26 (Chernoff bound). Let X be a sum of independent random variables, each of which take
values in {0, 1}. Then for any δ > 0 we have

P[X ≤ (1− δ)EX] ≤ exp(−δ2EX/2), P[X ≥ (1 + δ)EX] ≤ exp(−δ2EX/(2 + δ)).

We also need a Littlewood–Offord type anticoncentration estimate, showing that certain sums of inde-
pendent random variables are unlikely to take any particular value. Specifically, we need a generalisation
of the classical Erdős–Littlewood–Offord theorem to the “p-biased” setting, essentially due to Juškevičius
and Kurauskas [44] and Singhal [62].

Definition 2.27. Let M(n, p) be the modal probability of a Binomial(n, p) random variable, i.e.,

M(n, p) =

(
n

x

)
px(1− p)n−x,

for x = ⌊(n + 1)p⌋. (It is well-known—see for example [45]—that ⌊(n + 1)p⌋ is always a mode for
Binomial(n, p)).

Theorem 2.28. Fix a positive integer n and a probability p ∈ (0, 1/2). Let a1, . . . , an ∈ R \ {0} be non-
zero real numbers, and let ξ1, . . . , ξn ∈ {0, 1}n be independent Bernoulli(p) random variables (meaning
P[ξi = 1] = p and P[ξi = 0] = 1− p). Then

sup
x∈R

P[a1ξ1 + · · ·+ anξn = x] ≤M(⌊n/2⌋, p) = O

(
1

√
np

)
.

The estimate O(1/
√
np) was first proved by Costello and Vu [23, Lemma 8.2]. The sharper bound

M(⌊n/2⌋, p) can be deduced from a recent result due to Juškevičius and Kurauskas [44] and independently
Singhal [62], as follows.

Proof of Theorem 2.28. First note that we may assume n is even (otherwise, condition on any outcome
of ξn−1 to reduce to the same question about a1ξ1 + · · ·+ anξn−1, noting in this case that ⌊(n− 1)/2⌋ =
⌊n/2⌋).

The main result of [44,62] is that (given our assumption that n is even), the quantity supx∈R P[a1ξ1+
· · · + anξn = x] is maximised when all of the ai are equal to 1 or −1. By symmetry, we can assume
a1, . . . , a⌊n/2⌋ = 1. Conditioning on arbitrary outcomes of a⌊n/2⌋+1, . . . , an, we see that the probability
in question is bounded by

sup
x∈R

P
[
a1ξ1 + · · ·+ a⌊n/2⌋ξ⌊n/2⌋ = x

]
=M(⌊n/2⌋, p).

(here we used that a1, . . . , a⌊n/2⌋ = 1 to see that a1ξ1 + · · ·+ a⌊n/2⌋ξ⌊n/2⌋ ∼ Binomial(⌊n/2⌋, p)). □
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3. Encoding colour refinement via views

There are many (quite different) lenses from which to view colour refinement. In particular, an
important way to understand the performance of the colour refinement algorithm (around a vertex v in
a graph G) is via a tree TG(v) called the view (first defined by Yamashita and Kameda [71]).

Definition 3.1. Let G be a connected graph and v ∈ V (G). Let TG(v) be the (infinite, unless v is an
isolated vertex) rooted tree defined as follows.

• The vertex set of TG(v) is the set of all walks W = (x0, . . . , xn) starting at x0 = v (i.e., we
require that xixi+1 is an edge of G for all i ∈ {0, . . . , n− 1}).

• The root vertex of TG(v) is the trivial walk W = (v).
• We say that a walk W is a child of another walk W ′ (and put an edge between W and W ′) if W ′

is a one-step extension of W (i.e., if we can write W = (x0, . . . , xn) and W ′ = (x0, . . . , xn, xn+1)).
Note that the set of vertices at depth ℓ in TG(v) correspond precisely to the set of walks of length ℓ
starting from v in G. For i ≥ 0, we write T i

G(v) for the subtree of TG(v) restricted to walks of length at
most i. See Figure 2 for an example.

We note that it will sometimes be convenient to view each vertex u = (x0, . . . , xn) of TG(v) as a “copy”
of the vertex xn.

The following lemma provides a connection between views and colour refinement. It was first observed
by Angluin [2] in a slightly different context (the particular statement here follows directly from [48,
Lemma 2.6]).

Lemma 3.2. Let G be a connected graph, and u, v two vertices. Then we have the rooted tree isomorphism
T i
G(u)

∼= T i
G(v) if and only if Riσ(u) = Riσ(v) (i.e., if u and v have the same colour after i steps of

colour refinement starting from the trivial colouring σ). In particular, TG(u) ∼= TG(v) if and only if u
and v have the same colour in the stable colouring R∗σ.

Remark 3.3. [48, Lemma 2.6] is stated for universal covers, which have the same definition as views (as in
Definition 3.1) except that one only considers non-backtracking walks W = (x0, . . . , xn) with xi+1 ̸= xi−1

for all i ∈ {1, . . . , n − 1}. As discussed in [48], it is easy to see that views and universal covers encode
the same information.

For our purposes, it will not be very convenient to work with views directly. Instead, we consider
sequences of multisets Li

G(u, v) which describe the difference between two views T i
G(u) and T i

G(v) at
depth i.

Definition 3.4. Let G be a graph. For distinct u, v ∈ V (G) and i ≥ 0, we recursively define multisets
Li
G(u, v), as follows.

• For all u, v, let L0
G(u, v) := {u}.

• For u, v, w ∈ V (G) and i ≥ 1, let ℓiG(w, u, v) be the number of neighbours of w in Li−1
G (u, v).

• For u, v ∈ V (G) and i ≥ 1, we define Li
G(u, v) as follows. For each w ∈ V (G), if ℓiG(w, u, v) >

ℓiG(w, v, u), then put ℓiG(w, u, v)− ℓiG(w, v, u) copies of w in Li
G(u, v).

Then, write suppLi
G(u, v) for the support of Li

G(u, v), that is, the set of elements appearing in Li
G(u, v),

and write

S≤i
G ({u, v}) :=

⋃
j≤i

(
suppLj

G(u, v) ∪ suppLj
G(v, u)

)
, Si

G({u, v}) := S≤i
G ({u, v}) \ S≤i−1

G ({u, v}).

Note that suppLi
G(u, v) ∪ suppLi

G(v, u) is a disjoint union: by definition, there are no vertices with
positive multiplicity in both Li

G(u, v) and Li
G(v, u). We think of Si

G({u, v}) as being the set of vertices
which “appear differently” in the views TG(u) and TG(v) for the first time at depth i.

See Figure 2 for an example. For the notation introduced in Definitions 3.1 and 3.4, we will often
omit the subscript “G” when it is clear from context.

Lemma 3.2 has the following consequence in terms of our multisets Li(u, v).

Lemma 3.5. Let G be a graph and consider distinct u, v ∈ V (G). If there exist positive integers i
and d such that the number of copies of vertices of degree d in Li(u, v) and Li(v, u) are not equal then
R∗σ(u) ̸= R∗σ(v).

Lemma 3.5 is in some sense self-evident (the multisets Li(u, v) describe the discrepancy between the
ith layers of T (u) and T (v)), but for completeness we provide a formal proof.
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G

u0

u1

u2

u3

u4

u5 u6

u2

u1

u3

u2

u0

u1
u3

u1

u3

u4
u2

u0

u1
u3

u1
u3
u4

T 3
G(u2)

u5 u4

u5

u6

u4

u4

u0

u4

u3

u1

T 3
G(u5)

L0(u2, u5) = {u2}
L1(u2, u5) = {u1, u3}
L2(u2, u5) = {u0, u2, u2}
L3(u2, u5) = {u1, u1, u1, u3, u3, u3}

L0(u5, u2) = {u5}
L1(u5, u2) = {u4}
L2(u5, u2) = {u5, u6}
L3(u5, u2) = {u4}

S0({u2, u5}) = {u2, u5}
S1({u2, u5}) = {u1, u3, u4}
S2({u2, u5}) = {u0, u6}
S3({u2, u5}) = ∅

Figure 2. An example graph G, and the depth-3 views for u5 and u2. As these trees
are non-isomorphic, one can deduce that u2 and u5 are assigned different colours after
three steps of the colour refinement algorithm (in fact, they already receive different
colours after the first step). In the figure we show the multisets Li(u2, u5), Li(u5, u2)
and the sets Si({u2, u5}) for i ∈ {0, 1, 2, 3}.

Proof of Lemma 3.5. Recalling that the vertices of each T (v) can be viewed as copies of vertices of G,
for each d, i, u, v let Mi

d(v) be the multiset of vertices of degree d appearing on the i-th layer of T (v),
and let Li

d(u, v) be the multiset of vertices of degree d in Li(u, v).
We will prove the contrapositive of the lemma statement. Fix u, v and suppose that R∗σ(u) = R∗σ(v);

our objective is to prove that |Li
d(u, v)| = |Li

d(v, u)| for all i, d. To this end, we will prove (by induction
on i) that for all d there is a multiset W i

d({u, v}) (of degree-d vertices common to the i-th layers of
T (u), T (u)) such that Mi

d(u) = Li
d(u, v) ∪W i

d({u, v}) and Mi
d(v) = Li

d(v, u) ∪W i
d({u, v}) (these are

multiset unions, respecting multiplicity). By Lemma 3.2, we have |Mi
d(u)| = |Mi

d(v)|, so this suffices.
As the (i = 0) base case for the induction, note that R∗σ(u) = R∗σ(v) implies that u, v have the

same degree, thus the statement holds with W i
d({u, v}) = ∅. So, consider i ≥ 1, and assume that for all

d there exists a set W i−1
d ({u, v}) such that

Mi−1
d (u) =W i−1

d ({u, v}) ∪ Li−1
d (u, v) =W i−1

d ({u, v}) ∪ Li−1
d (v, u) = Mi−1

d (v) for d ≥ 1.

Now, define multisets of vertices Xi
d({u, v}) and Y i

d ({u, v}) as follows. For w ∈ V (G), of degree d(w) =
d, the number of copies of w in Xi

d({u, v}) is precisely min{ℓiG(w, u, v), ℓiG(w, v, u)}, and the number of
copies of w in Y i

d ({u, v}) is the number of neighbours of w (counted with multiplicity) in the multiset
union

⋃
d≥1W

i
d({u, v}). Recalling the definitions of Li(u, v) and Li(u, v) (as the “surplus” of vertices in

the i-th layer of T (u) compared to T (v), and vice versa), and recalling the inductive assumption, we
have Mi

d(v) = Li
d(v, u) ∪Xi

d({u, v}) ∪ Y i
d ({u, v}) and Mi

d(v) = Li
d(v, u) ∪Xi

d({u, v}) ∪Xi
d({u, v}). So

we can take W i
d({u, v}) = Xi

d({u, v}) ∪ Y i
d ({u, v}), for the desired conclusion. □

4. Expansion for views

Recall the notation Si({u, v}) defined in Definition 3.4, describing the set of vertices which appear
differently in the views T (u) and T (v) for the first time at depth i.

In this section we prove that, for two vertices u, v in an appropriately randomly perturbed graph G,
it is very likely that whenever S≤i({u, v}) grows reasonably large, u and v end up with different colours
in the stable colouring R∗σ. This is formalised in the following proposition.
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Proposition 4.1. Let G0 be a graph on the vertex set {1, . . . , n} and let Grand ∼ G(n, p), for some
p ∈ [0, 1/2] satisfying

1 + (log n)−40

n
≤ p ≤ 100 log n

n
.

Then whp G = G0△Grand satisfies the following property. For every pair of vertices u, v for which there
is some i satisfying

|S≤i
G ({u, v})| ≥ 100 log n

min{(np− 1)2, 1}
, (4.1)

we have R∗
Gσ(u) ̸= R∗

Gσ(v).

We remark that, while we did not necessarily make an effort to optimise the assumption on p, there is
some significance to the “1/n” essentially appearing in Proposition 4.1. Indeed, this corresponds to the
celebrated phase transition for Erdős–Rényi random graphs (as briefly discussed in Section 1.3.4).

Morally speaking, the main reason why Proposition 4.1 is true is that random graphs are extremely
good expanders: starting from any reasonably large set of vertices S, the set of vertices within distance i
of S grows geometrically in i until it spans nearly the whole graph. The following lemma (a key ingredient
in our proof of Proposition 4.1) is a counterpart to this fact for the sets Si({u, v}) in a randomly perturbed
graph: whenever S≤i({u, v}) is reasonably large, there is some j for which Sj({u, v}) is huge, spanning
a significant proportion of the whole graph.

Lemma 4.2. Let G0, p,Grand be as in Proposition 4.1. Then whp G = G0△Grand satisfies the following
property. For every pair of vertices u, v for which there is some i satisfying (4.1), there is some j
satisfying ∣∣Sj

G({u, v})
∣∣ ≥ n

4(log n)140
. (4.2)

We defer the proof of Lemma 4.2 to the end of the section. Given Lemma 4.2, the strategy for the
proof of Proposition 4.1 is as follows. For each u, v satisfying (4.1), and j as guaranteed by Lemma 4.2, we
first observe that it is possible to reveal the set Sj

G({u, v}) without revealing too much information about
the random perturbation Grand inside this set. We wish to use the remaining randomness, together with
a Littlewood–Offord-type anticoncentration inequality (Theorem 2.28), to show that it is very unlikely
that the multisets Lj

G(u, v) and Lj
G(v, u) have the same degree statistics.

This final step is actually rather delicate. Indeed, if we let Qi
d(u, v) be the number of vertices of degree

d in Li(u, v), minus the corresponding number in Li(v, u), it is not too hard to see that
∑

d dQ
i
d(u, v)

(which is the number of edges incident to Li(u, v) plus the number of edges spanned by Li(u, v)) can
be expressed as a weighted sum of Bernoulli random variables (as required for Theorem 2.28). So, we
can use Theorem 2.28 to show that usually we have

∑
d dQ

i
d(u, v) ̸= 0 (in which case some Qi

d(u, v) ̸= 0,
so the degree statistics of Li(u, v) and Li(v, u) must be different). However, this estimate is not good
enough for a union bound over choices of u, v, and it is necessary to understand in much more detail the
joint anticoncentration of dQi

d(u, v), between different d. This is accomplished by first revealing almost
all information about Grand except the edges inside a tiny subset of Sj

G({u, v}) (which we call a “hole”).
In the resulting conditional probability space, we obtain fairly weak anticoncentration bounds on the
dQi

d(u, v), but we can show that dQi
d(u, v) is essentially independent from d′Qi

d′(u, v) whenever d and d′
are reasonably far apart (so we can multiply weak anticoncentration bounds together for a much stronger
final bound).

The details of the proof of Proposition 4.1 are as follows.

Proof of Proposition 4.1. Fix vertices u, v. Our objective is to prove that with probability 1 − o(n−2),
there is no i satisfying (4.1), or the property in Lemma 4.2 fails to hold, or there are some j, d such that
the number of copies of vertices of degree d in Lj(u, v) and Lj(v, u) are not equal. The desired result
will then immediately follow by a union bound over choices of u, v, and Lemmas 3.5 and 4.2.

Step 1: Exploration. We reveal edges of Grand according to the following procedure. For each j
(starting at j = 0 and increasing j by one at each step), if (4.2) does not yet hold, then reveal all
edges of Grand incident to Sj({u, v}). The procedure terminates at the first step j for which either
(4.2) holds or Sj({u, v}) = ∅. We fix this j for the rest of the proof; from now on, we will treat
j,Sj({u, v}),S≤j−1({u, v}) as non-random objects (they are determined by the aforementioned revelation
process). Note that we have not yet revealed anything about the edges of Grand inside Sj({u, v}).

If there is i satisfying (4.1), and if the property in Lemma 4.2 holds, then the latter of the two
termination conditions cannot happen: we can assume that (4.2) holds.
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Step 2: Setting up a small “hole”. Recall from Definition 3.4 that Sj({u, v}) is defined in terms of
the disjoint supports suppLj(u, v) and suppLj(v, u). Let A = Sj({u, v}) ∩ suppLj(u, v), and assume
without loss of generality A is larger than Sj({u, v}) ∩ suppLj(v, u), so by (4.2) we have

|A| ≥ n

8(log n)140
. (4.3)

Let S be a subset of n0.75 vertices of A. Let G1 = G0△(Grand − Grand[S]) be the graph obtained by
randomly perturbing G0 via all the edges of Grand except those inside S.

The idea is that, since S is so small, the degrees of vertices in S with respect to G1 are a very good
prediction of the degrees with respect to G. So, if we reveal G1 (leaving only the randomness inside S),
we might hope to be able to find disjoint “buckets” of vertices in S, whose degrees with respect to G1 are
so far apart from each other that it is highly unlikely that two distinct buckets will have vertices with
the same degree in G. This means we can handle each bucket essentially independently, which will yield
strong joint anticoncentration bounds.

Step 3: Specifying degree buckets. The next step is to find disjoint buckets of vertices in S,
whose degrees with respect to G1 are very far apart from each other. The following claim will be used
to construct these buckets (essentially, it shows that the degree distribution of the vertices of S with
respect to G1 is “spread out”). Let V (d) be the set of vertices in S which have degree d with respect to
G1, and for a set D ⊆ N, let V (D) =

⋃
d∈D V (d). Also let n(d) = |V (d)| and n(D) = |V (D)|.

Claim 4.3. With probability 1 − o(n−2) (over the remaining randomness of G1), for every set D ⊆
{0, . . . , n} of size 1002 we have |S| − n(D) > n0.7 (i.e., there are many vertices whose degrees do not lie
in D).

Proof of claim. Fix a set D ⊆ {0, . . . , n} of size 1002. We will show that the desired property holds for
this D with probability at least 1− o(n−1002−2), so the desired result will follow from the union bound.

Let T be a subset of n/(10(log n)140) vertices of A disjoint from S (such a T exists by (4.3)).
First, reveal all edges of G1 except the edges between S and T . In the resulting conditional probability

space, the degree of each vertex x ∈ S (with respect to G1) only depends on the edges between x and T
in Grand (and thus these degrees are independent): we can write

degG1
(x) = bx + cx + E+

x − E−
x ,

where
• bx is the number of neighbours of x outside T with respect to G1,
• cx is the number of neighbours of x inside T with respect to G0,
• E+

x is the number of neighbours of x inside T with respect to Grand, among non-neighbours of x
with respect to G0.

• E−
x is the number of neighbours of x inside T with respect to Grand, among neighbours of x with

respect to G0.
Note that E+

x ∼ Binomial(e+x , p) and E−
x ∼ Binomial(e−x , p), where e+x (respectively e−x ) is the number

of non-neighbours (respectively, neighbours) of x inside T with respect to G0.
Now, for each x ∈ S, we want to show that it is reasonably likely that degG1

(x) /∈ D. Fix some x,
and assume without loss of generality that e+x ≥ e−x (so e+x = n1−o(1)). Since |D| = 1002, there is some
dx /∈ D such that 0 ≤ dx − (bx + cx) ≤ 1002, meaning that one way to have degG1

(x) /∈ D is to have
E−

x = 0 and E+
x = dx − (bx + cx). We can compute the probability that this occurs (in our conditional

probability space, given information revealed so far).

P[degG1
(x) /∈ D] ≥ P[degG1(x) = dx] ≥ P[E−

x = 0 and E+
x = dx − (bx + cx)]

≥ min
0≤k≤1002

(1− p)e
−
x

(
e+x
k

)
(1− p)e

+
x −kpk = n−o(1) ≥ n−0.01,

recalling that p = no(1)/n and e+x = n1−o(1).
Now, |S|−n(D) is the number of x ∈ S for which degG1

(x) /∈ D. In our conditional probability space,
recall that the events degG1

(x) /∈ D are independent. We have E[|S| − n(D)] ≥ |S|n−0.01 ≥ n0.73, so by
a Chernoff bound (Lemma 2.26) we have

P[|S| − n(D) < n0.7] ≤ exp(−Ω(n0.73)) = o(n−1002−2),

as desired. ■
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Now, we use Claim 4.3 to construct many large sets of vertices with very distinct degrees with respect
to G1, as follows.

Claim 4.4. If n is sufficiently large and G1 satisfies the conclusion of Claim 4.3, then there exists a
sequence of pairwise disjoint sets D1, . . . , D33 ⊆ N such that n(Dt) ≥ n0.6 for all t, and such that for
each s ̸= t and each d ∈ Ds, d

′ ∈ Dt we have |d− d′| > 200.

Proof of claim. Let Dbig be the set of integers d such that n(d) ≥ n0.6. We split into cases depending
on the size of Dbig.

Case 1: |Dbig| ≥ 1002. In this case, we can simply order the elements of Dbig as d1 ≤ d2 ≤ · · · ≤ dℓ,
and take Dt = {d201t} for each t ∈ {1, . . . , 33}.
Case 2: |Dbig| < 1002. In this case we greedily construct a sequence of nonnegative integers a1 ≤ · · · ≤
a100, such that n({ar, ar + 1, ar + 2, . . . , ar+1 − 1}) ≥ n0.6 and ar+1 − ar ≥ 101 for each r ∈ {1, . . . , 99};
this suffices, as we can then take Dt = {a3t, a3t + 1, . . . , a3t+1 − 1} for each t ∈ {1, . . . , 33}.

Specifically, we let a1 = 0, and for r ≥ 1 we recursively define ar+1 to be the minimal integer larger
than ar + 100 such that n({ar, ar + 1, ar + 2, . . . , ar+1}) ≥ n0.6. To see that such an ar+1 always exists,
note that

n({0, 1, 2, . . . , ar − 1}) ≤ 2rn0.6 + 100(r − 1)n0.6 + n(Dbig),

so for r ≤ 100 we have n({ar, ar+1 . . . , n}) ≥ n0.7 − 102 · 100 · n0.6 ≥ n0.6 by the property in Claim 4.3,
and an appropriate choice for ar+1 exists. ■

Now, reveal all the edges in Grand except those inside S (i.e., we have now revealed G1, so from now
on we treat quantities of the form n(D) as being non-random). Assume that the conclusion of Claim 4.4
holds, giving us a sequence of disjoint intervals D1, . . . , D33.

Step 4: Independence between the buckets. We want to be able to study each V (Dt) separately,
so we need to make sure that the degrees of vertices in the different V (Dt) cannot coincide. The following
claim will be used for this purpose. (Recall that S is our small “hole” that each of the Dt lie inside).

Claim 4.5. With probability 1− o(n−2), the induced subgraph Grand[V (S)] has maximum degree at most
100.

Proof of claim. The probability there is a vertex in Grand[V (S)] with at least 100 neighbours is at most

n0.75
(
n0.75

100

)
p100 = o(n−2),

recalling that p = no(1)/n. ■

For each t ∈ {1, . . . , 33}, let B(Dt, 100) be the set of all b ∈ N which differ from some element of Dt

by at most 100. So, the property in Claim 4.5 implies that for each t and each vertex w ∈ V (Dt), the
degree of w with respect to G lies in B(Dt, 100). By construction (of the Dt), the sets B(Dt, 100) are
disjoint from each other.

Now, we also reveal all the edges in Grand except those inside the sets V (D1), . . . , V (D33). So, the
only remaining randomness is inside these sets.

Step 5: Anticoncentration of degree statistics. Let Qd be the number of vertices in Lj(u, v) which
have degree d with respect to G, minus the corresponding number in Lj(v, u). Given the information
revealed so far, our objective is to prove that with probability 1−o(n−2), either the property in Claim 4.5
fails to hold, or there is some d such that Qd is nonzero (or both).

For each t ∈ {1, . . . , 33}, let
Zt =

∑
d∈B(Dt,100)

dQd.

Note that if Zt ̸= 0, then there is some d such that Qd is nonzero. These random variables Zt have been
carefully defined in such a way that they can be expressed in the form required for Theorem 2.28.

Indeed, note that the information we have revealed so far already determines the degree (with respect
to G) of every vertex outside the sets V (D1), . . . , V (D33), and recall that Lj(u, v) and Lj(v, u) are
disjoint. For all t:

• Let bt be the contribution to dQd from all vertices outside V (D1) ∪ · · · ∪ V (D33) (i.e., bt is a
weighted sum of degrees, with respect to G1, of vertices which do not lie in V (D1)∪· · ·∪V (D33)).

• Let ct be the sum of the degrees with respect to G1 of all vertices in V (Dt), multiplied by the
number of times that vertex appears in Lj(u, v).
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• For each pair of vertices {x, y} ⊆ V (Dt), let ξ{x,y} be the indicator random variable for the event
that xy is an edge in Grand.

• For each {x, y} ⊆ V (Dt), let χ({x, y}) = −1 if xy is an edge of G0, and χ({x, y}) = 1 if xy is
not an edge of G0.

• For each x ∈ V (Dt), let ax be the number of times that x appears in Lj(u, v).
Define

Z∗
t = bt + ct +

∑
{x,y}⊆V (Dt)

χ({x, y})(ax + ay)ξ{x,y},

and note that whenever the property in Claim 4.5 holds, we have Zt = Z∗
t .

Note that χ({x, y})(ax + ay) is nonzero for any distinct x, y ∈ V (Dt), and note that the different Z∗
t

are independent from each other. Recalling Claim 4.4, we have
(|V (Dt)|

2

)
≥
(
n0.6

2

)
= Ω(n1.2). Also recall

that p = no(1)/n. So, by Theorem 2.28, we have

P[Z∗
t = 0 for all t] ≤ O

( 1√
pn1.2

)33 = o(n−2).

It follows that with probability 1− o(n−2) there is some t such that Z∗
t = Zt ̸= 0, meaning that there is

some d such that Qd is nonzero, meaning that u and v receive different colours in the stable colouring
R∗σ. □

We have now completed the proof of Proposition 4.1 modulo Lemma 4.2, which we prove in the next
subsection.

4.1. Exploring views: proof of Lemma 4.2. As mentioned earlier, roughly speaking Lemma 4.2 is
proved using the expansion properties of Grand. As a naïve approach to prove Lemma 4.2, it is not hard
to prove that whenever Si({u, v}) is reasonably large, then Si+1({u, v}) tends to be even larger (by a
factor of about np), and one can iterate this to show that Sj({u, v}) eventually reaches the desired size.
However, assumption (4.1) in Lemma 4.2 does not guarantee that any individual Si({u, v}) is large,
so we must be more careful. We proceed via a delicate coupling argument comparing sets of the form
S≤q({u, v}) and S≤q+1({u, v}).

Proof of Lemma 4.2. Recall that we are trying to prove that for all pairs of distinct vertices u, v, if (4.1)
holds for some i then (4.2) holds for some j.

Step 1: Reducing to single-step expansion. Our main objective will be to prove that whp G
satisfies the following property: for every u, v, q for which

100 log n

min{(np− 1)2, 1}
≤ |S≤q({u, v})| ≤ n

(log n)100
, (4.4)

we have
|S≤q+1({u, v})| ≥

(
1 +

np− 1

2

)
|S≤q({u, v})|, (4.5)

or equivalently

|Sq+1({u, v})| ≥ np− 1

2
|S≤q({u, v})|.

To see that this suffices to prove the lemma statement, consider u, v, i satisfying (4.1), and suppose that
the above property holds. Let j ≥ i be minimal such that |S≤j({u, v})| > n/(log n)100. Taking q = j−1,
we obtain

2

np− 1
|Sj({u, v})| ≥ |S≤j−1({u, v})|,(

1 +
2

np− 1

)
|Sj({u, v})| ≥ |S≤j({u, v})| > n

(log n)100
,

so recalling that np− 1 ≥ (log n)−40, we have 1/(1 + 2/(np− 1)) ≥ 1/(4(log n)40) and∣∣Sj
G({u, v})

∣∣ ≥ n

4(log n)140
,

meaning that j satisfies (4.2).
So, from now on we focus on showing that the above property holds whp. In fact, fix distinct vertices

u, v; we will prove that with probability 1 − o(n−2), each q satisfying (4.4) also satisfies (4.5). This
suffices; the desired result will then follow from a union bound over u, v.
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In order to prove this, we need to study how S≤q+1({u, v}) is defined in terms of random edges of
Grand incident to S≤q({u, v}). The idea, roughly speaking, is that we expect S≤q+1({u, v}) to have size
at least about np|S≤q({u, v})|, so having size at most (1 + (np− 1)/2)|S≤q({u, v})| is very unlikely.

Step 2: Exploration. As in the proof of Proposition 4.1 we consider the following procedure to
iteratively reveal edges of Grand. For each t (starting at t = 0 and increasing t by one at each step),
reveal all edges of Grand incident to St({u, v}); this determines the set St+1({u, v}), but all the edges
incident to St+1({u, v}) remain unrevealed.

We also define a sub-procedure to break down further the process of revealing edges of Grand incident
to St({u, v}). To define this sub-procedure we need some more notation.

• Let Gt
rand be the graph of edges of Grand which have been revealed so far (i.e., Gt

rand is the
subgraph of Grand consisting of edges incident to S≤t−1({u, v})).

• Let Gt = G0△Gt
rand.

• Let W t = {1, . . . , n} \ S≤t({u, v}) be the set of vertices outside S≤t({u, v}) (i.e., the set of
candidate vertices for St+1({u, v})).

• Recall the notation in Definition 3.4, and let Zt be the set of vertices w ∈ W t such that
ℓt+1
Gt (w, u, v) ̸= ℓt+1

Gt (w, v, u) (i.e., such that w has a different number of neighbours in Lt(u, v)
than Lt(v, u), with respect to Gt).

Note that the vertices in Zt are the vertices which (intuitively speaking) seem to be most likely to end
up in St+1({u, v}). Specifically, we have the following observation.

Fact 4.6. For every z ∈ Zt, if Grand has no edges between St({u, v}) and z, then z ∈ St+1({u, v}).

The vertices in W t \ Zt have an equal number of neighbours in Lt(u, v) and Lt(v, u) with respect to
Gt, so they will not end up in St+1({u, v}) unless Grand has certain edges between St({u, v}) and z. The
simplest way this can happen is as follows.

Fact 4.7. For every z ∈ W t \ Zt, if Grand has exactly one edge between St({u, v}) and z, then z ∈
St+1({u, v}).

With the above two facts in mind, our revelation sub-procedure is defined as follows.
• First, fix an arbitrary ordering of the vertices z ∈ Zt. For each such z:

– reveal all edges between z and St({u, v}), determining whether z is in St+1({u, v}). We
say this is a type-Z critical moment, and if z ∈ St+1({u, v}) we say the critical moment
succeeds.

• Then, fix an arbitrary ordering of the vertex pairs s ∈ St({u, v}) and w ∈ W t \ Zt. For each
such s, w:

– if we have not yet revealed whether sw is an edge of Grand, then we say this is a type-W
critical moment for sw, and reveal the status of sw. If sw is an edge of Grand we say the
critical moment advances; in this case, also reveal the rest of the edges between w and
St({u, v}), determining whether w is in St+1({u, v}). If w ∈ St+1({u, v}), then we say the
critical moment succeeds.

It is convenient to continue the entire revelation process only as long as |S≤t({u, v})| ≤ n/(log n)100;
i.e., once we have finished revealing a set St+1({u, v}), and see that it is larger than n/(log n)100, then we
terminate the entire procedure and stop revealing further edges (these further edges will not be relevant
for the property we are trying to study). This ensures that, for the rest of the proof, we can assume that
St({u, v}) constitutes a relatively small proportion of the vertices.

Going forward, the broad strategy is as follows. Recall from the discussion at the end of Step 1
that we are trying to prove that, with probability 1 − o(n−2), (4.4) always implies (4.5), by proving
that S≤q+1({u, v}) tends to have size at least about np|S≤q({u, v})| for all q. We will prove this by
considering the above exploration process for t ≤ q.

First, we will see that type-Z critical moments almost always succeed. That is to say, for all t, typically
almost all of the vertices of Zt end up in St+1({u, v}). So, if for any step t ≤ q the set Zt occupies a
sufficiently large fraction of W t, it is easy to show that S≤q+1({u, v}) is large enough to satisfy (4.5).
We can therefore assume that most vertices in W t do not lie in W t, and it essentially suffices to restrict
our attention to the vertices in W t \ Zt throughout the revelation procedure.

Second, we will see that type-W critical moments succeed with probability (at least) about p. For a
vertex not to end up in S≤q+1, we must have (roughly speaking, ignoring the effect of the sets Zt) failed
at at least |S≤q({u, v})| type-W critical moments, meaning that we expect S≤q+1({u, v}) to have size at
least about np|S≤q({u, v})|.
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Step 3: Coupling with a sequence of coin flips. We first make some observations about the success
probabilities in critical moments.

Claim 4.8. Let p′ = 1− 400/(log n)99.
• Every type-Z critical moment succeeds with probability at least p′ (conditional on all information

revealed until that moment).
• Every type-W critical moment advances with probability p. Given that we advance, we then

succeed with probability at least p′.

Proof of claim. For the first bullet point: at a type-Z critical moment, we are revealing the status of
|St({u, v})| < n/(log n)100 edges of Grand (recalling that we continue the revelation procedure only as
long as |S≤t({u, v})| ≤ n/(log n)100), and by Fact 4.6, the critical moment succeeds if none of these edges
are present. So, the probability that the critical moment succeeds is at least

(1− p)n/(logn)100 ≥ e−2np/(logn)100 ≥ e−200/(logn)99 ≥
(
1− 400

(log n)99

)
= p′,

recalling that p ≤ 100 log n/n.
The second bullet point is very similar: at a type-Z critical moment, we advance with probability p

(as that is the probability any particular edge appears in Grand), and then we succeed if no edges are
present among a certain set of at most |S≤t({u, v})| − 1 ≤ n/(log n)100 potential edges; by the same
calculation as above this happens with probability at least p′. ■

Now, let (αi)i∈N ∈ {0, 1}N be a sequence of independent Bernoulli(p′) random variables, and let
(βi)i∈N ∈ {0, 1}N be a sequence of independent Bernoulli(p) random variables (such that (αi)i∈N and
(βi)i∈N are independent). We can couple these random variables with our revelation procedure in such
a way that:

• whenever we encounter a Z-critical moment, we check the next unrevealed random variable αi,
and if αi = 1 then the critical moment succeeds;

• whenever we encounter a W -critical moment, we check the next unrevealed random variable βj ,
and if βj = 1 then the critical moment advances. We then check the next unrevealed random
variable αi, and if αi = 1 then the critical moment succeeds.

Let R≤q
α be the total number of αi that we reveal in the first q steps of the revelation procedure (i.e., up

to the point where we have determined S≤q+1({u, v})). Let N≤q
α be the number of times we see αi = 1,

among these R≤q
α different αi. Similarly, let R≤q

β be the total number of βj that we reveal in the first q
steps of the revelation procedure, and let N≤q

β be the number of these βj that are equal to 1.

Step 4: Interpreting the coin flips. Every time we see αi = 1 (at step t, say), we add a new vertex
to St+1({u, v}). So,

|S≤q+1({u, v})| ≥ N≤q
α . (4.6)

Every time we see βj = 1, we reveal a new αi, so

R≤q
α ≥ N≤q

β . (4.7)

Also, note that at step t, exactly one αi is revealed for each z ∈ Zt, so |Zt| ≤ R≤q
α for each t ≤ q. We

can also relate R≤q
β to |S≤q({u, v})|, as follows.

Claim 4.9. If |S≤q({u, v})| ≤ n/(log n)100 then

R≤q
β ≥ |S≤q({u, v})| ·

(
n− 2R≤q

α − n

(log n)100

)
.

Proof of claim. For every t ≤ q and every pair of vertices s ∈ St({u, v}) and w ∈ W t \ Zt, the only
reason there might not be a type-W critical moment for sw at step t (i.e., the only reason sw might not
contribute to R≤q

β ) is if sw has already been revealed in a type-W critical moment for some other pair
s′w (which advanced, and may or may not have succeeded; in particular it contributed to R≤q

α ). So,

R≤q
β ≥

∑
t≤q

|St({u, v})| · |W t \ Zt| −max
t≤q

|St({u, v})| ·R≤q
α

≥
∑
t≤q

|St({u, v})| ·
(
n− |S≤t({u, v})| − |Zt|

)
− |S≤q({u, v})| ·R≤q

α

≥ |S≤q({u, v})| ·
(
n− |S≤q({u, v})| −R≤q

α

)
− |S≤q({u, v})| ·R≤q

α .
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The desired result follows, recalling our assumption |S≤q({u, v})| ≤ n/(log n)100. ■

Step 5: Concluding with Chernoff bounds. Let Eα be the event that for every r ≥ n/(log n)100

there are at most 800r/(log n)99 different “0”s among the first r of the αi. If Eα holds, then for all q
satisfying R≤q

α ≥ n/(log n)100, we have

N≤q
α ≥ (1− 800/(log n)99)R≤q

α . (4.8)

Recall that p′ = 1− 400/(log n)99, so by a Chernoff bound (Lemma 2.26) and a union bound over r, we
see that

1− P[Eα] ≤
∞∑

r=n/(logn)100

exp

(
−Ω

(
r

(log n)99

))
= o(n−2),

i.e., Eα holds with probability 1− o(n−2).
Similarly, let Eβ be the event that for every s ≥ 100 log n/min{(np − 1)2, 1}, there are at least

(1 + 2(np− 1)/3)s different “1”s among the first sn of the βi. By a Chernoff bound and a union bound
over s, we see that

1− P[Eβ ] ≤
∞∑

s=100 logn/min{(np−1)2,1}

exp

(
−
(
np− 1

3

)2

spn/2

)
= o(n−2).

i.e., Eβ holds with probability 1− o(n−2).
Now, recall that we are trying to prove that, with probability 1 − o(n−2), whenever q satisfies (4.4)

it also satisfies (4.5). It suffices to show that this property follows from Eα ∩ Eβ . So, for the purpose of
contradiction, suppose that Eα ∩ Eβ holds, and suppose that there is some q for which

100 log n

min{(np− 1)2, 1}
≤ |S≤q({u, v})| ≤ n

(log n)100
,

but

|S≤q+1({u, v})| <
(
1 +

np− 1

2

)
|S≤q({u, v})| ≤ 50n

(log n)99
, (4.9)

recalling that p ≤ 100 log n/n. First, note that (4.6), (4.8), and (4.9) imply that

R≤q
α ≤ max

{
n

(log n)100
, 2N≤q

α

}
≤ max

{
n

(log n)100
, 2|S≤q+1({u, v})|

}
≤ 100n/(log n)99.

This and Claim 4.9 imply that

R≤q
β ≥ |S≤q({u, v})| ·

(
n− 200n

(log n)99
− n

(log n)100

)
≥ |S≤q({u, v})| ·

(
n− 201n

(log n)99

)
,

while (4.6) to (4.9) imply that

N≤q
β ≤ R≤q

α ≤ N≤q
α

1− 800/(log n)99
≤ |S≤q+1({u, v})|

1− 800/(log n)99
≤ (1 + (np− 1)/2)|S≤q({u, v})|

1− 800/(log n)99
.

Recalling that np − 1 ≥ (log n)−40, these inequalities contradict Eβ (taking s = |S≤q({u, v})| in the
definition of Eβ). □

5. Distinguishing vertices in the 2-core

In the previous section we showed that given two vertices u, v in an appropriately randomly perturbed
graph G, it is very likely that whenever the sets Si({u, v}) grow reasonably large, u and v end up with
different colours in the stable colouring R∗σ. In this section we prove that this condition is typically
satisfied for pairs of vertices u, v satisfying certain combinatorial conditions (defined in terms of the 2-
core of the random perturbation graph Grand). In particular, the main result of this section will directly
imply Theorem 1.2 (as we will see at the end of this section).

Definition 5.1. Recall from Definition 1.7 that the k-core of a graph G is its maximum subgraph with
minimum degree at least k.

• Write Vk(G) for the vertex set of this k-core (so the k-core itself is corek(G) = G[Vk(G)]).
• As in Definition 2.10, let V2,3(G) ⊆ V3(G) be the set of vertices which have degree at least 3 in

the 2-core G[V2(G)].
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• Let V safe
2,3 (G) ⊆ V2,3(G) be the set of vertices v ∈ V2,3(G) satisfying the following property. If we

delete any two vertices (other than v), the connected component of v still contains at least three
vertices of V2,3(G) (including v).

In words, note that the 2-core can be viewed as a network of “hubs” (vertices with degree at least 3),
joined by bare paths in which every interior vertex has degree 2. Each hub has at least three bare paths
emanating from it, but it could happen that several of these bare paths lead to the same hub. We say a
hub v is “safe” if it is not possible to delete two vertices to create a tiny connected component containing
v and at most one other hub.

Proposition 5.2. Let G0 be a graph on the vertex set {1, . . . , n} and let Grand ∼ G(n, p) for some
p ∈ [0, 1/2] satisfying

p ≥ 1 + (log n)−40

n
.

Let G = G0△Grand. Then whp G has the property that R∗
Gσ(u) ̸= R∗

Gσ(v) for every pair of distinct
vertices u, v satisfying one of the following assumptions.

A1 u ∈ V safe
2,3 (Grand), or

A2 u, v ∈ V2,3(Grand), and G0 is the empty graph.

The idea of the proof of Proposition 5.2 is as follows. We fix two distinct vertices u, v, and consider
the same exploration procedure that featured in the proofs of Proposition 4.1 and Lemma 4.2: at step
t we reveal the edges of Grand incident to St({u, v}) to determine the next set St+1({u, v}). Vertices
of St({u, v}) which lie in V2,3(Grand) are typically connected, via bare paths in V2(G), to at least three
vertices of V2,3(Grand). Our exploration process will follow these paths, and typically each of these
“neighbouring” vertices in V2,3(Grand) will end up in some future St′({u, v}). That is to say, each time our
exploration process reaches a hub, it branches out into at least two more hubs; the resulting exponential
growth means it will not take long for S≤t({u, v}) to grow large enough to apply Proposition 4.1. Indeed,
if the exploration process “gets stuck” (with Si+1({u, v}) = ∅) before (4.1) is satisfied, some very unlikely
events need to have happened: we need to have been in a subset of the 2-core with very poor expansion
properties, or some edges must have shown up in atypical places during the iterative revelation process.

Proof of Proposition 5.2. Before we do anything else, the first step is to reduce to the case where p is in
a suitable range to apply Proposition 4.1.

Step 1: Making assumptions on p. We can assume p ≤ 2 log n/n, because for larger p we can simply
view the random perturbation as a composition of two random perturbations. Specifically, we can choose
p1 ∈ [0, 1] in such a way that, if we take G′

rand ∼ G(n, 2 log n/n) and G1 ∼ G(n, p1), then Grand has
the same distribution as G1△G′

rand. (Namely, we need p1 to satisfy the equation p1(1 − 2 log n/n) +
(2 log n/n)(1 − p1) = p). Then, letting G′

0 = G0△G1 we have G = G′
0△G′

rand, so after conditioning on
an outcome of G′

0 we are considering a randomly perturbed graph with edge perturbation probability
exactly 2 log n/n. Moreover, whp the sets V safe

2,3 (G′
rand) and V safe

2,3 (Grand) are identical: in this regime
whp every vertex of G′

rand and Grand has degree at least 3 (see for example [30, Theorem 3.2]) hence
V safe
2,3 (G′

rand) = V3(G
′
rand) = V (G) = V3(Grand) = V safe

2,3 (Grand).

Step 2: Expansion. We observe a (very weak) expansion property of Grand: whp there are no small
vertex cuts that disconnect a small dense subgraph.

Claim 5.3. Whp Grand has the following property. Consider disjoint vertex sets T,U , where |T | ≤ 2
and |U | ≤ (log n)100. Suppose that Grand has no edges between U and V (G) \ T (i.e., T disconnects U
from the rest of the graph), and suppose that Grand[T ∪ U ] is connected. Then the number of edges in
Grand[U ∪ T ] is at most |U |+ |T |.

Proof of claim. If the desired conclusion were to fail, there would be a pair of vertex sets U, T , with
|T | ≤ 2 and |U | ≤ (log n)100, such that Grand has no edges between U and V (G) \ T , and such that
Grand[U ∪ T ] has at least |U |+ |T |+ 1 edges.

Summing over possibilities for t = |U |+ |T |, the probability that such a pair of vertex sets exists is at
most

(logn)100+2∑
t=4

(
n

t

)
t2tt−2(t2)2pt+1(1− p)(t−2)(n−t) ≤ 2

no(1)∑
t=4

(
en

t

)t

tt+4pt+1e−pnt
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≤ 2

no(1)∑
t=4

(enpe−pn)tpt4 = o(1).

To provide a bit of explanation for the above calculation: first note that U ∪ T always spans at most
|U | + |T | edges if |U | + |T | ≤ 3, so we only need to consider t ≥ 4. The number of possible ways to
choose U and T is at most

(
n
t

)
t2 (first choose U ∪T , then choose T ). Then, note that Grand[U ∪T ], being

connected, must contain a spanning tree (which has t−1 edges, and can be chosen in tt−2 different ways,
by Cayley’s formula), plus two additional edges (which can be chosen in at most (t2)2 different ways).
These (t − 1) + 2 = t + 1 edges are present in Grand with probability pt+1. Also, since T disconnects
U from the rest of the graph, there are (t − 2)(n − t) specific pairs of vertices which are not edges of
Grand[U ∪ T ] (which happens with probability at most (1− p)(t−2)(n−t)).

In the last line, we used the inequality xe−x ≤ 1/e (which holds for all x ∈ R), and the assumption
p = no(1)−1. ■

Step 3: Exploration. Define

f(n) =
100 log n

min{(np− 1)2, 1}
≤ 100 log81 n ≤ (log n)100.

Fix distinct vertices u, v. We will prove that with probability at least 1− o(n−2), either the property in
Claim 5.3 fails to hold or there is i such that |S≤i({u, v})| ≥ f(n). The desired result will then directly
follow from a union bound over u, v, and Proposition 4.1.

As in the proofs of Proposition 4.1 and Lemma 4.2, we consider an exploration/revelation procedure.
In each step t, if we do not already have |S≤t+1({u, v})| ≥ 100 log n (this is condition (4.1) in Proposi-
tion 4.1), then we reveal the edges of Grand incident to St({u, v}) to determine the next set St+1({u, v}).
This process terminates at the end of the first step i for which |S≤i+1({u, v})| ≥ f(n) or Si+1({u, v}) = ∅.

Our goal is to rule out (with probability 1 − o(n−2)) the possibility that A1 or A2 holds, and
Si+1({u, v}) = ∅ and |S≤i({u, v})| < f(n).

Step 4: Atypical events during exploration. Recall the definitions of the sets Zt ⊆W t from Step 2
of the proof of Lemma 4.2 (in Section 4.1). Namely, W t is the set of “candidate vertices” for St+1({u, v}),
and Zt is a subset of vertices that are especially likely to end up in St+1({u, v}).

Recalling Fact 4.7, if there is exactly one edge between St({u, v}) and w ∈ W t \ Zt (with respect to
Grand), then we have w ∈ St+1({u, v}). That is to say, an edge of Grand between St({u, v}) and w ∈W t

always contributes to the growth of St+1({u, v}), unless w ∈ Zt, or unless there is more than one edge
between w and St({u, v}). The following claim shows that these two possibilities happen very rarely
(unless |S≤i({u, v})| is large, in which case we are done).

Claim 5.4. For t ≤ i, let Zt
bad ⊆ Zt be the set of vertices in Zt which are adjacent to St({u, v}) with

respect to Grand, and let W t
bad be the set of vertices in W t\Zt with more than one neighbour in St({u, v}),

again with respect to Grand. Then, with probability 1− o(n−2), we have

|S≤i+1({u, v})| ≥ f(n) or
i∑

t=0

(
|W t

bad|+ |Zt
bad|

)
≤ 2.

Proof of claim. First, note that with probability 1− o(n−2), we have |Zt| < 2f(n) for all t ≤ i such that
|S≤t+1({u, v})| < f(n). Indeed, consider the first step t such that |Zt| ≥ 2f(n) (if such a step exists),
and suppose that |S≤t({u, v})| < f(n). Conditioning on the information revealed up to step t, by the
same argument as given in Claim 4.8, each vertex in Zt independently ends up in St+1({u, v}) with
probability 1− o(1), so by a Chernoff bound (Lemma 2.26), we have |St+1({u, v})| ≥ |Zt|/2 ≥ f(n) with
probability at least 1− o(n−2), in which case the desired property holds.

Now, let XW =
∑

t |W t
bad|, where the sum is over all t ≤ f(n) for which |St({u, v})| < f(n), and let

XZ =
∑

t |Zt
bad|, where the sum is over all t ≤ f(n) for which |Zt| < 2f(n) and |St({u, v})| < 100 log n.

It suffices to show that XW +XZ ≤ 2 with probability 1− o(n−2).
Note that, if we condition on the information revealed up to step t (i.e., after we have revealed

St({u, v}), but before we have revealed St+1({u, v})), then each vertex w ∈ W t \ Zt ends up in W t
bad

with probability at most p2|St({u, v})|2 = n−2+o(1), and each vertex z ∈ Zt ends up in Zt
bad with

probability at most p|St({u, v})| = n−1+o(1). So, XW +XZ is stochastically dominated by a sum of at
most f(n)·n = n1+o(1) Bernoulli trials with probability n−2+o(1), plus a sum of at most f(n)·2f(n) = no(1)
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Bernoulli trials with probability n−1+o(1) (all independent). We conclude that

P[XW +XZ ≥ 3] ≤
3∑

q=1

P[XW ≥ q, XZ ≥ 3− q]

≤
3∑

q=1

(
n1+o(1)

q

)
(n−2+o(1))q ·

(
no(1)

3− q

)
(n−1+o(1))3−q = n−3+o(1) = o(n−2),

as desired. ■

Step 5: Concluding. We now wish to prove that if A1 or A2 are satisfied (i.e., u ∈ V safe
2,3 (Grand), or

G0 = ∅ and u, v ∈ V2,3(Grand)), then the properties in Claims 5.3 and 5.4 imply that |S≤i+1({u, v})| ≥
f(n). So, suppose for the purpose of contradiction that A1 or A2 is satisfied, and the properties in
Claims 5.3 and 5.4 hold, and |S≤i({u, v})| < f(n), and Si+1({u, v}) = ∅.

Let T =
⋃i

t=0(W
t
bad ∪ Zt

bad), so |T | ≤ 2 by the property in Claim 5.4. As discussed in Step 3, every
edge of Grand between St({u, v}) and w ∈ W t contributes to S≤t+1({u, v}), unless w ∈ W t

bad ∪ Zt
bad.

Since Si+1({u, v}) = ∅, this means T disconnects S≤i({u, v}) from the rest of Grand. Let Uu and Uv be
the vertex sets of the connected components of u and v, with respect to Grand − T . Note that Uu ∪ Uv,
being a subset of S≤i({u, v}), has fewer than f(n) ≤ (log n)100 vertices.

First, suppose A1 is satisfied (i.e., u ∈ V safe
2,3 (Grand)). By the definition of V safe

2,3 (Grand), the connected
component of u in Grand −T always contains at least three vertices in V2,3(Grand). So, Grand

[
(T ∪Uu)∩

V2(Grand)
]

has at least three vertices of degree at least 3, and at most two vertices of degree 1 (these can
only be vertices in T ). It follows that Grand

[
(T ∪Uu)∩V2(Grand)

]
has more edges than vertices, and the

same holds for Grand

[
T ∪Uu

]
(recall that a graph is obtained from its 2-core by adding “dangling trees”,

which do not change the balance of vertices and edges), contradicting Claim 5.3.
Second, suppose A2 is satisfied (i.e., G0 = ∅ and u, v ∈ V2,3(Grand)). Since G0 is the empty graph,

we have Zt
bad = Zt = ∅ for each t. So, every vertex in T lies in some W t

bad, meaning it has at least
two neighbours in S≤i({u, v}) (which in turn are connected to u or v, via some path). So, all vertices
in Grand

[
(T ∪ Uu ∪ Uv) ∩ V2(Grand)

]
have degree at least 2; since u and v have degree at least 3, it

follows that Grand

[
(T ∪ Uu ∪ Uv) ∩ V2(Grand)

]
has more edges than vertices, and the same holds for

Grand

[
T ∪ Uu ∪ Uv

]
. This graph may not be connected, but at least one of its connected components

contradicts Claim 5.3. □

Before ending this section, we record a simple consequence of Proposition 5.2: for any k ≥ 3, whp the
vertices in the 3-core of Grand are all assigned unique colours by the colour refinement algorithm. Recall
that Vk(G) is the vertex set of the k-core of a graph G, and note that Vk(G) ⊆ Vk′(G) when k′ ≤ k.

Proposition 5.5. Let G0 be a graph on the vertex set {1, . . . , n}, let Grand ∼ G(n, p) for some p ∈
[0, 1/2], and let G = G0△Grand. Then whp G has the property that R∗

Gσ(u) ̸= R∗
Gσ(v) for every pair of

distinct vertices u, v such that u ∈ V3(Grand).

Proof. It was famously proved by Pittel, Spencer and Wormald [61] that there is a constant c ≈ 3.35
such that if p ≤ c/n then V3(Grand) = ∅ whp. So, we can assume that p ≥ 3/n.

Also, it is easy to prove (see for example [30, Theorem 3.2]) that if p ≥ (1 + ε) log n/n for any fixed
ε > 0, then whp every vertex of Grand has degree at least 4; that is, V2,3(G) = V4(G) = V (G). Note that
if a vertex v ∈ V2,3(G) has at least four neighbours in V2,3(G), then trivially v ∈ V safe

2,3 , so in this case
the desired result follows directly from Proposition 5.2. We can therefore assume that p ≤ 2 log n/n.

Now, it suffices to prove that whp V3(Grand) ⊆ V safe
2,3 (Grand). Consider v ∈ V3(Grand) ⊆ V2,3(Grand).

Note that v has at least three neighbours with degree at least 3 in V2,3(Grand). The only way that
deletion of two vertices other than v could possibly cause the connected component of v to contain fewer
than three vertices of V2,3(Grand) is if the two deleted vertices x, y are both neighbours of v, and there
is a third neighbour of v whose neighbours in V2,3(Grand) are precisely x, y, v. If this situation occurs,
then G has a subgraph with four vertices and at least five edges. It is easy to see that whp no such
subgraph exists in Grand, given our assumption that p ≤ 2 log n/n (indeed, the expected number of such
subgraphs is O(p5n4) = o(1)). □

As observed in the proof of Proposition 5.5, for any fixed ε > 0, if Grand ∼ G(n, p) with p ≥ (1 +
ε) log n/n, then whp every vertex of Grand has degree at least 3, so V3(Grand) = V (G). So, Proposition 5.5
implies that R∗σ gives every vertex a different colour. That is to say, Theorem 1.2 follows directly from
Proposition 5.5 and Theorem 2.3.
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6. Small components with very mild perturbation

In this section we prove Theorem 1.3. The proof is fairly involved, so we start with a rough description
of the overall structure of the proof, supplementing the discussion in Section 1.3. (We also remark that
a much simpler implementation of similar ideas can be found in Appendix B, where we prove a weaker
version of Theorem 1.3). Recall the definitions of the colour refinement and 2-dimensional Weisfeiler–
Leman algorithms, from Definitions 2.2 and 2.20.

Recalling the notation in Definitions 1.10 and 2.20 (on disparity graphs and the 2-dimensional Weisfeiler–
Leman algorithm), our goal is to prove that if G = G0△Grand is a randomly perturbed graph with
perturbation probability as small as O(1/n), then the connected components of the disparity graph
D(G,V∗ϕG) have size O(log n). Indeed, we saw in Corollary 2.7 and Fact 2.22 that there is an efficient
canonical scheme for graphs satisfying this property.

Towards this goal, we view the random perturbation Grand as the union of eight slightly sparser
independent random perturbations G1

rand, . . . , G
8
rand ∼ G(n, p′) (this is called sprinkling). Assuming

p ≥ 100/n (thus p′ > 10/n), standard results show that the 3-core of G1
rand (which is a subgraph of the

3-core of Grand) has at least n/2 vertices, and by Proposition 5.2, whp all these vertices are assigned
unique colours by R∗

Gσ (therefore by V∗ϕG, recalling Fact 2.24).
So, we first reveal the 3-core of G1

rand, and fix a set Vcore of n/2 vertices in this 3-core. We then define
the complementary set U = V (G)\Vcore, and reveal all edges of Grand except those between U and Vcore.
For the rest of the proof we work with the remaining seven rounds of random edges (in G2

rand, . . . , G
8
rand)

between U and Vcore.
Specifically, whenever a vertex in U has at least three neighbours in Vcore, that vertex is guaranteed

to be in the 3-core of Grand, and therefore we can assume it will be assigned a unique colour. So, we
can consider a vertex-colouring of G[U ] that is refined with each round of sprinkling: at each round,
new random vertices in U are assigned unique colours, and then the 2-dimensional Weisfeiler–Leman
algorithm propagates this information to obtain a new stable vertex-colouring. In each round, we show
that the colour classes, and the components of the disparity graph, are broken into smaller and smaller
pieces.

6.1. Preparatory lemmas. Before we get into the details of the proof of Theorem 1.3, we start with
a few general graph-theoretic lemmas.

First, we need two near-trivial facts about disparity graphs with respect to equitable colourings: in
a disparity graph, the density between any pair of colour classes is at most 1/2, and refinement cannot
increase degrees in the disparity graph. Recall the definition of equitability from Definition 2.15, and
recall the definition of the generalised disparity graph DL(G, c) from Definition 2.18 (if c0 is a coarsening
of c, then D(G, c0) can be interpreted as a generalised disparity graph of the form DL(G, c)).

Fact 6.1. Consider any graph G and any equitable colouring c : V (G) → Ω, and let A,B be two distinct
colour classes of c.

• D(G, c)[A] is regular, with degree at most (|A| − 1)/2.
• D(G, c)[A,B] is biregular. In this bipartite subgraph, the common degree of vertices in A is at

most |B|/2, and the common degree of vertices in B is at most |A|/2.

Fact 6.2. Let c : V (G) → Ω be an equitable vertex-colouring of a graph G. Then for every vertex v,
the degree of v in D(G, c) is at most the degree of v in any generalised disparity graph DL(G, c) (and
therefore at most the degree of v in D(G, c0), for any possibly non-equitable coarsening c0 of c).

Next, the following lemma shows that refining a colouring cannot significantly increase the sizes of
connected components of the disparity graph.

Lemma 6.3. Let c : V (H) → Ω be an equitable vertex-colouring of a graph H, and consider a matrix
L ∈ {0, 1}Ω×Ω. Let H1 = DL(H, c) and H2 = D(H, c), and for a vertex v, let X1(v), X2(v) be the (vertex
sets of) the connected components containing v in the graphs H1 and H2, respectively. Then

|X2(v)| ≤ 2|X1(v)|.
(The same inequality therefore holds when H1 = D(H, c0) for some coarsening c0 of c).

The proof of Lemma 6.3 uses the equitability of c together with the following simple structural fact
(see [15, Exercise 1.1.12]). The “special” graphs in the second bullet point of Fact 6.4 may already give
some hint for why the factor of two in Lemma 6.3 is required.

Fact 6.4. Let H be a graph.
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• If H has at least
(|V (H)|

2

)
/2 edges, then it is connected.

• If H is a biregular bipartite graph with bipartition A,B and at least |A||B|/2 edges, then it is
connected, unless H is a disjoint union of two isomorphic complete bipartite graphs (in which
case H has exactly |A||B|/2 edges). In this latter case we say H is “special”.

Proof of Lemma 6.3. Fix a vertex v, and let C1, C2, ..., Ck ⊆ V (G) be the colour classes which contain
at least one vertex of the component X2(v). Let X∗

1 (v) be the (vertex set of the) component of v in
H1[C1 ∪ · · · ∪ Ck], so X∗

1 (v) ⊆ X1(v) and it suffices to show that

|X∗
1 (v)| ≥

|X2(v)|
2

. (6.1)

First, we show that the paths in H2 between C1, . . . , Ck imply the existence of corresponding paths in
H1.

Claim 6.5. Consider any i ≤ k and any vertex u ∈ Cj. In the graph H1[C1 ∪ · · · ∪ Ck] there is a path
between u and Ci.

Proof of claim. By the choice of C1, . . . , Ck, note that for each i, j there is a path in H2[C1 ∪ · · · ∪ Ck]
between some vertex of Ci and some vertex of Cj . But if there is any edge in H2 = D(H, c) between two
colour classes Ci and Cj , then D(H, c)[Ci, Cj ] is neither complete nor empty18 (recalling Fact 6.1), and
the same is true for H1[Ci, Cj ] = DL(H, c)[Ci, Cj ]. So, for each i, j there is a path in H1[C1 ∪ · · · ∪ Ck]
between some vertex of Ci and some vertex of Cj , and the desired result follows from Fact 2.19. ■

Now, we break into cases depending on the structure of the graphs H1[Ci, Cj ]. Recall the structural
description in Fact 6.4, and the definition of “special”.

Case 1: H1[Ci, Cj ] is not special for any i ̸= j. Note that if H1[Ci, Cj ] = H2[Ci, Cj ] for all i, j,
we trivially have X2(v) = X∗

1 (v), and the desired result (6.1) follows. So, we assume that H1[Ci, Cj ] ̸=
H2[Ci, Cj ] for some i, j. Since H1, H2 can both be interpreted as generalised disparity graphs of H with
respect to c, this means that H1[Ci, Cj ] is the bipartite complement of H2[Ci, Cj ].

By Fact 6.1, H2[Ci, Cj ] is (bi)regular with at most half the total possible number of edges, soH1[Ci, Cj ]
is biregular with at least half the total possible number of edges. Since in this case we are assuming that
H1[Ci, Cj ] is not special, by Fact 6.4 H1[Ci, Cj ] is connected.

By Claim 6.5, in H1[C1 ∪ · · · ∪ Ck] there is some path from every vertex to Ci. Since H1[Ci, Cj ] is
connected, this means that in fact H1[C1 ∪ · · · ∪Ck] is connected, meaning that X∗

1 (v) = C1 ∪ · · · ∪Ck ⊇
X2(v), and the desired result (6.1) follows.

Case 2: There is a special subgraph. It remains to consider the case where H1[Ci, Cj ] is special for
some i ̸= j. This means that H1[Ci, Cj ] is a disjoint union of two complete bipartite graphs with biparti-
tions (C1

i , C
1
j ) and (C2

i , C
2
j ), for some partition of Ci into equal-sized subsets CA

i , C
B
i and some partition

of Cj into equal-sized subsets CA
j , C

B
j . Note that H1[C

A
i , C

A
j ] and H1[C

B
i , C

B
j ] are both connected.

Now, recall that we are assuming that c is equitable for H, and by the definition of a generalised
disparity graph it immediately follows that c is equitable for H1. By Claim 6.5, in H1[C1 ∪ · · · ∪ Ck]
there is some path from every vertex to Ci. So, H1[C1∪ · · ·∪Ck] has at most two connected components
(one including CA

i , C
A
j and one including CB

i , C
B
j ). If there is only one component, we are done as in the

previous case. If there are two components, note that both components have the same degree statistics
between each pair of parts Ci, Cj (by equitability); since CA

i and CB
i have the same size, this means that

both components have exactly half the vertices of H1[C1 ∪ · · · ∪ Ck]. So, |X∗
1 (v)| = |C1 ∪ · · · ∪ Ck|/2 ≥

|X2(v)|/2; this is the desired inequality (6.1). □

Next, we need a basic graph-theoretic lemma about distances in sparse graphs. Morally speaking, this
lemma says that for any large set of vertices C in a sparse connected graph, we can find a vertex y which
sees many of the vertices in C at different distances.

Lemma 6.6. Let H be a connected graph of maximum degree at most ∆ ≥ 2, and fix a vertex subset
C ⊆ V (H). Then, for any 1 ≤ a ≤ |C|, there is a vertex y ∈ V (G) and a subset I ⊆ N, such that the
number of vertices v ∈ C with distG(y, v) ∈ I lies in the interval [a, a∆).

18Here we are abusing notation slightly and writing F [A,A] to mean F [A]. “Complete” should be understood in context
to mean either a complete graph or a complete bipartite graph.
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Proof of Lemma 6.6. For any vertex y and set I ⊆ N, let QI(y) be the number of vertices in C whose
distance to y lies in I. Fix a vertex z.

Case 1: there are at least a vertices in C with the same distance d to z. In this case, let zd = z
and recursively define a sequence of vertices zd−1, . . . , z0 by choosing zi to be a neighbour of z such that
Q{i}(zi) ≥ Q{i+1}(zi+1)/∆ (this is possible, because the Q{i+1}(zi+1) vertices in C which have distance
i+ 1 to zi+1 are all at distance i to at least one of the at most ∆ neighbours of zi+1).

Note that Q{d}(zd) ≥ a and Q{0}(z0) = 1, so as we gradually decrease i from d to 0, we must find
some i for which Q{i}(zi) ∈ [a, a∆) (and then we can take y = zi and I = {i}).

Case 2: for every d ∈ N, there are at most a vertices in C with distance d to z. In this case,
let I(i) = {0, 1, . . . , i− 1}. Note that QI(0)(z) = 0 and QI(n)(z) = |C| for large enough n, and note that
QI(i+1)(z)−QI(i)(z) ≤ a for each i. So, as we gradually increase i from 0 to n, we must find some i for
which QI(i)(z) ∈ [a, a∆) (and then we can take z = y and I = I(i)). □

Finally, the following very simple lemma will be used in the “fingerprinting” argument briefly outlined
in Section 1.3.9. For a set of vertices A in a graph G, write N(A) =

⋃
v∈AN(v) for the set of all vertices

adjacent to a vertex in A.

Lemma 6.7. Let F be a non-empty biregular bipartite graph with bipartition C ∪B, where the vertices
in B have degree dB. Then there is a subset S ⊆ B of size at most |B|/2dB + 1 with the property that
|N(S)| ≥ |C|/4.

Proof. Let S0 = ∅, and for i = 1, ..., ⌈|C|/(2dB)⌉, recursively define Si = Si−1 ∪ {zi}, where zi ∈ B is
a vertex which has the maximum possible number of neighbours in C \N(Si−1). For each i, note that
N(Si−1) ≤ (i−1)dB < (|C|/(2dB))dB ≤ |C|/2, so C \N(Si−1) ≥ |C|/2. The degree of every vertex in C
is dB |B|/|C|, so the vertices in C \N(Si−1) are incident to at least dC ·|C|/2 = dB |B|/2 edges. Thus, zi is
incident to at least dB/2 vertices in C \N(Si−1). It follows that |N(S)| ≥ (|C|/2dB)(dB/2) = |C|/4. □

6.2. Bounding the degrees. Now we begin to get to the heart of the proof of Theorem 1.3. Recall
from the discussion at the start of this section that we are going to define a partition V (G) = Vcore ∪U ,
and with each round of sprinkling, each vertex of U will be assigned a unique colour if it has at least
three neighbours in Vcore. Provided that p ≥ 100/n, we will calculate that in each round of sprinkling,
each vertex of U is assigned a unique colour with probability at least 0.7 independently.

Our first key lemma is the simple observation that this random assignment of unique colours typically
causes the disparity graph to have maximum degree O(log n). Indeed, if a vertex v in the disparity graph
has large degree, it must have quite a different neighbourhood to some other vertex u in its colour class.
But then it is very likely we assign a unique colour to some vertex which is in the neighbourhood of v
but not u, or vice versa, so colour refinement will distinguish u and v from each other.

Lemma 6.8. Consider an n-vertex graph H and an equitable colouring c : V (H) → Ω. Let c′ be a
random refinement of c, obtained by assigning each vertex a new unique colour with probability at least
0.7, independently. Then, whp D(H,R∗c′) has maximum degree at most 4 log n.

We remark that in our proof of Theorem 1.3, we will apply Lemma 6.8 with H = G[U ].

Proof of Lemma 6.8. For a pair of vertices u, v, let NH(u)△NH(v) be the set of vertices in H which are
a neighbour of exactly one of u, v.

Claim 6.9. Whp the following holds. For every pair of vertices u, v with |NH(u)△NH(v)| ≥ 2 log n, we
have R∗c′(u) ̸= R∗c′(v).

Proof of claim. For any particular pair of vertices u, v, if any of the vertices in NH(u)△NH(v) are
assigned a unique colour by c′ then R∗c′(u) ̸= R∗c′(v). So, if |NH(u)△NH(v)| ≥ 2 log n then P[R∗c′(u) =
R∗c′(v)] ≤ 0.32 logn = o(n−2). The desired result follows from a union bound over pairs u, v. ■

Now, suppose that the conclusion of Claim 6.9 holds, and suppose for the purpose of contradiction
that some vertex u has at least 4 log n neighbours in D(H,R∗c′). Let ND(H,R∗c′)(u) be this set of neigh-
bours, and let C ′ be the colour class of u in D(H,R∗c′). Now, by Fact 6.1, every vertex is adjacent
to at most half the vertices in C ′, so if v is a random vertex in C ′, then for every vertex x ∈ V (H),
we have P[vx is an edge of D(H,R∗c′)] ≤ 1/2. This means that E[|ND(H,R∗c′)(u) ∩ ND(H,R∗c′)(v)|] ≤
|ND(H,R∗c′)(u)|/2, so there must be some specific vertex v ∈ C ′ with |ND(H,R∗c′)(u) ∩ND(H,R∗c′)(v)| ≤
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|ND(H,R∗c′)(u)|/2. That is to say, with respect to D(H,R∗c′), the symmetric difference of neighbour-
hoods of u and v is at least |ND(H,R∗c′)(u)|/2 ≥ 2 log n, and since u, v lie in the same colour class C ′,
the same is true with respect to H. This contradicts the conclusion of Claim 6.9. □

6.3. Splitting connected components via colour classes. Our next key lemma is that in order
to control the sizes of the connected components of the disparity graph (after sprinkling), it suffices
to control the number of vertices of a single colour in a single component. We will prove this with an
adaptive algorithm to explore a connected component, revealing randomness as we go. Along the way we
also prove that sprinkling typically ensures that large components can be partitioned into colour classes.
Lemma 6.10. Consider an n-vertex graph H and an equitable colouring c : V (H) → Ω. Let c′ be a
random refinement of c, obtained by assigning each vertex a new unique colour with probability at least
0.7, independently. Then, whp c′ satisfies the following properties.

(1) Every connected component of D(H, c) with at least log n vertices can be partitioned into colour
classes of R∗c′.

(2) For every colour class C of c, and every connected component19 X of D(H, c), every connected
component of D(H,R∗c′) that intersects C ∩X has at most 5|C ∩X|+ 5 log n vertices.

Proof. Fix a colour class C (of c) and a connected componentX (ofD(H, c)), such that C∩X is nonempty
(there are at most n such choices). Suppose that X ≥ log n (noting that (2) follows deterministically by
Lemma 6.3 when X < log n). We will show that with probability 1− o(1/n),

(1) C ∩X can be partitioned into colour classes of R∗c′, and
(2) every connected component of D(G[U ],R∗c′) that intersects C∩X has at most 5|C∩X|+5 log n

vertices.
The desired result will follow by a union bound over all nonempty choices of C ∩X.

Say that a vertex v ∈ U is special if it is assigned a new unique colour by c′. We reveal which vertices
are special in an adaptive fashion, according to the following 2-phase algorithm.

• Phase 1: Consider an arbitrary subset Y ⊆ X of size log n, and reveal which of the vertices in
(C ∩X) ∪ Y are special.

– If none of these vertices of X are special, abort the whole algorithm.
• Phase 2: Let t = 0, and repeatedly do the following.

(a) Let Et ⊇ C∩X be the set of vertices whose specialness has been revealed so far, let St ⊆ Et

be the set of vertices revealed to be special so far, and let ct be the colouring obtained from
c by assigning each vertex in St a new unique colour (i.e., ct represents the information
about c′ that we know so far).

(b) For each vertex v /∈ Et, let cvt be the colouring obtained from ct by assigning v a new unique
colour (i.e., cvt is the hypothetical colouring we would have after this step, if we revealed v
to be special).

(c) If there is some v /∈ Et such that the number of colour classes of R∗cvt intersecting Et exceeds
the number of colour classes of R∗ct intersecting Et, then choose such a v arbitrarily, and
reveal whether it is special.

– If there is no such v, then set τ = t and abort the algorithm.
(d) Increment t (i.e., set t = t+ 1).

To briefly summarise: in Phase 1, we ensure that there is a vertex in X with a unique colour (this
will imply (1), and is also an ingredient in the proof of (2)), then in Phase 2 we keep revealing whether
vertices are special, as long as their specialness would create new colour classes among the previously
revealed vertices.

First, note that
P[the algorithm aborts in Phase 1] ≤ 0.3logn = o(1/n).

For the rest of the proof, we assume that Phase 1 has completed without aborting (all probability
calculations should be interpreted as being conditional on the information revealed by this phase).

For all t ≤ τ let Nt be the number of vertices in Et, minus the number of colour classes of R∗ct
intersecting Et. Note that N0 ≤ |C ∩X|+ log n. Each time step (c) of Phase 2 occurs (for a vertex v),
either v is special, in which case Nt decreases by at least 1, or v is not special, in which case Nt increases
by 1. Since vertices are more likely than not to be special (each vertex is special with probability 0.7),
this process typically does not continue for long, as follows.

19Here, and in the rest of the section, we conflate components with their vertex sets (i.e., here X is really a vertex set
on which a connected component lies).
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Claim 6.11. We have |Et| ≤ 5|C ∩X|+ 5 log n with probability 1− o(1/n).

Proof of claim. Artificially extend the definition of Nt for t > τ , by taking Nt+1 = Nt+1 + 1 with
probability 0.3 and Nt+1 = Nt+1 − 1 with probability 0.7. For s = |C ∩ X| + log n we have E[N4s] ≤
s+ (0.3− 0.7)4s = −0.6s, so

P
[
|Et| ≤ 5|C ∩X|+ 5 log n

]
≤ P[N4s ≥ 0] ≤ P[N4s − ENs ≥ 0.6s] = o(1/n)

by a Chernoff bound (Lemma 2.26). ■

Now, let W be the union of all the colour classes of R∗cτ which are entirely contained in Eτ . The
following two claims essentially complete the proof of Lemma 6.10.

Claim 6.12. C ∩X can be partitioned into colour classes of R∗cτ , so C ∩X ⊆W .

Proof of claim. This claim is where we use the fact that Phase 1 of the algorithm did not abort: let v
be a special vertex in X, so v has a unique colour with respect to R∗cτ .

Since R∗cτ is a refinement of c, we can interpret D(G, c) as a generalised disparity graph of the form
DL(G,R∗cτ ). Note that there is a path in D(G, c) between a vertex of colour R∗cτ (v) and any vertex in
C ∩X, but there is no such path between a vertex of colour R∗cτ (v) and any vertex in C \X (recalling
that v is the unique vertex with colour R∗cτ (v)). So, by Fact 2.19, the vertices in C ∩X and the vertices
in C \X are assigned disjoint sets of colours by R∗cτ . ■

Claim 6.13. W can be partitioned into connected components of D(H,R∗c′).

Proof of claim. We need to prove that there is no edge between W and V (H) \W in D(H,R∗c′). Since
R∗c′ is a refinement of R∗cτ , and W can be partitioned into colour classes of cτ , it suffices to prove that
there is no edge between W and V (H) \W in D(H,R∗cτ ). For the rest of this proof, all graph-theoretic
language is with respect to D(H,R∗cτ ), and all colour classes are with respect to cτ .

Suppose for the purpose of contradiction that there is an edge between a colour class X ⊆ Eτ and a
colour class Y ̸⊆ Eτ , and consider any v ∈ Y \Eτ . By Fact 6.1, the number of neighbours of v in Y lies
in the range [1, |Y |/2]; in particular, v has both neighbours and non-neighbours in Y . Recall that cvτ is
the colouring obtained from cτ by assigning v a new unique colour, and note that R∗cvτ assigns disjoint
sets of colours to the neighbours of v and the non-neighbours of v. So, the number of colour classes of
R∗cvτ intersecting Eτ exceeds the number of colour classes of R∗cτ intersecting Eτ , contradicting the
definition of τ (see Phase 2(c)). ■

Claim 6.12 immediately implies (1). Then, Claims 6.12 and 6.13 imply that every connected compo-
nent of D(H,R∗c′) intersecting C ∩X is contained in Eτ . By Claim 6.11, with probability 1 − o(1/n)
every such component has at most 5|B ∩ C|+ 5 log n vertices, proving (2). □

6.4. Splitting colour classes via distance information. Given Lemma 6.10, our goal is now to show
that sprinkling tends to break up intersections of the form C ∩ X (where C is a colour class and X is
a connected component of the disparity graph) into much smaller parts. We prove a general-purpose
lemma that accomplishes this, which will be applied several times (each time with different parameters)
in the proof of Theorem 1.3.

Definition 6.14. For a graph H and a colouring c : V (H) → Ω, say that D(H, c) is s-bounded if for
every colour class C of c, and every connected component X of D(H, c), we have |C ∩X| ≤ s.

Lemma 6.15. Consider integers s, s′,∆ such that s ≥ s′ ≥ 100 log n and s′/(8∆) ≥ 10 log s. Consider
an n-vertex graph H and an equitable colouring c : V (H) → Ω, such that D(H, c) is s-bounded and has
maximum degree at most ∆. Let c′ be a random refinement of c, obtained by assigning each vertex a new
unique colour with probability at least 0.7, independently. Then whp D(H,V∗c′) is s′-bounded.

Recalling Lemma 6.8 (which shows that the maximum degree of the disparity graph is at most
O(log n)), we can apply Lemma 6.15 with s = n, s′ = O((log n)2) and ∆ = O(log n) to establish
O((log n)2)-boundedness. Actually, this would already be enough to prove Theorem 1.3 if we were will-
ing to use group-theoretic canonical labelling schemes on small components of the disparity graph, but
for a combinatorial algorithm we need to go down to O(log n)-boundedness. For this we will need some
additional control over degrees in the disparity graph, via the following somewhat delicate lemma.

Definition 6.16. For a graph H and a colouring c : V (H) → Ω, say that D(H, c) is (r, d)-degree-bounded
if for every colour class C of c which intersects some component of D(H, c) in at least r vertices, every
vertex y ∈ V (H) has at most d neighbours in C, with respect to D(H, c).
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Lemma 6.17. Consider integers s, s′ such that s ≥ s′ ≥ 100 log n. Consider an n-vertex graph H and
a colouring c : V (H) → Ω, such that D(H, c) is s-bounded and D(H, c) has maximum degree less than
s′/8. Let c′ be a random refinement of c, obtained by assigning each vertex a new unique colour with
probability at least 0.7, independently. Then whp D(H,V∗c′) is (s′, 10 log s)-degree-bounded.

Both Lemmas 6.15 and 6.17 are proved with the same “fingerprint” idea (briefly sketched in Sec-
tion 1.3.9). In fact, we will be able to deduce both of Lemmas 6.15 and 6.17 from the following technical
lemma.

Lemma 6.18. Consider integers s, s′ such that s ≥ s′ ≥ 100 log n. Consider an n-vertex graph H and a
colouring c : V (H) → Ω, such that D(H, c) is s-bounded. Let c′ be a random refinement of c, obtained by
assigning each vertex a new unique colour with probability at least 0.7, independently. Then, the following
property holds whp.

For a set of vertices S, a vertex y and a subset I ⊆ N ∪ {∞}, let QI(S, y) be the number of vertices
in S whose distance to y, with respect to D(H, c), lies in I. Then, for every vertex y ∈ V (G), every
I ⊆ N ∪ {∞} and every colour class C ′ of V∗c′ which intersects some component of D(H,V∗c′) in at
least s′ vertices, we have QI(C

′, y) /∈ [10 log s, s′/8).

Before proving Lemma 6.18, we deduce Lemmas 6.15 and 6.17.

Proof of Lemma 6.15. Suppose that the conclusions of Lemma 6.10(1) and Lemma 6.18 both hold, and
suppose for the purpose of contradiction that there is a colour class C ′ of V∗c′ and connected component
X ′ of D(H,V∗c′) such that |C ′ ∩X ′| ≥ s′.

By Lemma 6.3, there is a connected component X of D(H, c) which intersects C ′ in at least s′/2 ≥
50 log n vertices. By the conclusion of Lemma 6.10(1), we must have X ⊇ C ′. By Lemma 6.6, with
F = D(H, c)[X], there is a vertex y ∈ X and a set I such that QI(C

′, x) ∈ [s′/(8∆), s′/8). Since we are
assuming s′/(8∆) ≥ 10 log s, this contradicts the statement of Lemma 6.18. □

Proof of Lemma 6.17. Suppose that the conclusion of Lemma 6.18 holds, and suppose for the purpose of
contradiction that there were some vertex y and colour class C ′ of V∗c′ which intersects some component
of D(H,V∗c′) in at least s′ vertices, such that y has more than 10 log s neighbours in C ′ with respect to
D(H,V∗c′). Note that this number of neighbours is less than s′/8, by our assumption on the maximum
degree of D(H, c) and Fact 6.2.

But taking I = {1} or I = (N ∪ {∞}) \ {1}, and recalling the definitions of the disparity graphs
D(H, c) and D(H,V∗c′), we can write the above number of neighbours as QI(C

′, y), contradicting
Lemma 6.18. □

Now we prove Lemma 6.18. The idea is that if there were C ′, y satisfying QI(C
′, y) ∈ [10 log s, s′/4),

then every other vertex v in the colour class B′ of y (with respect to V∗c′) would also have QI(C
′, v) ∈

[10 log s, s′/4), due to the fact that the 2-dimensional Weisfeiler–Leman algorithm can detect distances
in D(H, c) (which can be interpreted as a generalised disparity graph DL(H,V∗c)). We would then be
able to define an auxiliary bipartite graph and use Lemma 6.7 to find a relatively small “fingerprint” set
of vertices in B′ which have a wide variety of distances to the vertices in C ′ (with respect to D(H, c)).
But this situation can be ruled out whp with a union bound: if, in D(H, c), a set of vertices S has a
wide variety of distances to many other vertices, then it is very unlikely that that the vertices in S are
all given the same colour by V∗c′.

Proof of Lemma 6.18. First, we can use the union bound to show that whp certain sets of vertices (with
a rich variety of distances to other vertices) are not monochromatic with respect to V∗c′. For a set of
vertices S we denote by Diff(S) the set of all vertices in D(G, c) which do not see all vertices of S at the
same distance.

Claim 6.19. Whp the following holds. For every colour class B of c and connected component X of
D(H, c), and every subset S ⊆ B ∩X satisfying(

|B ∩X|
|S|

)
0.3|Diff(S)| ≤ 1

n2
, (6.2)

S is not contained inside a single colour class of V∗c′.

Proof of claim. For a particular set S, if any of the vertices in Diff(S) are assigned a unique colour by
c′ then S does not lie inside a single colour class of V∗c. This follows from Fact 2.23, noting that we can
interpret D(H, c) as a generalised disparity graph DL(H,V∗c′). So, the probability that a particular set
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S is contained inside a single colour class of V∗c′ is at most 0.3|Diff(S)|. The desired result then follows
from a union bound, noting that there are at most n nonempty subsets of the form |B ∩X|. ■

Suppose that the conclusions of Claim 6.19 and Lemma 6.10(1) both hold, and suppose for the purpose
of contradiction that there is a colour class C ′ of V∗c′, connected component X ′ of D(H,V∗c′), vertex y
and set I such that |C ′ ∩X ′| ≥ s′ and QI(C

′ ∩X ′, y) ∈ [10 log s, s′/8).
Let B′ be the colour class containing y with respect to V∗c′ (we may or may not have B′ = C ′),

and let F be the auxiliary bipartite graph with parts C ′ and B′, with an edge between u ∈ C ′ and
v ∈ B′ if the distance between u and v in D(H, c) lies in I. We can interpret D(H, c) as a generalised
disparity graph DL(H,V∗c′), so by Fact 2.23, F is a biregular bipartite graph. In this graph the degree
of each vertex in B′ is exactly QI(C

′, y). By Lemma 6.7, there is a subset S ⊆ B′ of size at most
|C ′|/(2QI(C

′, y)) + 1 ≤ |C ′|/(19 log s) such that |NF (S)| ≥ |C ′|/4 ≥ s′/4 ≥ 2QI(C
′, y) (for both these

inequalities we used our assumption QI(C
′ ∩X ′, y) ∈ [10 log s, s′/8)).

Now, fix a vertex v ∈ S and note that Diff(S) ⊇ NF (S)\NF (v) (because every vertex in NF (S)\NF (v)
sees some vertex in S at a distance in I, but does not see v at a distance in I). So, |Diff(S)| ≥
|NF (S)| −QI(C

′, y) ≥ |C ′|/8.
Then (as in the deduction of Lemma 6.15), Lemma 6.3 tells us that there is a connected componentX of

D(H, c) intersecting C ′ in at least s/2 vertices, and by the conclusion of Lemma 6.10(1), we have X ⊇ C ′.
We must also have B′ ⊆ X (if there were a vertex in B′ lying in a different component to the vertices of
C ′, we would have QI(C

′, y) ∈ {0, |C ′|}, which contradicts our assumption QI(C
′, y) ∈ [10 log s, s′/8)).

Letting B be the colour class of c containing B′, recalling that |C ′| ≥ s′ ≥ 100 log n, and recalling that
D(H, c) is s-bounded, we compute(

|B ∩X|
|S|

)
0.3|Diff(S)| ≤ |B ∩X||S|0.3|C

′|/8 ≤ s|C
′|/(19 log s)0.3|C

′|/8 ≤ 1

n2
.

But S is a subset of the colour class B′ of V∗c′, contradicting the conclusion of Claim 6.19. □

6.5. Putting everything together. We now prove Theorem 1.3, combining all the ingredients collected
so far. By Corollary 2.7 and Fact 2.22, it suffices to prove the following theorem.

Theorem 6.20. Consider any p ∈ [0, 1/2] satisfying p ≥ 100/n, consider any graph G0 on the vertex
set {1, . . . , n}, and let Grand ∼ G(n, p). Then whp every connected component of D(G0△Grand,V∗ϕG)
has O(log n) vertices.

Remark 6.21. Our proof approach shows that the implicit constant in “O(log n)” can be made as small
as desired, by increasing the “100” in the assumption on p.

Proof. First note that we can assume p ≤ 2 log n/n, as otherwise the desired result follows from The-
orem 1.2 (note that if R∗σ assigns all vertices distinct colours, then so does V∗ϕG, by Fact 2.24, and
D(G,V∗σ) consists only of isolated vertices). As outlined, we view the random perturbation Grand as
the union of eight slightly sparser random perturbations Gi

rand ∼ G(n, p′), for i = 1, ..., 8, where p′ is
chosen such that 1− p = (1− p′)8. Since we are assuming p ≥ 100/n, we have p′ ≥ 10/n.

Since p′ ≥ 10/n, standard results show that |V3(G1
rand)| ≥ n/2 whp (see e.g. [61]). So, whp we can

fix a subset Vcore ⊆ V3(G
1
rand) with size n/2. Let U = V (G) \ Vcore, and for each i ∈ {2, . . . , 8}, let Si be

the set of vertices in U which have at least three neighbours in Vcore with respect to Gi
rand. We use the

sets Si, together with the 2-dimensional Weisfeiler–Leman algorithm, to recursively define a sequence of
vertex-colourings c1, . . . , c8 of U , as follows.

• Let c1 = V∗ϕG[U ] (this is a colouring of vertices in U)
• For i ∈ {2, . . . , 8}:

– let bi be the vertex-colouring obtained from ci−1 by giving all vertices in Si a unique colour,
and

– let ci = V∗ϕG[U ],bi (recalling from Definition 2.20 that ϕG[U ],bi is the colouring of pairs
of vertices of G[U ], obtained by augmenting the “trivial” colouring ϕG[U ] with the vertex-
colouring bi).

The plan is to first reveal G[U ] and c1, and then reveal c2, . . . , c8 one-by-one, studying how the
components, colour classes and degrees change along the way (using Lemmas 6.10, 6.15, and 6.17). The
following claim justifies this plan.

Claim 6.22. Whp the largest connected component in D(G,V∗ϕG) has at most twice as many vertices
as the largest connected component in D(G[U ], c8).

35



Sketch proof of claim. By Proposition 5.5, whp R∗σ assigns each vertex in the 3-core V3(Grand) ⊇ Vcore∪
S2 ∪ · · · ∪ S8 a unique colour, and by Fact 2.24 the same is true for V∗ϕG. We will see that the desired
conclusion holds whenever this is the case.

Extend each ci to a colouring cexti of V (G), by assigning each vertex in Vcore a unique colour. Note
that D(G, cexti ) has the same components as D(G[U ], ci) (plus singleton components for each vertex of
Vcore), so by Lemma 6.3 it suffices to show that V∗ϕG is a refinement of each cexti . This can be proved
inductively, with eight applications of Fact 2.25 (note that we are assuming V∗ϕG assigns each vertex a
unique colour, so G[U ] can be partitioned into colour classes). ■

For the rest of the proof, we reveal all the edges in G1
rand (which determines U), and reveal all the

edges in G[U ]. We assume that |V3(G1
rand)| ≥ n/2 (so Vcore and U are well-defined).

Given Claim 6.22, our objective is to use the remaining randomness of G2
rand, . . . , G

8
rand (via the

colourings c2, . . . , c8) to prove that whp every component of D(G[U ], c8) has at most O(log n) vertices.
First, note that the random sets Si are independent. For each i ∈ {2, . . . , 8}, each vertex v ∈ U is

independently present in Si with probability

P[Binomial(n/2, 10/n) ≥ 3] = 1− 37

2e5
+ o(1) ≥ 0.7.

We now track how D(G[U ], ci) evolves with i.

Round 1. Applying Lemma 6.8 with H = G[U ], c = c1 and c′ = c2, we see that whp D(G[U ], c2) has
maximum degree at most 4 log n. Reveal an outcome of c2 such that this is the case (i.e., for the rest
of the proof, all probabilities should be interpreted as being conditional on an outcome of c2 with this
property).

Round 2. Applying Lemma 6.15 withH = G[U ], c = c2, c′ = c3, ∆ = 4 log n, s = n and s′ = 104(log n)2,
we see that whp D(G[U ], c3) is 104(log n)2-bounded. Reveal an outcome of c3 such that this is the case.

Round 3. By Fact 6.2, the maximum degree of ∆(D(H, c3)) is at most the maximum degree of
∆(D(H, c2)), which is at most 4 log n. Applying Lemma 6.15 again, with H = G[U ], c = c3, c′ = c4,
∆ = 4 log n, s = 104(log n)2 and s′ = 104 log n log log n, we see that whp D(G[U ], c4) is 104 log n log log n-
bounded. Reveal an outcome of c4 such that this is the case.

Round 4. By Lemma 6.10(2) with H = G[U ], c = c4 and c′ = c5, using the 104 log n log log n-
boundedness we have just established in the previous round, whp every connected component ofD(G[U ], c5)
has at most 105 log n log log n vertices. Also, applying Lemma 6.17 with H = G[U ], c = c4, c′ = c5,
s = 104 log n log logn and s′ = 100 log n (noting that s′ is at least 8 times the maximum degree of
D(H, c4), by Fact 6.2), we see that whp D(G[U ], c5) is (100 log n, 11 log log n)-degree-bounded. Reveal
an outcome of c5 such that both of these properties hold.

Let Ubig ⊆ U be the union of all sets of the form C ∩ X with size at least 100 log n, where C
is a colour class of c5 and X is a component of D(G[U ], c5) (say such a set C ∩ X is a “big inter-
section set”). Every connected component of D(G[U ], c5) has at most 105 log n log log n vertices, so it
contains at most 103 log log n big intersection sets. By degree-boundedness, every vertex has at most
11 log log n neighbours (with respect to D(G[U ], c5)) in each big intersection set, so the maximum degree
of D(G[U ], c5)[U

big] is at most 11 log log n · 103 log log n ≤ 105(log log n)2.

Round 5. By Lemma 6.10(1) with H = G[U ], c = c5 and c′ = c6, whp Ubig can be partitioned into
colour classes of c6. Also, by Lemma 6.10(2) (with the same H, c, c′), whp U \ Ubig can be covered by
connected components of D(H, c6), each with at most 106 log n vertices. Reveal an outcome of c6 such
that both these properties hold.

For i ∈ {5, 6, 7}, let cbigi be the restriction of ci to Ubig, so D(G[U ], c5)[U
big] can be interpreted

as a generalised disparity graph DL(G[U ], cbig5 ). Then D(G[Ubig], cbig6 ) has maximum degree at most
105(log log n)2 by Fact 6.2, and its components have at most 2 ·105 log n log log n vertices, by Lemma 6.3.

Round 6. We apply Lemma 6.15 yet again, this time with H = G[Ubig], c = cbig6 , c′ = cbig7 , ∆ =

105(log log n)2, s = 2 · 105 log n log log n and s′ = 100 log n, to see that whp D(G[Ubig], cbig7 ) is 100 log n-
bounded. Reveal an outcome of c7 such that this is the case.

Recalling that U \ Ubig can be covered by connected components of D(H, c6) with at most 100 log n
vertices, Lemma 6.3 tells us that in fact the whole of D(G[U ], c7) is 2 · 105 log n-bounded.

Round 7. Finally, apply Lemma 6.10 with H c = c7 and c′ = c8, to see that whp all connected
components of D(H, c8) have at most O(log n) vertices, as desired. □
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7. Near-critical random graphs

In this section we prove that for random graphs of any density, colour refinement whp assigns distinct
colours to each vertex of degree at least 3 in the 2-core. By Corollary 2.14 and Remark 2.12, this implies
Theorems 1.4 and 1.8.

Theorem 7.1. For any sequence (pn)n∈N ∈ [0, 1]N, and G ∼ G(n, pn), whp every two distinct vertices
u, v ∈ V2,3(G) are assigned different colours in the stable colouring R∗σ.

Theorem 7.1 follows directly from Proposition 5.2 (with assumption A2) in the case p ≥ (1 +
(log n)−40)/n, and it is vacuous for p ≤ (1 − ε)/n, for any constant ε > 0, as in this regime V2,3(G) is
empty whp (see for example [30, Lemma 2.10]). So, we focus on the near-critical regime 0.9/n ≤ p ≤
(1 + (log n)−2)/n.

In this near-critical regime we cannot apply the machinery developed in Propositions 4.1 and 5.2
Indeed, this machinery fundamentally relies on expansion properties only available for supercritical ran-
dom graphs, and critical random graphs typically have poor expansion properties (in particular, most
pairs of vertices are quite far from each other). But this gives us another way to proceed: if two vertices
u, v are far from each other (or, more generally, if for reasonably large i we can find vertices which have
distance i from u while being at distance greater than i from v), then if we consider exploration processes
starting from u and v, we can run these processes for quite a long time while continuing to maintain some
independent randomness between the two processes. Although this a rather small amount of randomness
per step (compared to Proposition 4.1), we can accumulate this for many steps, to see that there is very
likely to be some deviation between the degree statistics of these processes. This will allow us to conclude
with Lemma 3.5.

The following lemma can be viewed as an analogue of Proposition 4.1, which will be used to execute
the above plan. (It is much easier to prove than Proposition 4.1).

Lemma 7.2. Let G ∼ G(n, p) for some p satisfying 0.9/n ≤ p ≤ (1 + (log n)−40)/n. Then whp G
satisfies the following property. For every pair of vertices u, v such that R∗σ(u) = R∗σ(v), we have
Si({u, v}) = ∅ for some i ≤ 10 log n.

(Recall that the sets Si({u, v}), defined in Definition 3.4, describe the “vertices that appear differently
in the i-th step of the view exploration process”).

For our proof of Lemma 7.2 we will need a simple lemma showing that in very sparse random graphs,
every vertex has distance greater than 10 log n from most other vertices (therefore throughout the first
10 log n steps of an exploration process, there are always many vertices that have not yet been explored).

Lemma 7.3. Let G ∼ G(n, p) for some p satisfying p ≤ (1 + 1/ log n)/n. Whp, G does not have any
vertex v which is within distance 10 log n of at least n/2 different vertices.

Proof. For a vertex v, let N i(v) be the set of vertices at distance i from v. We claim that, whp, for all
vertices v, and all i ≤ 10 log n, we have

|N i(v)| ≤ max
{
n0.1, (1 + 5/ log n)|N i−1(v)|

}
. (7.1)

Indeed, for any fixed v, imagine an exploration process where we iteratively reveal the sets N i(v) (at
step i we reveal all edges incident to vertices in N i−1(v)). For fixed i, if we condition on any outcome
of N i−1(v), then |N i(v)| is at most the number of edges between N i−1(v) and previously unrevealed
vertices, which is stochastically dominated by the binomial distribution Binomial

(
n|N i−1(v)|, p

)
. By a

Chernoff bound (Lemma 2.26), (7.1) holds with probability at least 1 − o(1/n2), so the result holds by
a union bound over all vertices v, and positive integers i.

Then, note that if (7.1) holds for each i ≤ 10 log n, the total number of vertices within distance 10 log n
of v is at most n0.1(1 + 5/ log n)10 logn = O(n0.1) ≤ n/2. □

Now we prove Lemma 7.2.

Proof of Lemma 7.2. Fix v, u ∈ [n]. We consider the exploration process defined in the proof of Propo-
sition 4.1 (also used in the proofs of Proposition 5.2 and Lemma 4.2), to iteratively reveal the sets
Si−1({u, v}).

Fix vertices u, v and let i ≤ 10 log n. Suppose we have so far revealed S1({u, v}), . . . ,Si−1({u, v}),
suppose that Si−1({u, v}) ̸= ∅ and suppose that |S≤i−1({u, v})| ≤ n/2. For vertices wx, let ξwx be the
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indicator random variable for the event that wx is an edge of G, and let ax be the number of times x
appears in Li−1(u, v), minus the number of times it appears in Li−1(v, u). So,

|Li(u, v)| − |Li(v, u)| =
∑

w,x∈V (G)

axξwx.

Some of the ξwx may have already been revealed. In particular, there are(
n− |S≤i−1({u, v})|

)
· |Si−1({u, v})| ≥ n/2

pairs of vertices w /∈ S≤i−1({u, v}) and x ∈ Si−1({u, v}) for which ax ̸= 0 and ξwx has not yet been
revealed. So, by Theorem 2.28 (recalling the definition of M(⌊n/2⌋, p) from Definition 2.27), conditional
on information revealed so far, the probability of the event |Li(u, v)| − |Li(v, u)| = 0 is at most

M(⌊n/4⌋, p) = (1− p)⌊n/4⌋ = e−0.9/4 + o(1) ≤ 0.8

(recalling that p ≥ 0.9/n). Recall from Lemma 3.5 that if |Li(u, v)| ≠ |Li(v, u)| then R∗σ(u) ̸= R∗σ(v).
So, for our fixed u, v, the joint event that

Si−1({u, v}) ̸= ∅ and |S≤i−1({u, v})| ≤ n/2 for all i ≤ 10 log n, and R∗σ(u) = R∗σ(v)

holds with probability at most 0.810 logn = o(n−2). Taking a union bound over choices of u, v, we see
that whp the above event does not hold for any u, v. To finish the proof, observe that the property in
Lemma 7.3 implies that |S≤i−1({u, v})| ≤ n/2 for all u, v and all i ≤ 10 log n. □

We need two final ingredients before completing the proof of Theorem 7.1: in very sparse random
graphs, whp there are no short cycles in close proximity to each other, and this implies a certain structural
fact about vertices in V2,3(G).

Lemma 7.4. Let G ∼ G(n, p) for some p satisfying p ≤ (1 + (log n)−2)/n. Then whp G does not have
any connected subgraph with at most 200 log n vertices and at least two cycles.

Proof. A minimal connected subgraph containing two cycles is always either:
• a pair of vertex-disjoint cycles joined by a (possibly trivial) path, or
• two vertices with three internally disjoint paths between them.

The probability that G contains two vertex-disjoint cycles of lengths k1, k2, joined by a path of length
k3 ≥ 0 (i.e., a path with k3 edges) is at most

nk1+k2+k3−1pk1+k2+k3 = n−1(np)k1+k2+k3 ≤ 1

n

(
1 +

1

(log n)2

)k1+k2+k3

.

The number of vertices in such a configuration is k1 + k2 + k3 − 1, so the probability that such a
configuration exists on at most 200 log n vertices is at most

(200 log n)3

n

(
1 +

1

(log n)2

)200 logn+1

= o(1).

Similarly, the probability that G contains two vertices joined by three internally disjoint paths of lengths
k1, k2, k3 ≥ 1 is at most

nk1+k2+k3−1pk1+k2+k3 ,

so essentially the same calculation shows that whp there is no such configuration on at most 200 log n
vertices. □

Lemma 7.5. For an integer k ≥ 1, let G be a connected graph containing no connected subgraph on at
most 20k vertices with at least two cycles. Consider two distinct vertices u, v ∈ V2,3(G). Then for i ≤ k
there is a vertex w with d(u,w) = i and d(v, w) > i, or with d(v, w) = i and d(u,w) > i.

Proof. Let w1 = u and w2 = v, and for i ∈ {1, 2} let wi
1, w

i
2, . . . w

i
di be the neighbours of wi. For

i ∈ {1, 2} and j ∈ {1, . . . , di}, let W i
j be the set of vertices within distance k of wi

j , with respect to the
graph G− {u, v} obtained by deleting u and v.

It may be helpful to imagine an exploration process where we start at a vertex wi and “explore
outwards in the direction of wi

j”, at each step discovering a new “layer” of vertices which are adjacent to
previously discovered vertices. Then W i

j can be interpreted as the set of vertices discovered in the first
k steps of this process.
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Claim 7.6. If any W i
j contains a cycle, then in fact W i

j contains a cycle C with the property that C,
together with a shortest path between wi

j and C, collectively comprise a subgraph Gi
j ⊆ G[W i

j ] with at
most 2k vertices.

Proof of claim. Consider a breadth-first search tree T (rooted at wi
j) spanning W i

j ; if W i
j contains a

cycle then G[W i
j ] has an edge xy which does not appear in T . Let C be the cycle consisting of the edge

xy, and the unique path in T between x and y. ■

Claim 7.7. For any i, j, i′, j′, if the sets W i
j and W i′

j′ intersect, then there is a connected subgraph

Gi,i′

j,j′ ⊆ G[W i
j ∪W i′

j′ ] containing wi
j and wi′

j′ , and fewer than 2k vertices in total.

Proof of claim. If there is x ∈ W i
j ∩W i′

j′ , we can simply take Gi,i′

j,j′ to be the union of a shortest path
between wi

j and x followed by a shortest path between x and wi′

j′ . ■

Now, consider the auxiliary multigraph G∗ constructed as follows.
• The vertex set of G∗ consists of the two vertices u, v and all their neighbours (this is at most
2+ d1+ d2 vertices, but it may be fewer if some neighbours of u and v coincide, or if u and v are
adjacent). For each i, j, put an edge between wi, wi

j in G∗ (these edges are all also in G). Call
these basic edges.

• For each (i, j) ̸= (i′, j′), if W i
j and W i′

j′ intersect, then put an edge between wi
j and wi′

j′ in G∗.
Call this a type-1 special edge.

• For each i, j, if wi
j is not incident to a type-1 special edge and W i

j contains a cycle with respect
to G, then put a loop on wi

j in G∗. Call this a type-2 special edge.

Claim 7.8. G∗ does not have a connected component with at least two cycles.

Proof of claim. For the purpose of contradiction, suppose such a connected component were to exist.
Considering all possibilities for the structure of G∗, we see that there must be a connected subgraph
G′ ⊆ G∗ with at least two cycles, at most three type-1 special edges, and at most two type-2 special
edges. Via Claims 7.6 and 7.7, the special edges in G′ correspond to subgraphs of G which each have
at most 2k vertices, and the union of these subgraphs, together with the basic edges of G′, yields a
connected subgraph of G with at least two cycles and at most (2 + 3)(2k + 2) ≤ 20k vertices. This
contradicts our assumption on G. ■

If every vertex of G∗ had degree at least 2, then G∗ would have a connected component with at least
two cycles (since u, v have degree at least 3). So, Claim 7.8 shows that there is a vertex of G∗ which has
degree 1. Suppose without loss of generality that this vertex is w1

1, so W 1
1 does not contain any cycles

(of G) and does not intersect any other W i
j .

Recall that w1 = u lies in the 2-core of G, so if we “explore outwards from u in the direction of w1
1”

for long enough, we will eventually see a cycle or some other wi
j . This does not happen within k steps,

so for every i ≤ k there is some vertex w ∈ W 1
1 with d(u,w) = i. Since W 1

1 does not intersect any W 2
j ,

we have d(v, w) > i. □

Now we are ready to complete the proof of Theorem 7.1.

Proof of Theorem 7.1 in the regime 0.9/n ≤ p ≤ (1 + (log n)−2)/n. Recall the definitions of Li(u, v) and
Si({u, v}) (in Definition 3.4) as the multisets of vertices that “appear differently” in the view exploration
processes starting from u and v. For any vertices u, v, w with d(v, w) = i and d(u,w) > i, we have
w ∈ Si({u, v}). So, by Lemma 7.4 and Lemma 7.5, whp G has the property that for every pair of
distinct vertices u, v ∈ V2,3, and every i ≤ 10 log n, we have Si({u, v}) ̸= 0. By Lemma 7.2, it follows
that the vertices in V2,3(G) have distinct colours with respect to R∗σ. □
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Appendix A. Canonical labelling proofs

In this section we provide some details for the (routine) proofs of Corollaries 2.7 and 2.14 and Propo-
sition 2.11.

First, we make the basic (well-known) observation that for the purposes of efficient canonical labelling,
it suffices to label each connected component separately.
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Recall that Gn is the set of n-vertex graphs (on the vertex set {1, . . . , n}); we write G≤n ⊆
⋃n

k=0 Gk

for the set of all graphs on at most n vertices.

Fact A.1. Suppose ΦH is a canonical labelling scheme for a graph family H ⊆ G≤n, such that ΦH(G)
can be computed in time T for each G ∈ H. Let F be the family of graphs whose connected components
are all isomorphic to a graph in H. Then there is a canonical labelling scheme Φ for Gn, such that for
every G ∈ F , we can compute Φ(G) in time O(n2m log n+ nT ).

Proof. For a graph G ∈ F(v), our canonical labelling Φ(G) ∈ Sn (interpreted as an ordering of the
vertices of G) is computed as follows. First, identify the connected components of G (which takes time
O(n+m)). For each component C (with nC vertices, say), we interpret C as a graph on the vertex set
{1, . . . , nC}, and compute the ordering ΦH(C). Since there are at most n components, we can do this in
time O(nT ).

Now that we have a labelling on each component, we simply need to decide how the components
are ordered relative to each other. To do this, we consider the adjacency matrix of each connected
component. To unambiguously specify these adjacency matrices we need an ordering of the vertices of
each component; we simply use the canonical orderings ΦH(C) that we computed above. Then, we sort
the components lexicographically by their adjacency matrices. This can be done in time O(n2m log n).

Note that we did make some “arbitrary choices” in this description. Indeed, if there were two com-
ponents which have the same adjacency matrix, then we had to arbitrarily break a tie when sorting
these components. These arbitrary choices are not a problem (i.e., we have indeed described a canonical
labelling scheme), because any two outcomes of these arbitrary choices correspond to an automorphism
of G. □

Taking H to be the set of all graphs on at most C log n vertices, for a constant C, Corollary 2.7 follows
immediately from Proposition 2.5, Theorem 2.6 and Fact A.1.

Next, we provide some explanation for Proposition 2.11. First, we observe that the vertices in the
kernel, the non-kernel vertices in the 2-core, and the vertices outside the 2-core can all be distinguished
from each other via the colour information generated by the colour refinement algorithm. Let V2(G) be
the vertex set of the 2-core of G.

Lemma A.2. Let G be a graph. The colour R∗σ(v) is enough information to distinguish between the
three possibilities v ∈ V (G) \ V2(G), v ∈ V2(G) \ V2,3(G) and v ∈ V2,3(G).

Proof. Consider the process of “peeling off” vertices of degree less than 2, to generate the 2-core: at each
step, we identify all vertices of degree less than 2, and remove them. It is easy to prove by induction
that the colour of a vertex with respect to Rtσ is enough information to determine whether that vertex
will be peeled off by the t-th peeling step (indeed, recall that Rtσ(v) tells us the number of neighbours
that v has in each colour, with respect to Rt−1σ(v)).

Recall that R∗σ(v) contains all the information about Rtσ for each t until stabilisation is reached. So,
R∗σ(v) tells us whether v ∈ V2(G). Since R∗σ(v) has the property that every vertex of a given colour
has the same number of neighbours in every other colour Fact 2.16, it follows that, in the 2-core, the
vertices of degree at least 3 have different colours than the vertices of degree 2. □

Now we explain how to reconstruct a connected graph G given that the vertices in V2(G) ̸= ∅ are
assigned distinct colours by R∗σ.

Proof of Proposition 2.11. By Lemma A.2, if we know the multiset of colours in R∗σ then we know the
multiset of colours assigned to vertices in V2,3(G). Start with a generic set of vertices with these colours.
We want to show that the colours specify a unique way to put bare paths between these vertices to
reconstruct the 2-core, and they also specify a unique way to attach trees to vertices of the 2-core to
reconstruct G.

It would be possible to show this by induction (in a similar fashion to Lemma A.2), but it is perhaps
most convenient/intuitive to proceed via universal covers (cf. Remark 3.3).

Indeed, to reconstruct the bare paths between vertices in V2,3(G), consider a vertex u ∈ V2,3(G), and
consider the universal cover TG(u) (recall from Lemma 3.2 that this is equivalent information to R∗σ(u)).
The vertices in this universal cover can be viewed as copies of vertices in G; we do not necessarily know
the identities of these vertices, but we do know their colours (with respect to R∗σ). Since the vertices in
V2,3(G) receive unique, distinguishable colours (by the assumption of this proposition, and Lemma A.2),
we can directly read off the lengths of the bare paths between u and other vertices in V2,3(G), and we
can read off what the other endpoints of these bare paths are.
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To reconstruct the trees attached to vertices of V2(G), similarly consider a vertex u ∈ V2(G) and
consider the universal cover TG(u). Some of the children of the root are in V2(G) (we can see this from
their colours, by Lemma A.2); after deleting these children (and their subtrees) we see the exact structure
of the tree outside the 2-core attached to u. □

Finally, to prove Corollary 2.14, we apply Fact A.1 with H being the set of graphs on at most n
vertices which are either CR-determined or outerplanar (recalling Theorem 2.13 and Proposition 2.11).

Appendix B. A simpler proof of a weaker result

Recall the definition of the disparity graph from Definition 1.10. In this appendix we give the details
of the argument sketched in Section 1.3.5, proving the following simpler version of Theorem 1.3.

Theorem B.1. Consider any p ∈ [0, 1/2] satisfying p ≥ 100 log log n/n, consider any graph G0, and let
Grand ∼ G(n, p). Let σ be the trivial colouring, assigning each vertex the same colour. Then whp the
connected components of D(G0△Grand,R∗σ) each have at most log n/ log log n vertices. In particular, by
Corollary 2.7, whp G0△Grand can be tested for isomorphism with any other graph in polynomial time20.

At a very high level the strategy to prove Theorem B.1 is as follows. First, we view the random
perturbation Grand as the union of three slightly sparser random perturbations G1

rand, G
2
rand, G

3
rand ∼

G(n, p′). Assuming p = Ω(log log n/n), standard results show that the 3-core of G1
rand (which is a

subgraph of the 3-core of Grand) comprises almost all the vertices of G, and by Proposition 5.2, whp
almost all these vertices are assigned unique colours by R∗

Gσ.
So, we first reveal the 3-core of G1

rand, and fix a set Vcore of n/2 vertices in this 3-core. We then define
the complementary set U = V (G)\Vcore, and reveal all edges of Grand except those between U and Vcore.
For the rest of the proof we work with the remaining random edges in G2

rand between U and Vcore.
Specifically, whenever a vertex in U has at least three neighbours in Vcore, that vertex is guaranteed to

be in the 3-core of Grand, and therefore (whp) it is assigned a unique colour. Such vertices are removed
from consideration in the disparity graph. To show that such deletions typically shatter the disparity
graph into small components, we will use the following lemma.

Lemma B.2. Let G be an n-vertex graph with maximum degree at most 4 log n. Let G(q) be the graph
obtained by removing each vertex with probability q ≥ 1− 1/(log n)6 independently. Then whp G(q) does
not have a component of size larger than log n/(4 log log n).

We prove Lemma B.2 at the end of this section. First, we deduce the statement of Theorem 1.3.

Proof of Theorem 1.3. First note that we can assume p ≤ 2 log n/n, as otherwise the desired result
follows from Theorem 1.2 (note that if R∗σ assigns all vertices distinct colours, then D(G,R∗σ) consists
only of isolated vertices).

Write Grand = G1
rand ∪ G2

rand ∪ G3
rand, where G1

rand, G
2
rand, G

3
rand ∼ G(n, p′) are independent random

graphs with edge probability p′ satisfying 1 − p = (1 − p′)3. Note that p′ ≥ (100/3) log log n/n ≥
20 log log n/n.

Since np′ → ∞, the 3-core of G1
rand has n− o(n) vertices whp (see e.g. [30, Exercise 2.4.14]). So, whp

we can fix a subset Vcore ⊆ V3(G
1
rand) with size n/2. Let U = V (G)\Vcore, and for i ∈ {2, 3} let Si be the

set of vertices in U which have at least three neighbours in Vcore with respect to Gi
rand. We use the sets

Si, together with the colour refinement algorithm, to recursively define a sequence of vertex-colourings
c1, c2, c3 of U , as follows.

• Recall that σG[U ] is the trivial vertex-colouring of G[U ], and let c1 = R∗
G[U ]σG[U ].

• For i ∈ {2, 3}: let bi be the vertex-colouring obtained from ci−1 by giving all vertices in Si a
unique colour, and let ci = R∗bi.

The plan is to first reveal G[U ] and c1 and c2, using Lemma 6.8 to bound the maximum degree of
D(G[U ], c2), and to then reveal c3, using Lemma B.2 to bound the sizes of the components of D(G[U ], c3).
The following claim justifies this plan.

Claim B.3. Whp the largest connected component in D(G,R∗σG) has at most twice as many vertices
as the largest connected component in D(G[U ], c3).

20Corollary 2.7 uses the Corneil–Goldberg exponential-time canonical labelling scheme on each connected component
of the disparity graph, meaning that the components can have up to O(logn) vertices. However, here we can ensure that
the components have at most logn/ log logn vertices, so the Corneil–Goldberg labelling scheme is not necessary: we can
afford to use a trivial factorial-time canonical labelling scheme on each connected component.
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Sketch proof of claim. By Proposition 5.5, whp R∗σ assigns each vertex in the 3-core V3(Grand) ⊇ Vcore∪
S2 ∪ S3 a unique colour. We will see that the desired conclusion holds whenever this is the case.

Extend each ci to a colouring cexti of V (G), by assigning each vertex in Vcore a unique colour. Note
that D(G, cexti ) has the same components as D(G[U ], ci) (plus singleton components for each vertex of
Vcore), so by Lemma 6.3 it suffices to show that R∗σG is a refinement of each cexti . This can be proved
inductively, with three applications of Fact 2.17 (note that we are assuming R∗σG assigns each vertex a
unique colour, so G[U ] can be partitioned into colour classes). ■

For the rest of the proof, we reveal all the edges in G1
rand (which determines U), and reveal all the

edges in G[U ]. We assume that |V3(G1
rand)| ≥ n/2 (so Vcore and U are well-defined).

Given Claim B.3, our objective is to use the remaining randomness of G2
rand and G3

rand (via the
colourings c2 and c3) to prove that whp every component of D(G[U ], c3) has at most log n/(2 log log n)
vertices.

First, note that the random sets Si are independent. For each i ∈ {2, 3}, each vertex v ∈ U is
independently present in Si with probability

P[Binomial(n/2, 20 log log n/n) ≥ 3] ≥ (3 + o(1))(n/2)20 log logn/n ≥ 1− 1/(log n)6.

We now track how D(G[U ], ci) evolves with i.

Round 1. Applying Lemma 6.8 with H = G[U ], c = c1 and c′ = c2, we see that whp D(G[U ], c2) has
maximum degree at most 4 log n. Reveal an outcome of c2 such that this is the case (i.e., for the rest
of the proof, all probabilities should be interpreted as being conditional on an outcome of c2 with this
property).

Round 2. Recall that each vertex is present in S3 with some probability q ≥ 1 − 1/(log n)6. So,
D(G[U ], c2)−S3 is obtained from D(G[U ], c2) by deleting each vertex with probability q, independently.
By Lemma B.2, whp the connected components ofD(G[U ], c2)−S3 all have size at most log n/(4 log log n).
Reveal an outcome of c3 such that this is the case.

Let H ′ be the graph obtained from G[U ] by deleting all edges incident to vertices of S3 (leaving those
vertices isolated). So, apart from isolated vertices, H ′ has the same components as G[U ]−S3, and these
components therefore all have size at most log n/(4 log log n). But note that H ′ can be interpreted as a
generalised disparity graph GL(G[U ], c3), so by Lemma 6.3, the connected components of D(G, c3) all
have size at most log n/(2 log log n), as desired. □

Now we prove Lemma B.2.

Proof of Lemma B.2. Say that a vertex of G is dead if it is not in G(q); otherwise it is alive.
Fix v ∈ V (G). We wish to show that the component of v in G(q) (if v is alive) has at most

log n/(4 log log n) vertices, with probability at least 1− o(n−1) (the desired result will then follow from
a union bound over v).

We explore the component of v in G(q) using breadth-first search, revealing whether vertices are dead
or alive as we go. Specifically, let S0 = {v} (we can assume v is alive, or there is nothing to prove) and
mark v as “explored”. For each t ≥ 1 (in increasing order), let T t be the set of neighbours of vertices in
St−1 which have not yet been marked as “explored”, let St be the set of alive vertices in T t, and mark
all vertices in T t as “explored”. This process terminates when St = ∅.

Note that S =
⋃∞

t=0 S
t is precisely the connected component of v in G(q). Since each vertex in G

has degree at most 4 log n, we have |T t| ≤ (4 log n)|St−1| for all t ≥ 1, so writing T =
⋃∞

t=0 T
t we have

|T | ≤ (4 log n)|S|.
Just like in the proof of Lemma 4.2, we can couple our exploration process with an infinite sequence of

Bernoulli(1− q) random variables (αi)i∈N: whenever we need to know the alive/dead status of a vertex
v, we look at the next αi in our sequence. In particular, |S| − 1 is the number of times we see αi = 1 in
the first |T | coin flips, so the probability that |S| ≥ log n/(4 log log n) (i.e., the component of G has at
most log n/(4 log log n) vertices) is at most the probability that for some s ≥ log n/(4 log log n), among
the first (4 log n)s+ 1 of the αi we see αi = 1 at least s times. This probability is at most∑

s= log n
4 log log n

(
4s log n+ 1

s

)
(1− q)s ≤

∑
s= log n

4 log log n

(5 log n)s(1− q)s =
∑

s= log n
4 log log n

(
5

(log n)5

)s

= e−(5/4+o(1)) logn = o(n−1).

The desired result follows. □
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